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Genome Annotation in Plants and Fungi: EuGène as a Model Platform 
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Abstract: In this era of whole genome sequencing, reliable genome annotations (identification of functional regions) are 

the cornerstones for many subsequent analyses. Not only is careful annotation important for studying the gene and gene 

family content of a genome and its host, but also for wide-scale transcriptome and proteome analyses attempting to de-

scribe a certain biological process or to get a global picture of a cell's behavior. Although the number of sequenced ge-

nomes is increasing thanks to the application of new technologies, genome-wide analyses will critically depend on the 

quality of the genome annotations. However, the annotation process is more complicated in the plant field than in the 

animal field because of the limited funding that leads to much fewer experimental data and less annotation expertise. This 

situation calls for highly automated annotation platforms that can make the best use of all available data, experimental or 

not. We discuss how the gene prediction (the process of predicting protein gene structures in genomic sequences) research 

field increasingly shifts from methods that typically exploited one or two types of data to more integrative approaches that 

simultaneously deal with various experimental, statistical, or other in silico evidence. We illustrate the importance of inte-

grative approaches for producing high-quality automatic annotations of genomes of plants and algae as well as of fungi 

that live in close association with plants using the platform EuGène as an example. 
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1. INTRODUCTION 

 An accurate annotation of the genes in the genome of an 
organism is essential for downstream bioinformatics analy-
ses and for the design of genome-wide biological assays. The 
rapid expansion of the rate of genome sequencing has led to 
increased reliance on fully automated methods. The shift 
from semi-automated annotation, requiring a large panel of 
expert annotators, to fully automated systems has probably 
occurred first in the plant field because of the more limited 
funding, but is now becoming an important issue in all ge-
nome annotation projects. 

 A key issue to find protein-coding genes is the ability to 
handle the diverse evidence available for gene prediction. 
Following successful application in gene prediction [1], the 
mathematical model of Generalized Hidden Markov Models 
(GHMMs) has been used in most accurate gene finders. 
HMMs define a probabilistic framework for modeling ran-
dom sequences composed of different homogeneous regions. 
Initially developed for speech analysis, it is widely used in 
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sequence analysis and general algorithms for training (esti-
mation of parameters in the model) and segmenting (detect-
ing homogeneous regions) have been developed [2]. The 
efficiency of these algorithms fundamentally relies on inde-
pendence assumptions that are not always acceptable. Some 
GHMM-based systems are specialized in dealing with spe-
cific types of evidence, such as the conservation of exons. In 
two different related species, functional regions such as ex-
ons tend to be more conserved than other regions. This dif-
ference in conservation is exploited in software such as 
TwinScan [3] and NSCAN [4]. 

 In practice, curators routinely incorporate very diverse 
data, such as available predictions, expressed sequence tag 
(EST)-spliced alignments (a DNA/DNA alignment that tries 
to open gaps on consensus splice sites corresponding to pos-
sible introns), protein similarities, comparative sequence, or 
other species-specific evidence. However, such information 
is very difficult to capture in GHMMs, because they rely on 
independence and locality assumptions (see also [5]) and, 
therefore, cannot be simply decomposed in independent con-
tributions or incorporate long-range effects. 

 To integrate such knowledge, the simplest way is to use a 
pipeline that simultaneously gathers all the evidence and 
different predictions through dedicated genome browsers, 
allowing researchers to evaluate the different evidence 
tracks. Some recent systems, such as JIGSAW [6], try to 
consolidate a prediction by integration of different sources of 



88    Current Bioinformatics, 2008, Vol. 3, No. 2 Foissac et al. 

evidence. Nevertheless, a more rational design would di-
rectly merge all the available evidence into a single gene 
prediction system that should also incorporate new evidence 
in a easy and rapid manner. 

2. EUGÈNE AS AN INTEGRATIVE GENE PREDIC-
TION PLATFORM 

 The need for an automatic prediction procedure that 
matches the quality of the current structural annotation of the 
yeast genome was the initial and central motivation for the 
development of EuGène [7], a highly integrative pro-
tein-coding gene prediction platform for eukaryotes. The 
problem of gene prediction can be defined as a segmentation 
problem, in which the aim is to subdivide the genomic DNA 
into genomic regions of different types. The simplest protein 
gene model discriminates coding exons (the coding part of 
any exon) and the remainder of the sequence, considered as 
noncoding. In eukaryotic organisms, most often, noncoding 
regions are further divided into introns that separate coding 
exons and other noncoding regions, allowing clustered cod-
ing exons to be properly bordered for each individual gene. 
Each of these regions is usually delimited by specific pat-
terns or motifs, such as splice sites, translation initiation 
sites, etc. 

 Instead of a priori matching a given mathematical model 
to the gene finding problem, so as to be classified as a purely 
statistical or computational problem, EuGène was designed 
after observation and analysis of an expert annotator at work. 
The aim of this analysis was 

(1) to collect all the sources of evidence exploited for 
gene prediction; 

(2) for each piece of evidence, to identify the type of 
information provided by the data useful for gene 
prediction; 

(3) to recognize the satisfactory set of properties, in-
dependently of the process to be used by each an-
notator to make a prediction. 

