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Abstract

Motivation: The spatial organization of the genome plays an essential role in regulat-
ing cellular functions, with A/B chromatin compartments reflecting broad differences
in transcriptional and epigenetic activity. Hi-C enables genome-wide identification of
such compartments, but robust differential analysis between groups of samples re-
mains challenging. Existing approaches largely rely on Principal Component Analysis,
which, applied on Hi-C matrices separately, requires heuristic sign choices to merge
results and does not naturally incorporate replicates.

Results: Here we present HICDOC, a Bioconductor package for the prediction and dif-
ferential analysis of chromatin compartments from Hi-C data with replicates. HICDOC
uses constrained k-means clustering to jointly analyze multiple Hi-C matrices, incorpo-
rating replicate information to enhance robustness, and provides empirical statistical
support for predicted compartment switches.

Applied to Hi-C datasets from human tissues and mouse cell lines, HICDOC identified
biologically relevant compartment changes supported by transcriptional differences.
Comparisons with existing tools showed both overlap and complementarity, while a
controlled benchmark with artificially introduced changes confirmed high sensitivity.
Although extensively tested on pairwise comparisons, HICDOC offers a flexible frame-
work compatible with more complex designs and, in principle, with more than two
compartment states.

By combining replicate-aware clustering, automatic A/B assignment across chro-
mosomes, extensive quality control, and statistical evaluation, HICDOC provides an
alternative and complementary approach to PCA-based methods for compartment
analysis. HICDOC thus expands the methodological toolkit for exploring 3D genome
dynamics and its role in cellular processes.

Availability: HICDOC is implemented in R and C++, and is available on Bioconductor:
https://bioconductor.org/packages/release/bioc/html/HiCDOC. html
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Introduction

The three-dimensional (3D) organization of the genome in the nucleus plays a crucial role
in regulating essential functions of eukaryotic cells (Oudelaar and Higgs, 2020; Spielmann et al.,
2018). It has been shown to be involved in cancers (Johnstone et al., 2020; Rhie et al., 2019;
Xu et al., 2022), cell differentiation (Bonev et al., 2017; Oudelaar et al., 2020), and development
(Lupianez et al., 2015; Marti-Marimon et al., 2021). The 3D conformation of chromosomes is
organized by specific structural features at different scales, including DNA loops, Topologically
Associating Domains (TADs), and chromatin compartments (Rao et al., 2014; Rowley and Corces,
2018). These compartments are characterized by distinct chromatin states that exhibit different
epigenetic properties and gene expression patterns, typically classified into two types. Generally,
“A” compartments are associated with more active histone modification marks, chromatin acces-
sibility, and expressed genes compared to “B” compartments (Lieberman-Aiden et al., 2009). As
epigenetic components of the genome, chromatin compartments are dynamic, implying that the
compartment type of a given genomic position can change over time. Consequently, comparing
chromatin compartmentalization between different biological groups of cells can reveal valuable
information on the functional role of 3D variations of the genome (Bonev and Cavalli, 2016).

Identifying chromatin compartments, i.e., determining the compartment type of each ge-
nomic position, can be achieved by analyzing data from genome-wide Chromatin Conformation
Capture (Hi-C) experiments (Lieberman-Aiden et al., 2009). From a given biological sample, the
Hi-C experiment produces pairs of sequencing reads from interacting genomic regions. A stan-
dard analysis pipeline processes these reads to generate an interaction matrix, which shows the
frequency of observed interactions between pairs of genomic regions, or “bins.” The bin size
of a matrix defines its resolution. Due to the proximity-dependent ligation principle of Hi-C, in-
teraction counts serve as a proxy for the spatial proximity of associated genomic regions. The
Hi-C matrix often displays a strong signal along the diagonal and a plaid pattern, similar to a
chessboard with variably sized squares. This pattern is a characteristic signature of chromatin
compartments.