 The typical list of evidences for expert annotation can be 
divided easily into three categories: 

(1) statistical evidence, or more generally, in silico 
evidence provided by dedicated mathematical 
models with the purpose of catching the specific 
properties of gene components. The simplest 
models provide local information that a region 
seems to be coding for a protein (Markov models 
[8]) or that a given possible splice site looks func-
tional or not, based on a classifier (e.g. Window 
Array Models [9] or Support Vector Machines 
[10]). These models underlie all existing ab initio 
gene finders. Beyond this local information, com-
plete gene predictions built by existing gene find-
ers are often used for expert prediction as well. 

(2) Similarity with sequences of documented mole-
cules that are the gene expression products is of-
ten the most accepted evidence for detecting gene 
structure. Typically, different types of similarities 
are used in the gene prediction process. First, high 
similarities with known proteins usually clearly 
indicate that the sequence considered is coding. 
Second, similarities with expressed sequences 
(ESTs or cDNAs built from mRNAs from the 
same or a closely related organism) strongly sug-
gest that the genomic sequence is potentially tran-
scribed and conserved after mRNA processing 
(although it might not code for proteins). These 
two types of similarity are illustrated in Fig. (1) 
Finally, similarities with repeated regions and, es-
pecially, documented transposable elements, are 
often used to identify spurious in silico predic-
tions. 

(3) Similarity of the DNA sequence itself with that of 
other genomes can result from a selective pressure 
throughout evolution, suggesting a functional role 
for the conserved region. For example, it might be 
used to identify coding regions. Such a region is 

 

 

 

 

 

 

 

 

Fig. (1). A general view of the different levels of access to biological information on protein genes. Here a gene is shown on the genomic 

DNA, with exons and introns going through (bottom-up) transcription, maturation and translation processes (in italic). Experimental evi-

dence may appear at the mature transcript level: a spliced EST (partial matured RNA sequence), shown as a black box on the left of the fig-

ure, can be aligned on the genomic DNA allowing the detection of an intron (UTR intron here). Similarly, the existence of a similarity 

(shown by snake-like relations, top of the figure) at the protein level can be mapped back, although usually less precisely, to give a hint that 

the corresponding genomic sequence is translated. Also, possible conservation with a foreign genomic DNA sequence is a fuzzy indication 

that the corresponding region may be functional (typically a coding exon – which is part of the translated region of the mRNA). 
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represented in Fig. (1). These conserved regions 
usually do not exactly match coding regions. The 
conservation may extend to introns or may repre-
sent another type of functional region (noncoding 
gene for example). 

 One should note that each source of evidence bears in-
formation from different times of the gene expression and 
protein synthesis process. As Fig. (1) shows, while protein 
similarity is an indication that the sequence can reach the 
translation step and is probably part of a coding exon, 
mRNA similarity is an indication that the sequence has un-
dergone transcription and maturation. In the latter case, such 
a sequence cannot be intergenic nor intronic, but could code 
or not for a 5' or 3' untranslated regions (UTRs) of a gene 
(Fig. 2). 

 Precise identification of similarities between sequences is 
much more difficult in eukaryotic organisms because of the 
fragmented nature of their genes than in prokaryotes. How-
ever, reliable tools are now available for so-called spliced 
alignments between DNA or protein sequences and genomic 
DNA with high efficiency and precision, including the iden-
tification of small exons (e.g. GeneSeqer [11] or Ge-
nomeThreader [12]). 

 All these sources of evidence are obviously interdepend-
ent in complex ways that are extremely difficult to capture or 
model. However, GHMM, the most frequent mathematical 
model used for gene prediction [1], assumes that the evi-
dence and the given sequence are independent. To address 
this intrinsic limitation, GHMM-based gene finders often 
require before final release some dedicated –and not always 
documented-tuning that is not compatible with an automatic 
annotation system. 

 Furthermore, a lesson learned over the last decade, is that 
sources of evidence evolve rapidly over time because of the 
development of new technology either on the experimental 
or on the in silico side. Therefore, it is crucial for a gene 
finder to easily integrate new arbitrary sources of evidence. 
Although this requirement is not always feasible for compu-
tational reasons, the underlying methods and the software 

architecture should be designed as to make this integration as 
simple as possible. Here again, the flexibility of the widely 
used GHMM has shown some limitations in the past. For 
instance, to incorporate additional types of evidence, such as 
similarities with protein sequences or with other genomic 
sequences into the Genscan system [1], specific methods 
have been developed to produce different software tools, 
such as Genomescan [13] and Twinscan [3], respectively. 
Research in comparative genomics even dictated a consider-
able change of the inherent model, as in NSCAN [14]. Ide-
ally, a powerful annotation system would be expected to 
integrate different kinds of evidence in a convenient and 
generic fashion. Regarding the above-mentioned examples, it 
is worth noting that these software tools are independent and 
that none of the GHMM-based gene finders yet has the pos-
sibility to exploit simultaneously more than one of these 
types of evidence (AUGUSTUS+, one of the most advanced 
software in this category, only uses the most reliable infor-
mation at each position). More fundamentally, essential 
changes in the assumed properties of possible gene structures 
might be needed (as illustrated by the radical change in the 
importance of alternative splicing over the last years). 

 Based on all available evidence, EuGène uses a 
three-step approach for the gene prediction itself: 

(1) all possible segmentations of the genomic DNA in 
regions that define a consistent gene structure 
(with respect to the current biological knowledge 
for a given organism) are represented concisely in 
a weighted directed acyclic graph. The concise-
ness is very important because the number of such 
structures grows exponentially with the sequence 
length. The representation must remain flexible 
and should ideally only grow linearly with the se-
quence length. 

(2) A score must be assigned to choose among all 
these consistent gene structures based on the 
available evidence. To build a parametric scoring 
system, the quality of prediction on the docu-
mented data set itself is optimized, differing from 
the usual maximum likelihood optimization often 

 

 

 

 

 

 

 

Fig. (2). Real example of the experimental (nonstatistical) evidence (EST similarities and conservations) usually available for gene structure 

prediction. Beyond the noisy nature of conservation itself (here between Arabidopsis thaliana and poplar), the experimental evidence may 

appear internally inconsistent because ESTs (AV529069 and AV530059/BP809023) are in contraction on the existence on a transcribed re-

gion between position 1517k and 1518k. These two ESTs represent a likely alternative splicing event. Dealing with such a situation is diffi-

cult for most integrative gene finders. Moreover, the gene here contains introns in both the 5' UTR and the 3' UTR that are rarely modeled in 

practice. 
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used in GHMM-based gene finders (frequently 
with additional manual parameter tweaking). 

(3) Once the scoring system is defined, given a ge-
nomic sequence and the set of all available evi-
dence, a gene structure with optimal score is iden-
tified among the exponential number of possible 
predictions. Again, to obtain efficient algorithms, 
the conciseness of the gene structure representa-
tion is crucial and produces an optimal prediction. 
Alternative splicing detection usually means that 
several gene predictions might be necessary to ex-
plain inconsistencies in expression evidences. 

2.1. Modeling Gene Structures 

 Different sources of evidence can provide information for 
gene prediction. GHMMs and protein similarities are infor-
mative, whether a region codes or not, while ESTs, mRNAs, 
or tiling arrays capture information after RNA processing 
and reveal which parts of the genome are transcribed. These 
various points of views calls for a gene model that effec-
tively represents all possible situations with respect to tran-
scription, splicing, and translation. Therefore, the gene 
model of an integrative gene finder should be able to repre-
sent and discriminate coding exons, introns that separate 
coding exons, and the remainder of the genome. In addition 
and because of directly informative sources of evidence at 
this level, a sophisticated gene finder must classify regions 
that are transcribed (or not) and those that are spliced out (or 
not) during maturation, requiring that 5' and 3' UTRs as well 
as UTR introns (introns that separate two exons that contain 
UTRs) are taken into account. The gene model used in 
EuGène effectively discriminates between all these regions. 
The ability of the gene model to deal with all these different 
types of sequence is important because otherwise, the exis-
tence, for example, of an intron in an UTR based on a 
cDNA-spliced alignment would falsely predict two coding 
exons bordering the detected intron. 

 An extremely simplified graph used for representing gene 
structures in EuGène (Fig. 3) is defined for a specific ge-
nomic sequence and omits UTR introns and the negative 
strand. Its primary property is that any path from left to right 

is a consistent gene structure. It is essentially the unrolled 
version of the automata that underlies a GHMM. The actual 
gene model includes a total of over 40 different possible re-
gion types, because intron phases, coding frames, and 
strandness are taken into account and first, internal, last, and 
single coding exons are handled separately (Fig. 4). Beyond 
splice sites, translation start and stop, transcription start and 
stop, information about possible frameshifts and length dis-
tributions can also be included in EuGène. 

 As a consequence of the increasing importance of com-
parative genomics for gene prediction, the number of region 
types represented alongside protein-encoding regions must 
obviously be augmented. An integrative gene finder should 
be able to denote regions, such as regulation sites (not tran-
scribed, but usually conserved) or noncoding RNAs (tran-
scribed, at least conserved at the secondary structure level, 
but without UTR). To our knowledge, only one gene finder, 
SLAM [15], explicitly considers conserved noncoding re-
gions, but essentially to avoid false positive predictions. 

2.2. Learning A Scoring System 

 To select the most likely predicted gene structure given 
the available evidence, a score should be assigned to every 
possible structure. If every edge in the graph receives a 
score, the score of a gene structure could be defined as the 
sum of the local scores associated to the edges of the path. 
Each of these local scores (or votes) themselves will be de-
fined by all the sources of evidence. For modularity and ease 
of implementation, each source of evidence used in a given 
application of EuGène is represented by a plug-in (a dy-
namically loaded software component). On a nucleo-
tide-per-nucleotide basis, each plug-in scores horizontal 
edges, associated to the fact that, in a given type of segment 
or diagonal edges, a nucleotide represents occurrences of 
signals (all sorts of functional sites). 

 These local votes should favor or disfavor structures that 
are compatible or incompatible with the evidence, respec-
tively. As an illustration, let us consider the integration of a 
splice site detection program, such as SpliceMachine [10], 
into a EuGène plug-in. SpliceMachine produces a score for 
every possible canonical AG/GT acceptor and donor. This 

 

 

 

 

 

 

 

Fig. (3). Concise representation of all possible gene structures of the forward strand of a short sequence. Each nucleotide in the sequence 

(top) can be either intergenic, in a 5' or 3' UTR, in a coding exon, or at the three possible phases of an intron (corresponding to the splicing of 

a codon in the first, second, or third position), represented by the different tracks. Occurrence of so-called signals (ATG for translation start, 