The traditional method for detecting this signal involves a Principal Component Analysis
(PCA\) of the distance-normalized (“observed/expected”) interaction matrix. Based on dimension-
ality reduction, this approach usually classifies genomic loci into A and B compartments based
on the sign of the first eigenvector (PC1) values (Lieberman-Aiden et al., 2009). Despite their
popularity, PCA-based methods have several limitations:

e As they perform dimensionality reduction, PCA-based approaches rely on the strong as-
sumption that all relevant information can be retrieved in a single eigenvector of the
entire interaction matrix.

e PC1 may not always be the most suitable eigenvector for identifying compartments,
depending on factors such as the chromosome, species, or data resolution (Lieberman-
Aiden et al., 2009). This often requires a tedious, case-by-case inspection of the results
for each chromosome and dataset to confirm that PC1 is the most appropriate choice
(Kai et al., 2023; Kalluchi et al., 2023; Rahman et al., 2023).

e The signs of the eigenvectors are arbitrarily assigned by a distinct PCA for each matrix.
This makes it impossible to directly and consistently assign “A” or “B” compartment types
to either the positive or negative PC1 sign (Kalluchi et al., 2023). To achieve consistent
A/B labels across different chromosomes and datasets, it is necessary to “synchronize”
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46 the assignment using external genome annotation data, such as gene density, GC content,
47 or epigenetic marks (Chakraborty et al., 2022; Lieberman-Aiden et al., 2009). In practice,
48 this information may not be always available in the required format for the species or
49 tissue of interest. Additionally, depending on the computational tool, this synchronization
50 process may require a manual, per-chromosome check to decide if compartment types
51 need to be swapped.

52 e Despite these known limitations and the lack of a reliable, automated method for con-
53 sistent compartment type assignment, most available PCA-based tools do not include
54 dedicated quality control (QC) procedures to assess the validity of these choices and
55 processes.

56 Comparative analysis of chromatin compartmentalization is even more challenging. Most

57 comparative studies to date use a two-step qualitative approach: they first predict compartments
58 for each biological group, often by merging replicates into a single matrix, and then compare
59 the predictions. While straightforward and widely used, this approach has no statistical support
60 and is heavily influenced by factors such as matrix resolution, dataset size, and intra- or inter-
61 group variability (Kalluchi et al., 2023; Marti-Marimon et al., 2021). Some studies have adopted
62 more quantitative approaches, comparing compartment-related metrics often derived from PCA
63 (Dixon et al., 2015; Narang et al., 2023; Rahman et al., 2023). However, these approaches are
64 typically implemented as “in-house” scripts designed for a specific project, and do not provide a
65 generic computation tool for broader a usage and evaluation.

66 Nonetheless, a few statistical methods have been specifically developed and implemented
67 to identify significant differences in compartmentalization between groups of matrices. HOMER
68 (Heinz et al., 2018) performs a PCA and compares PC1 values from different conditions using
60 a gene expression analysis based on the limma R package (Ritchie et al., 2015). The choice of
70 the PC and of its sign has to be manually checked and potentially corrected for each individual
71 matrix. Additionally, HOMER is not compatible with standard Hi-C matrix formats and requires
72 the completion of its entire Hi-C workflow beforehand, making it challenging to analyze exist-
73 ing matrices. DcHiC (Chakraborty et al., 2022) also adopts a PCA approach, where PC values
72 between conditions are quantile-normalized and compared using the Mahalanobis Distance to
75 detect atypical bins and assess statistical significance. Unlike HOMER, dcHiC automatically de-
76 termines which PC to use and how to orient it based on GC content and gene density, requiring
77 users to provide this information. DARIC (Kai et al., 2023) is the only differential method that
78 does not rely on PCA. Instead, it calculates a Preferential Interaction Score (PIS) for A vs. B com-
79 partment at each bin and compares them between conditions to identify differences using a
so Hidden Markov Model. Statistical significance is determined by comparing replicates from the
81 Same group to estimate an expected background. However, DARIC requires a pre-existing com-
g2 partment annotation to operate, making it dependent on other predictors to assign compartment
83 types. Moreover, its current version can only be used with human and mouse genomes (mm9,
s« mm10, hgl9, hg38), which significantly limits its applicability to the broader animal genome re-
85 search community (Cheng et al., 2024; MacPhillamy et al., 2021).