GT/AG typically for donors and acceptors...) allow a segment to be started or ended by changing tracks; for example, an in-phase ATG at the 

second position (phase 2) allowing the shift from the 5' UTR to the coding exon in phase 2, is represented by a diagonal edge between posi-

tions 1 and 2 that connect the two corresponding tracks. Each left-to-right path without back steps corresponds to a possible gene structure. 
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score contributes to the weight of the diagonal edges that 
represent possible splicing at every occurrence of a canonical 
AG/GT splice site position. Similarly, an order k 3-periodic 
GHMM [8] computes the probability P(Xi|Xi-1,...,Xi-k) that the 
nucleotide Xi at position i appears in an exon, given the k 
previous nucleotides and this for every possible phase. The 
opposite of the logarithm of these probabilities defines dif-
ferent votes that can contribute to the score of the horizontal 
edges associated with the nucleotide Xi in each coding phase. 
In practice, these votes can have different semantics and are 
often not independent. For all these reasons, the direct com-
bination of all these scores would probably not lead to an 
effective gene prediction tool. Therefore, each vote s pro-
duced by a given source of evidence p is rescaled with a pa-
rametric function before being combined. The simplest 
rescaling functions are linear functions fp(s) = ap.s with one 
parameter, or affine functions fp(s) = aps+bp with two pa-
rameters, but more complex functions could be used as well. 

 In gene finding, the quality of a prediction tool is often 

assessed empirically on a set of sequences annotated by ex-

perts. The sensitivity (Sn) of a gene prediction tool is defined 

as the percentage of known (annotated) functional elements 

that are predicted as such, whereas its specificity (Sp) is the 

percentage of predicted elements that are known as func-

tional. A perfect prediction has 100% sensitivity and speci-

ficity. However, the two measures are not independent: 

higher sensitivity is often obtained at the price of lower 

specificity; they can be computed at the nucleotide level 

(considering coding nucleotides as functional), at the exon 

level (an exon prediction must match the annotation exactly 

to be correct), or at the gene level (all coding exons of a gene 

predicted exactly). These definitions ignore alternative 

mechanisms (such as splicing), but are nevertheless very 

informative. The parameter estimation in EuGène attempts at 

maximizing the geometric mean of the gene and exon level 

sensitivity and specificity defined as                               . The 

geometric mean has been chosen because a high geometric 

mean implies that none of its term is itself close to zero. 

 Optimization of this mean is very difficult because the 
optimized function is neither differentiable nor even con-
tinuous. Therefore, meta-heuristics (with a genetic algo-
rithm) have been combined with a heuristic search process 
based on coordinate descent. 

 Overall, the scoring system used in EuGène is very flexi-
ble: it easily captures GHMMs (with log-probabilities and 
without rescaling) and it deals with nonindependent sources. 
For example, when the same source of information is used 
twice (completely correlated sources), parameter re-estima-
tion simply divides the optimal rescaling parameters among 
the two sources and the prediction quality remains unchan-
ged. This instance also shows that the solved optimization 
problem is also degenerated in the sense that usually more 
than one single optimal set of parameters will be found. 

 Because scores or votes (also called potentials) are inti-
mately related with probabilities (for example, through the 
Boltzman distribution), the above scoring system might be 
interpreted also probabilistically. As a consequence, because 
EuGène is a purely discriminative system and handles arbi-

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. (4). Complete view of all the possible states in EuGène. The graph of Fig. 2 only illustrated the dark states, but ignored the UTR introns 

and the opposite Strand. 
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trarily nonindependent observation, it is also related to 
Semi-Markov Conditional Random Fields [16]. 

2.3. Building A Prediction 

 Once all parameters are estimated, building a prediction 
is just a matter of finding an optimal path in a directed 
acyclic graph (Fig. 3), which can be done easily with the 
linear time, linear space Bellman-Kalaba algorithm [17], or 
the simple variant, the GHMM Viterbi algorithm [2]. In 
EuGène, a slightly more sophisticated version allows scores 
to be integrated depending on the lengths of the predicted 
segments, like in GHMMs. The algorithm used in EuGène is 
still linear in space and time in the sequence length, similarly 
as the gene prediction system AUGUSTUS [18]. For actual 
gene predictions as described in Section 4, the length distri-
butions used are uninformative distributions that just forbid 
short introns. This is probably what makes possible the pre-
diction of many new short genes compared to the Arabidop-
sis thaliana annotation of TAIR [19,20]. 

 Compared to the original version described in [7], 
EuGène has been extended to represent new region types 
(including UTR and UTR introns), has been made capable of 
incorporating new sources of evidence such as conservation 
[21], new site prediction software (for splice sites, translation 
starts...), of producing GFF3 validated output... Beyond the 
possibility to integrate various information sources, EuGène 
is equipped with a large Perl tool kit for pre- and post-
processing, for training and for direct generation of 
TIGR_XML outputs. Finally, EuGène can include informa-
tion on transcript and protein similarities, and recently it has 
been extended to predict alternatively spliced variants, based 
on inconsistent EST data [22]. 

3. A REVIEW OF EXISTING INTEGRATIVE SYS-
TEMS 

 Building a consensus annotation from available evidence 
is not new and several gene finding systems utilize compara-
ble approaches. Only truly integrative programs will be con-
sidered that are directly capable of integrating different types 
of information. Several gene finders will be excluded that 
"just" incorporate statistical (ab initio) and conservation in-
formation of related organisms (software such as TwinScan 
or NSCAN) 

 To better understand how integrative gene finders relate, 
they can be classified along few lines. First, the inherent un-
certainty of information sources can be managed in different 
ways and can be based on probabilities (or by scores that can 
be related to probabilities with Boltzman distribution) or on 
a nonpurely numerical representation. For instance, the EN-
SEMBL pipeline [23] tries to incorporate first what is con-
sidered as the most reliable information (protein similarities). 
Therefore, the reliability granted to information sources is 
essentially captured by the pipeline structure itself, which is 
difficult to change or optimize. 

 Most other existing integrative gene finders incorporate 
information in a global manner, by quantifying the relative 
reliabilities of all the available information sources with 
probabilities or scores, e.g. EuGène [7], but also GAZE [24], 
AUGUSTUS+ [25], JIGSAW [6], and Conrad [5]. These 
systems go through a training phase to capture the reliability 
of information sources and then through a prediction phase 

that produces an optimal prediction. In almost all existing 
tools, training is performed on a set of curated sequences, 
each containing one or more known genes together with as-
sociated evidence. The set must be as representative of the 
genome gene contents as possible, avoiding overrepresenta-
tion of one gene family or of simple (intronless) genes and it 
must also be of sufficient size, typically hundreds of genes. 
For an in-depth analysis of the influence of the training set 
size on prediction performances in GHMM-based gene find-
ers, see [26] and [27]. 

 However, the training phase and the type of information 
that can be captured during the training vary a lot. As in 
many machine learning or statistical problems in bioinfor-
matics, integrative gene finding faces two-dimensionally 
organized data: one (horizontal), the sequence itself and the 
other (vertical), the list of evidence available at each posi-
tion. For a given source of evidence, horizontally short or 
long-range dependencies might occur, while at a given posi-
tion, arbitrary sources of evidence might correlate vertically. 

 AUGUSTUS+ uses a generalized GHMM with addi-
tional hints [25] that are assumed essentially independent 
both horizontally and vertically. This model, without extrin-
sic information, is already capable of producing ab initio 
predictions. The training procedure that quantifies weights 
associated to each source of information is a maximum like-
lihood approach with a training set to assess independently 
the reliability of each source. When several sources of evi-
dence are available, only the most reliable is used. Despite 
its apparent simplicity, AUGUSTUS+ gave excellent results 
in the recent ENCODE evaluation [28]. 

 The approach of EuGène differs from that of AUGUS-
TUS+ by the utilization of the maximum of empirical suc-
cess as the only criteria for parameter estimation. Although it 
is much more difficult to optimize, this criterion avoids, at 
least to some extent, the assumption of vertical independence 
between sources of evidence although one or two parameters 
per source is obviously not enough to capture complex corre-
lations between sources. The criteria used in the 
Semi-Markov Conditional Random Field-based gene finder 
Conrad [5] are similar to those in EuGène, despite different 
optimization algorithms for parameter estimation. Naturally, 
these gene finders are extremely sensitive to the training set 
used. Because curated gene sets have usually a lot of at-
tached evidence (making curation possible), a direct training 
will underestimate the importance of purely statistical evi-
dence when strong experimental evidence seems to be al-
ways available and extremely informative. Specific tricks 
have been applied, such as removal of part of the available 
evidence for training (Conrad) or incremental estimation of 
parameters, such as adding each type of evidence after an-
other (EuGène). 

 From the point of view of capturing vertical correlations, 
the most advanced software is JIGSAW that uses decision 
trees, but, like GAZE, is not a proper gene predictor, because 
it cannot produce a list of possible coding regions alone. 
Therefore, JIGSAW can better be considered as an integra-
tion tool, because it relies on existing gene predictions that 
can be integrated together with other evidence. It is best 
adapted to situations in which a lot of information and dif-
ferent good quality ab initio predictions are already avail-
able, which is rather unusual for plants and fungi. 
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 Finally, there are usually only minor differences in the 
underlying principles of the prediction phase that always 
exploits the linear structure of genomic sequences in dedi-
cated dynamic programming algorithms. AUGUSTUS+, 
EuGène, GAZE, Conrad, and JIGSAW, all allow optimal 
predictions to be found based on an additive score that in-
corporates local scores and a function describing the length 
of the regions predicted. The latter allows capturing the ac-
tual length distribution of exons, introns and other region 
types. 

4. EXAMPLES OF PLANT AND FUNGAL GENOME 
ANNOTATION EFFORTS WITH EUGÈNE 

 Applications of EuGène to three different organisms, 
namely Arabidopsis thaliana, Medicago truncatula, and the 
plant-associated organism Botrytis cinerea (fungal pathogen) 
will be described below. When EuGène is run for a specific 
organism, it usually relies on a different set of sources of 
evidence. A typical basic recipe includes GHMMs and splice 
and translation site predictors that define a purely ab initio 
application of EuGène. When EST, mRNA, and protein 
similarities are included, the advantages of each databank 
should be considered. Furthermore, gene duplication is ram-
pant in plant genomes, leading to many gene families with 
many members [29]. Therefore, the knowledge of one gene 
might be useful to predict divergent, but homologous, gene 
occurrences. Similarly, when related organisms have already 
been sequenced, conservation with these organisms can be 
utilized. In addition, existing reliable ab initio gene finders 
might also contribute to the overall prediction quality. Fur-
thermore, the specific resources of each organism are often 
worth exploiting, emphasizing the need for a flexible inte-
grative annotation system. 