86 In order to address these shortcomings and to provide an alternative method, we present
sz HiCDOC, a Bioconductor package dedicated to the differential analysis of chromatin compart-
ss mentalization from Hi-C data. HICDOC features several unique properties. Unlike PCA-based
so methods that rely on comparing the results of independent dimensionality reductions, HICDOC
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90 performs a k-means clustering of the bins from all matrices for each chromosome, leveraging
o1 the consistency between replicates. In addition, HICDOC uses interaction values to automati-
92 cally assign A and B compartment types for all bins and matrices, eliminating the need for ex-
93 ternal annotation data. HICDOC also uses several QC metrics to automatically detect potential
o4 artifacts, and an empirical p-value estimation method to assess the statistical significance of the
95 results. Last, HICDOC is implemented as an R Bioconductor package, enabling easy integration
o6 with existing workflows and data structures.

97 We demonstrate the effectiveness of HICDOC in identifying significant compartment differ-
98 ences between various cell types and experimental conditions. Comparisons with existing tools
99 highlight both the relevance and the complementarity of HICDOC's results on public datasets.
100 By implementing an alternative method for chromatin compartment analysis, HICDOC provides
101 a new approach to investigate the intricate spatial organization of the genome and its role in
102 cellular processes.

103 Materials and Methods

104 Differential compartment analysis with HICDOC

105 Method overview. The aim of HICDOC is to identify significant differences of chromatin com-
106 partmentalization along the genome between groups of Hi-C matrices. Each group typically cor-
107 responds to a biological factor of interest (or “condition”), and contains one matrix per replicate.
108 Most studies compare two groups. Broadly, HICDOC first assigns a compartment type A or B
100 to each genomic bin for each group, assuming that the compartmentalization status should be
110 the same for all replicates of the same group. Bins with a different compartment type between
111 groups (A vs. B) are considered as candidate “switches.” To identify true switches, a statistical
112 significance is computed and assigned to each candidate using an empirical background, assum-
113 ing that most of the genome does not change compartment between conditions. The processing
114 steps are the following.

115 (1) Data loading and preprocessing
116 (2) Normalization
117 (3) Compartment prediction

4)

118 4) Quality Control and visualization

119 Data loading and preprocessing. Briefly, the package first reads a list of matrices encoded in .hic,
120 .cool, .mcool, or tabular HiC-Pro file format, and a metadata file describing the experimental de-
121 sign, i.e., which biological group is assigned to each matrix. The first step performs data cleaning
122 and filtering. It removes short chromosomes (less than 100 bins by default), sparse replicates (less
123 than 30% positive interaction counts), and bins with few interactions (less than one interaction
124 on average). The parameter settings can be changed if necessary.

125 Data normalization. Data normalization can be decomposed into three steps. First, an inter-
126 matrix normalization is performed in order to account for technical biases like sequencing
127 depth discrepancies across libraries. For this, HICDOC applies a cyclic loess normalization, im-
128 plemented in Stansfield et al. (2019), in order to jointly normalize matrices from various groups
129 and replicates. Then, to account for biases like repeat or restriction site density variations along
130 the sequence, an intra-matrix normalization is performed by applying the KR algorithm to each
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131 matrix (Knight and Ruiz, 2012), so that all the bins end up with the same total number of inter-
132 actions. Last, an observed/expected MD-loess (Stansfield et al., 2018) normalization allows to
133 obtain comparable interaction values regardless of the distance to the diagonal.