4.1. Eugène Used to Annotate Arabidopsis thaliana 

 EuGène was first trained on the A. thaliana genome. To 
evaluate the effect of the increase in information on the pre-
diction quality, different increasingly large sets of plug-ins 
have been tried on this genome. The first variant of EuGène 
used NetStart [30] for ATG prediction, both NetGene2 [31] 
and SplicePredictor [32] for splice site prediction, and an 
internal interpolated Markov model [33] plug-in for coding 
and noncoding regions. For the evaluation, the Araset dataset 
[34] was used. The Markov models had been trained previ-
ously on another data set defined as the union of Araclean 
[35] and a set of more than 1,000 manually curated genes, 
based on full-length cDNA, designated PlantGene, after re-
moval of all sequences already present in Araset. The rescal-
ing parameters were optimized on the 144 genes of Araclean 
only, defining a first ab initio variant of EuGène. 

 A more sophisticated version integrated similarities with 
A. thaliana ESTs and mRNAs extracted from dbEST (April 
2002; 123,160 sequences) and PlantGene. Spliced align-
ments were built with sim4 [36]. Because EST data are very 
noisy, the plug-in for the analysis of the EST similarities in 
EuGène uses a pre-filtering process that first sorts EST 
alignments according to an increasing order of detected in-
trons and throws away any EST alignment incompatible with 
previous alignments in the above order. The EST plug-in is 
based on alignments to vote on splice sites and on regions 
transcribed (UTR and coding exons) on matching regions 
and spliced out for gaps. As previously, the strength of the 

votes has been optimized on Araclean that, together with the 
ab initio plug-ins mentioned above, defined the EST variant 
of EuGène. 

 Alternatively, protein similarities are very useful. A sim-
ple plug-in analyzes the output of NCBI-BlastX [37] against 
a given protein databank. This plug-in determines whether a 
region codes in the frame of the match and is intronic on the 
border of successive matches. The strength of the decision or 
vote is obtained by linear rescaling of the similarity score. 
This plug-in was applied to SwissProt, PIR, and 
SP-TrEMBL. After optimization, the rescaling parameters of 
SP-Trembl had a value of 0 and was therefore removed. The 
final protein variant of EuGène used just a filtered version of 
SwissProt with all Arabidopsis proteins removed for a fair 
evaluation, whereas the FULL variant of EuGène utilized all 
ab initio plug-ins, EST, mRNA, and protein similarities. 

 Table 1 lists the different gene finders tested. An evalua-
tion of the sensitivity and specificity at the gene and exon 
level on Araset for these different gene prediction software 
and the different variants of EuGène is presented in (Table 
2). These tests show that the ab initio variant of EuGène is 
already quite good, and only slightly worse than FgenesH at 
the exon level. The integrative variant with EST and proteins 
correctly predicts 77% of the 168 genes in the data set. The 
gene level specificity of 73% is probably underestimated, 
given the number of strong protein hits in regions initially 
annotated as intergenic in Araset. 

 Before this evaluation, EuGène had been applied on the 

complete genome and the predictions were used to design 

the genome wide CATMA microarray [38], into which addi-

tional information was integrated. First, repeat-containing 

regions (as detected by RepeatMasker [39]) were exploited. 

The dedicated plug-in votes against the fact the matching 

regions are coding to avoid spurious predictions. Second, the 

Riken Institute produced especially extended full-length 

cDNAs sequenced at both extremities that produced EST 

couples [40]. These sequences were aligned to the genome 

and EuGène was forced to predict a single gene in the corre-

sponding region by a dedicated plug-in that votes against 

“intergenic” for regions between the two EST matches. A 

Table 1. List of all the Gene Finders Applied to the Araset 
Sequences. All Systems have Been Trained for A. 

thaliana 

 

Program Reference Version 

Genscan 1 Data from [14] 

GlimmerA 33 1.0 

GeneMarkHMM 8 2.2a 

FGenesP Solovyev (1997), unpublished Data from [14] 

FGenesH Salamov, Solovyev (1991), 
unpublished 

1.0. 

FGenesHGC Unpublished, can deal with 
GC splice sites 

 

AUGUSTUS 18 From web site 

EuGène 7 3.5 
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similarly extreme vote is issued for an intergenic region im-

mediately before and after the region between the two EST 

matches, forcing the gene to lie between these boundaries. 

The flexibility of EuGène was crucial here. The correspond-

ing annotations have been used by The Institute for Genome 

Research and compared to The Arabidopsis Information Re-

source (TAIR version 5). Predictions that did not appear in 

TAIR were experimentally tested by rapid amplification of 

cDNA ends and hundreds of new genes predicted by EuGène 

and TwinScan were added to TAIR (version 6; [19]). Hun-

dreds of more genes identified by EuGène have been tested 
and integrated since [20]. 