134 Compartment prediction by constrained clustering. To predict the compartment type of each bin
135 in each matrix, HICDOC performs a constrained k-means clustering (Wagstaff et al., 2001) of the
136 vectors of interaction values, processing each chromosome separately. The clustering considers
137 two clusters (k = 2) per biological condition to represent the A and B compartments, itera-
138 tively assigning each vector to the closest centroid. As a specific property of the constrained
139 k-means clustering, vectors from replicates of the same condition have to be assigned to the
140 same centroid. The assumption behind this constraint is that intragroup variability should not
141 exceed intergroup variability. At the end of the clustering, each bin of each matrix is assigned to
142 one of the two clusters.

143 Then, each compartment type (A or B) is assigned to a centroid. Instead of relying on user-
144 provided external data, HICDOC uses an empirical property of the matrices based on a new
145 metric: the Self-Interaction Ratio (SIR). For each bin of each matrix, the SIR is the humber of
146 interactions between the bin and itself, divided by the total number of interactions in the bin. The
147 SIR therefore represents the proportion of interactions along the diagonal of the matrix. Since
148 the matrices are KR-normalized at this stage, the diagonal value can simply be used directly in
149 practice. The cluster with the highest median SIR is labeled compartment A and the other one
150 compartment B. Consequently, all matrices feature a sequence of A/B compartment predictions,
151 defining two types of bins: stable bins, with the same compartment label in both conditions, and
152 switching bins, with different compartments.

153 For each bin of each matrix, HICDOC computes the concordance, a number between —1 and
154 +1 that reflects the relative distance between the corresponding interaction vector and both
155 centroids. The concordance of a bin x, considering centroids ca and cg of compartments A and
156 B respectively, is

ratio(x, ¢g, ca) — ratio(cg, cg, ca)

ratio(ca, cg, ca) — ratio(cg, g, ca) B
= % and ¢ a small value (10719 in the implementation) to avoid
158 divisions by zero. A concordance of —1 means that the bin is very similar to the centroid of
159 compartment B, while a concordance of +1 indicates a close proximity to compartment A.
160 In order to obtain a background distribution under the null hypothesis (i.e. no compartment
161 switch), the concordances of stable bins are considered. For each stable bin, we compute the
162 median concordance in each group, then the difference between these medians. This distribution
163 is then used to assess the statistical significance of the switching bins. Resulting p-values are
164 subsequently adjusted for multiple testing using the Benjamini-Hochberg procedure (Benjamini
165 and Hochberg, 1995).

157 with ratio(x, cg, ca)

166 Quality controls and visualizations. HICDOC automatically performs three quality controls on
167 each chromosome to assess the consistency of the clustering process.

168 The first step focuses on how the centroids ended up distributed in the subspace. If normal-
169 ization and clustering provided expected results, centroids of the same type should be close to
170 each other, i.e. the compartment type should be more discriminant than any other factor. To con-
171 trol for this, a PCA is performed on the centroids. The resulting first Principal Component must
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172 fulfill two conditions: (1) its sign should be the same for centroids of the same type, and (2) its
173 inertia should account for at least 75% of the PCA dispersion. Otherwise, the chromosome gets
174 flagged by the QC process.

175 The last control focuses on the relevance of the A/B label assignment and on the actual dis-
176 crepancy between the two compartment types. We gathered the SIR values of the bins assigned
177 in the A compartment, the SIR values of the bins assigned in the B compartment, and compared
178 the two distributions with a Wilcoxon test. If no significant difference is found, the chromosome
179 is flagged. This control helps to avoid improper segmentation of the chromosome, not driven by
180 biological condition but by another factor such as the chromosome arm, for example (Lieberman-
181 Aiden et al., 2009).

182 Implementation. The HICDOC package is developed in R and is available as a Bioconductor pack-
183 age (Gentleman et al., 2004): https://bioconductor.org/packages/release/bioc/html/
184 HiCDOC.html. As such, it is fully compliant with the Bioconductor’s data structures. In addition,
185 while each step of the analysis can be executed independently, a global function allows to run
186 the entire workflow as an integrated pipeline.

187 Benchmark

188 Evaluated tools. We compared HiCDOC version 0.99.15 with HOMER version 4.11 (Heinz et al.,
189 2018), DARIC version 0.2.20 (Kai et al., 2023), and dcHiC v2.0 (Chakraborty et al., 2022). All
100 tools were used with their default options.

101 Unlike the other tools, which can process interaction matrices, HOMER needs to run an entire
192 Hi-C data workflow, starting from raw reads. These reads are trimmed, mapped, and aggregated
103 to build the interaction matrices. Each matrix is normalized, first by library size, then by distance
104 from the diagonal (observed/expected). A Principal Component Analysis is then used to segment
105 the chromosome into compartments, usually using the first eigenvector PC1. The correct sign
196 of the PC1 to be used for A/B assignation can be inferred using user-provided annotation data,
107 like histone marks or Transcription Start Sites.

108 While DARIC can process distance-normalized interaction matrices, it needs a corresponding
199 A/B compartment prediction, obtained by another tool. For each bin, it computes a Preferential
200 Interaction Score (PIS), which is the log2-transform of the average interaction with a bin in the
201 A compartment, divided by the average interaction with a bin in the B compartment. This PIS
202 is smoothed using a gaussian filter and normalized using a robust rescaling of the MA-plot. A
203 Hidden Markov Model then segments the genome into four states: strong “A to B”, weak “A to
204 B” and the converse for the changes “B to A". Last, a null distribution of the difference between
205 PIS from replicates is used to provide a p-value for the strong changes found in the previous
206 Step.

207 dcHiC starts from an interaction matrix, which is processed through a PCA. The genomic GC
208 content is used to assign A/B compartments. A multivariate distance measure, the Mahalanobis
200 distance, is computed using the quantile-normalized eigenvectors from all the matrices. A chi-
210 square test on this distance identifies significant changes, using variance across replicates as
211 covariates for independent hypothesis weighting.

212 Evaluation data. Three datasets were used to benchmark the tools.

213 e The human Hi-C datasets were generated by the ENCODE consortium (The EN-
214 CODE Project Consortium, 2012) and were downloaded from the ENCODE data
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215 portal (Luo et al,, 2019) at https://www.encodeproject.org/ with the follow-
216 ing identifiers: ENCBS393MMT, ENCBS476FKF, ENCBS565LDI, ENCBS564MPZ,
217 ENCBS836DBQ, ENCBS494DUH. These data come from Hi-C experiments that
218 were performed on samples from two tissues: transverse colon and skeletal muscle
219 (gastrocnemius medialis), each with 3 biological replicates (different donors). To ob-
220 tain Hi-C matrices, raw sequencing reads were processed using the nf-core/hic
21 pipeline (Ewels et al., 2020) v1.2.2 on the assembly version GRCh38 of the human
222 genome using the following arguments: -—-min_mapq 10 --restriction_site ’"GATC’
223 --ligation_site ’GATCGATC’ --min_insert_size 20 --max_insert_size 1000

224 --rm_singleton —--rm_dup --skip_ice --bwt2_opts_end2end --very-sensitive
225 -L 30 --score-min L,-0.6,-0.2 --end-to-end --reorder -bwt2_opts_trimmed
226 --very-sensitive -L 20 --score-min L,-0.6,-0.2 --end-to-end --reorder.

207 Hi-C matrices were generated at a 200 kb resolution. Gene expression values from
208 RNA-seq experiments were also retrieved for the same samples on the ENCODE data
229 portal. A mean expression value was assigned to each bin per tissue by averaging the
230 TPM values of all genes within the bin across replicates. These values were then used to
231 compute a logFC ratio between tissues.