4.2. Eugène Used to Annotate Medicago truncatula 

 The genome of Medicago truncatula (barrel medic), a 
model organism for legumes, is currently being sequenced 
and annotated by the international consortium IMGAG 
(http://www.medicago.org/genome/IMGAG). Although the 
genomes of A. thaliana and M. truncatula are not very dis-
tant, the training of genome-specific versions of gene finders 
greatly improves gene predictions. Furthermore, the devel-
opment of new trainable splice site prediction tools, such as 
SpliceMachine [10], offered an opportunity to incorporate 
better site predictions into EuGène. Despite different tech-
nologies and score semantics, the incorporation of Splice-
Machine scores instead of NetStart/NetGene2 and Splice-
Predictor required minor work. A first ab initio variant of 
EuGène was designed based on SpliceMachine (splice and 
ATG sites) and GHMMs. These mathematical models were 
estimated on a first reliable set of genes built from EST clus-
ters [41]. This basic ab initio variant was enhanced by the 
integration of an N-terminal targeting sequence detection 
software tool, Predotar [42]. Indeed, targeting sequences are 
part of the coding sequences, but are often classified as non-
coding by GHMMs because of their strong compositional 

biases. The peptide header detection allowed voting for 
nearby ATGs. The corresponding rescaling parameters with 
refined functions have been estimated with a second set of 
independently curated genes (all available at http://med-
icago.toulouse.inra.fr/Mt/GLIP/). 

 Simultaneously, a specific version of FGenesH was built 
for M. truncatula by the SoftBerry company (http://www.-
softberry.com/). This gene finder predicts complete genes 
that can be decomposed into regions (exon/intron) and sig-
nals (ATG/STOP and splice sites). A general plug-in capable 
of integrating such information was designed. Because the 
prediction lacks associated scores, a constant vote for each of 
the corresponding regions and signal types is used. These 
constants are estimated as other rescaling parameters by 
maximizing the prediction quality on the same expert data 
set. Integration of FGenesH predictions yields another vari-
ant of EuGène that can still be considered as ab initio. It is 
interesting to note that this version is much better than either 
of its components (see Table 2). Besides ESTs of M. trunca-
tula, those of other legumes, such as Lotus japonicus, Pisum 
sativum (pea), and Glycine max (soybean) were also used as 
extrinsic sources of information. 

 Considering protein similarities, a peptide databank de-
rived from M. truncatula EST clusters was used to improve 
the detection of new members of gene families. In other 
cases, other reliable protein databanks were used such as 
SwissProt, A. thaliana proteome (TAIR 6), and ProDom (all 
protein domains with more than two elements). The latter 
databank is derived from SP/TrEMBL, but a lot of hits with 
spurious sequences are avoided thanks to the nonsingleton 
domains. 

 Conserved regions between two genomic sequences rep-
resenting likely coding exons can be detected with TblastX. 
The integration of such information into EuGène has previ-
ously been described [21]. The associated plug-in votes for 

Table 2. Accuracy of the Different Gene Finders on Araset Given by Exon Level Sensitivity and Specificity (Sne/Spe) and Gene 
Level Sensitivity and Specificity (Sng/Spg). Two specificities are given to allow comparison with AUGUSTUS in which Spg is 

computed with the evaluation procedure provided with Araset, but ignores all predictions in the first and last 2 kb of every se-

quence (context). Spg' is computed on the complete sequence (the only measure available on AUGUSTUS web site). The simple 

ab initio variant of EuGène is in agreement with AUGUSTUS, the best ab initio gene finder. The introduction of additional evi-

dence clearly increases prediction quality with the most informed variant correctly predicting more than three genes out of four.  

 

Program Sne Spe Sng Spg Spg' 

Genscan 63 70 17 19 - 

FGenesP 42 59 6 11 - 

GeneMarkHMM 83 78 41 37 - 

GlimmerA 67 67 30 19 - 

FGenesH 88 84 56 53 - 

FGenesHGC 88 88 57 55 - 

AUGUSTUS (ab initio) 89 - 62 - 39 

EuGène (ab initio) 83 87 62 59 38 

EuGène (EST) 87 88 71 66 41 

EuGène (Protein) 90 89 74 69 44 

EuGène (Full) 91    91 77 73 45 
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coding regions when protein-level similarities are observed. 
For its completeness and maturity, the whole Arabidopsis 
genome was also utilized. 

 In contrast to previous genome annotations that often rely 
on different pipelines for each pseudo-molecule or sequenc-
ing center, EuGène allows the production of a single, uni-
form, and automatic consensus prediction that includes in-
formation from a variety of sources. Before applying this 
recipe for the annotation of M. truncatula, different gene 
finding systems were evaluated on a set of 172 new 
well-curated genes built by mapping transcripts to freshly 
sequenced bacterial artificial chromosomes (Table 3). 

4.3. EuGène Used to Annotate Botrytis cinerea 

 Botrytis cinerea is a filamentous fungus responsible for 
the grey mould disease, affecting more than 200 host plants 
and inflicting serious crop losses worldwide. It also provokes 
the famous noble rot that gives its characteristic flavor to 
Sauternes wine (sweet Bordeaux). B. cinerea genome has 
been sequenced recently by Genoscope (http://www.cns.fr) 
at 10.5x coverage. Compared to the genome of plants, that of 
Botrytis is much smaller (40 Mb) with small introns [43]. 
With EST clusters with significant similarity to fungal pro-
teins, a set of 446 curated genes was built from which 300 
were extracted: 100 were used for training statistical models 
for EuGène (ATG and splice site prediction with Splice-
Machine and GHMM estimation) and submitted to SoftBerry 
for training FGenesH (www.soft-berry.com), 100 different 
ones for parameter rescaling in EuGène, and the 100 remain-

ing for evaluation. 