232 e The murine Hi-C datasets come from a neural development study (Bonev et al., 2017) and
233 were downoladed from the SRA (https://www.ncbi.nlm.nih.gov/sra)using the acces-
234 sion ID SRP101791 (GEO: GSE96107). To obtain Hi-C matrices, raw sequencing reads
235 were processed using the nf-core/hic pipeline (Ewels et al., 2020) v1.3.0 on the assem-
236 bly version GRCm39 of the mouse genome using the following arguments: --min_mapq
237 10 --digestion ’dpnii’ --min_insert_size 20 --max_inser_size 1000

238 --bwt2_opts_end2end --very-sensitive -L 20 --score-min L,-0.6,-0.3

239 --end-to-end --reorder --bwt2_opts_trimmed -5 5 --very-sensitive -L 20

240 --score-min L,-0.6,-0.3 --end-to-end --reorder. Samples correspond to 3 cellu-
241 lar differentiation stages during neuronal development: mouse embryonic stem cells
242 (mESC), neural progenitor cells (NPC), and cortical neurons (CN), with 4 replicates per
243 cell type. In line with the comparison made in the dcHiC article, we chose to compare
244 ESC and NPC, at 100 kb resolution. Gene expression values from Chakraborty et al,,
245 2022 were downloaded from GEO using accessions GSM2533843-48 and processed as
246 described for the human data.

247 e The semi-simulated data was generated from the mouse data (see above), introducing
248 artificial compartment modifications at known positions to have a ground truth. First,
249 consistent predictions from both dcHiC and HICDOC were considered, focusing on com-
250 partment transitions, i.e. bin pairs where bin i was assigned to one compartment type by
251 both tools in both conditions, and bin / + 1 was assigned to the other compartment type
252 by both tools in both conditions. For all replicates of the second condition, the interaction
253 vector of bin / was copied into the bin / + 1 to artificially shift the compartment transi-
254 tion by one bin downstream. In addition, this new / + 1 vector was also shifted by one
255 bin along the j axis to preserve the diagonal structure of the matrix. As a consequence,
256 the bin / + 1 should not be assigned to the same compartment type in both conditions,
257 producing a true positive target. A total of 49 compartment transitions were modified in
258 this way.
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259 Results

260 In order to assess HICDOC's performances, we ran it on real publicly available data from two
261 distinct studies: one from the ENCODE project, comparing human tissue samples from muscle
262 and colon, and one from a neural cell differentiation study in mouse, comparing embryonic stem
263 cells (ES) and neuronal progenitors (NP). We also processed these datasets with three state-of-
264 the-art tools for differential compartment calling: HOMER, DARIC and dcHiC.

265 In addition, we performed a complementary test using real but edited data in order to com-
266 pare the best predictors in the context of a controlled setting (“semi-artificial data”). Details about
27 the datasets and the tools are provided in the Materials and Methods section.

268 HICDOC identifies consistent compartment switches in real data from human and mouse

269 In both human and mouse data sets and regardless of resolution, the number of predicted
270 compartment differences between conditions varies widely between the tools (Figure 1).
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Figure 1 - Compartment switch predictions along the first chromosome of each species
between conditions: muscle vs. colon tissue samples in human (top) and ESC vs. NPC
cell lines in mouse (bottom). Horizontal tracks show AB (green) or BA (orange) predicted
switches according to Daric, dcHiC, HICDOC and HOMER along the first chromosome
(x-axis: genomic position in bp).
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271 In general, HOMER produced the highest number of predicted switches for both species,
272 with 4, 049 switching bins of 200 kb in human and 14, 593 bins of 100 kb in mouse, representing
273 about 27% and 49% of the genome, respectively (Figure 1, 2). DARIC predicted 1, 015 human and
274 7,476 mouse switches, dcHiC 1,024 and 1, 240, and HICDOC 765 and 1, 696 (Figure 2).
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Figure 2 - Number of significant compartment differences predicted from each tool for
human (top) and mouse (bottom). Horizontal bars on the left indicate the total number
of switching bins predicted by each tool, while vertical bars represent common or tool-
specific predictions.