 As before, of several variants of EuGène tested, the first 

is a purely ab initio one that uses only SpliceMachine and 

GHMMs. As for M. truncatula, the output from FGenesH 
was incorporated to define a second variant. Then, we searc-

hed for protein similarity using three databanks, namely one 

of fungal proteins, SwissProt, and TrEMBL. Fungal proteins 
previously considered to build the curated gene set were re-

moved from the similarity analysis to avoid a bias in the 

process. Finally, similarities to ESTs from B. cinerea and the 
closely related Sclerotinia sclerotiorum genome   (www.br-

oad.mit.edu/annotation/genome/sclerotinia_sclerotium) were 

added. Incorporation of additional sources of evidence, in-
cluding existing gene predictions, is effectively useful for the 

quality of gene prediction obtained with EuGène (Table 4). 

 In addition to these three organisms, EuGène has been or 
is currently being trained and applied to large-scale annota-

tion of a number of organisms, including Populus tricho-

carpa (poplar) [44], Solanum lycopersicum (tomato), Phy-
scomitrella (moss), Ostreococcus tauri (a green alga) [45], 

O. lucimarinus [46], Micromonas pusilla (a green alga), Ec-

tocarpus siliculosus (a brown alga), Laccaria bicolor (a fun-
gus), Melampsora larici-populina (a fungus), Meloidogyne 

incognita (a nematode), Oryza sativa (rice), and will be 

trained on Arabidopsis lyrata, Capsella rubella, and Euca-
lyptus globulus as well as other genome projects currently in 

the launching phase. 

5. CONCLUSIONS 

 For several years, protein gene prediction approaches 
have been classified as either intrinsic (or ab initio, based on 
statistical properties), or extrinsic (based on similarities and 
conservation). After some hybrid gene finding systems, such 
as GenomScan [13], TwinScan [3], or even the recent 
NSCAN [4], the general trend is toward highly integrative 
gene finders. In the plant kingdom, this track has been fol-
lowed by EuGène for several years and has been applied to 
several genome-scale sequencing and annotation projects. 

 Integrative gene finding is a complex problem of infor-
mation fusion that will continue to evolve in the future. Sev-

Table 4. EuGène Variants Compared to FGenesH on 100 
Curated Gene Sequences. All gene finders were 

trained with the same gene set of B. cinerea. on this 

rather compact genome, with short introns, the ab Initio 

variant of EuGène already offers an excellent prediction 

accuracy. The FGenesH prediction available to EuGène 

increases in the accuracy. The integration of all similar-

ity based evidence (cognate protein have been removed 

for the analysis) allows correct prediction of more than 

nine out of ten genes. 

 

Gene finder Sne Spe Sng Spg 

FGenesH 86.2 80.7 73.6 60.2 

EuGène (ab initio) 89.3 92.2 75.3 74.5 

+ FGenesH 94.7 96.3 87.1 87.1 

+ Protein similarity 96.9 97.2 90.1 90.1 

+ EST similarity 97.8 97.5 92.1 92.1 

Table 3. Results of Different Gene Finders Applied to Fresh 
Gene Sequences with curated Annotation. Except for 

EuGène and FGenesH, trained versions of Arabidopsis 

were used, because no version was available for M. 

truncatula. Interestingly, making FGenesH predictions 

available to EuGène allows to outperform both gene 

finders. Integration of additional EST and protein simi-

larities allows correct prediction of four out of five 

genes, a very optimistic evaluation of the actual per-

formance on genomic sequences because the curated 

dataset is associated with lot of evidence. The genes 

wrongly predicted (20%) received mostly an incorrect 

ATG codon, as expected because the lack of experi-

mental evidence obstructs the choice of a "correct" 

ATG. Training and test sequences are available at 

http://medicago.toulouse.inra.fr/Mt/-GLIP/ 

 

Gene finder Sne Spe Sng Spg 

Genscan (A. thaliana) 69.6 78 25.8 29 

GeneMark.HMM (A. 
thaliana) 

73.1 76.6 32.4 31.6 

FGenesH (A. thaliana) 85.3 81.4 47 46.5 

FGenesH (M. truncatula) 85.1 80.7 52.8 47.8 

EuGène (ab initio, M trun-
catula) 

84.7 85.4 55.5 50.5 

+ FGenesH 90 86.9 63.2 56.4 

+ Protein similarity 92.4 88 69.2 61.8 

+ Transcript similarity 94.4 94.6 80.2 79.4 
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eral issues remain open, such as easier handling of vertical 
and horizontal correlations between sources of evidence, 
choice of the criteria for parameter estimation, better incor-
poration of existing sources of evidence, integration of new 
sources of evidence, and prediction of new region types (e.g. 
pseudogenes, noncoding RNA genes, and promoters). In the 
near future, genome sequencing will become more afford-
able and will allow a wider exploration of the tree of life. A 
major issue will be adaptation of gene prediction to genomes 
of very opposite style, from very compact to very large, with 
strongly documented to barely known resources. 

 Also very important will be to facilitate the actual train-
ing itself. Most of the actual systems require some manual 
tweaking based on expertise and construction of curated data 
sets as well that can be both time consuming and strongly 
influence the quality of the final system. Even more complex 
are integrative systems that should select the additional 
sources of information and incorporate them optimally for 
the organism considered. A complete gene finding system 
should automate all these aspects as it has already been done 
to some extent for pure ab initio gene finders, such as 
Genemark.ES [47]. 
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