275 As true compartment switches are not known for these datasets, we evaluated the consis-
276 tency between tools by comparing their predictions, assuming that predictions that are sup-
277 ported by several tools are more likely to indicate genuine compartment switches compared to
278 tool-specific predictions. Prediction consistency also varies across tools and datasets (Figure 2).
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279 The highest proportion of tool-specific predictions was generated by HOMER, with a large ma-
280 jority of its predictions not supported by any of the other tools (68% in human 53% in mouse). On
281 the other side of the spectrum, HICDOC seems to produce the most consistent results: unlike
282 the other tools, most of the HICDOC predictions are supported by at least two other tools (60%
283 in human and 90% in mouse), with dcHiC closely following (45% and 86%, respectively). This
284 proportion is much lower for the other tools: from 6% to 25% for DARIC and from 11% to 13%
285 for HOMER, suggesting more consistent results from HICDOC and dcHiC. In addition, HICDOC
286 produced the smallest number of tool-specific predictions in both species (3 switches in mouse
287 and 98 in human). These results support the reliability of HICDOC's predictions.

288 HICDOC produces biologically relevant results

289 Although no ground truth is available for these datasets, compartment switches are known
200 to be associated with changes in gene expression. On average, chromatin accessibility tends to
201 be positively correlated with gene expression in several species (Dixon et al., 2015; Foissac et
202 al., 2019). Therefore, in order to assess the biological relevance of the predictions, we computed
203 the average difference of gene expression as logFC values between conditions in each predicted
204 switch, considering “A—B” (AB) and “B—A" (BA) switches separately. In principle, the resulting
205 distributions of the logFC expression values should differ between AB and BA switches. Remark-
206 ably, this is the case for all tools, each producing significantly different distributions in human
207 and mouse (p-values < 3.10~3, Wilcoxon test, Figure 3). However, in both species, the difference
208 between the median logFC values is higher in the case of dcHiC and HiCDOC than in the case
200 of HOMER and DARIC (Figure 3). Furthermore, considering the asymmetry of the distributions,
300 we computed for each tool the proportion of predicted AB and BA switches with negative and
301 positive logFC values, respectively. Again, this proportion is higher for HICDOC and dcHiC than
302 for HOMER and DARIC (Table 1), suggesting a higher consistency with expression data for the
303 tools. Taken together, these results strongly support the biological relevance of the results from
304 HICDOC and dcHiC.

Method Dataset AB switches BA switches

total logFC < 0 total logFC > 0
Daric human 328 163 (49.7%) 209 128 (61.2%)
mouse 2507 1812 (72.3%) 2488 1869 (75.1%)
HOMER human 1232 810(65.8%) 1041 739 (71.0%)
mouse 5693 3759 (66.0:%) 4607 3170 (68.82%))
deic  human 187 156 (83.4%) 164 150 (91.5%)
mouse 475 378 (79.6%) 363 298 (82.1%)

0, 0,
Hicpoc human 178 138 (77.50/0) 236 188 (79.704)
mouse 364 285 (78.3%) 790 622 (78.7%)
. « human 66 47 (711.2%) 112 74 (66.1%)
HICDOC™  ouse 182 135(742%) 545 400 (75.1%)

Table 1 - Number of 200 kb (human) and 100 kb (mouse) genomic bins with a predicted
compartment switch between conditions according to each tool. Proportions of bins with
a gene expression difference of the expected sign (negative and positive logFC for AB
and BA switches, respectively) are also indicated. HICDOC* is the set of predictions given
by HiCDOC, but not dcHiC.

305 Finally, we sought to assess the specific contribution of HICDOC predictions compared
306 to those from dcHiC. For this, we focused on differential gene expression results in HICDOC
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switches that were not predicted by dcHiC, ignoring the overly abundant predictions of DARIC
and HOMER (Figure 3 and Table 1, HICDOC* predictions). Similarly to the entire set of predic-
tions, we obtained a significant difference between distributions of logFC differential expression
values in AB vs. BA HICDOC-specific switches (p-value < 1078 in human and < 10738 in mouse,
Wilcoxon test). Also, HICDOC-specific logFC distributions showed the same expected asymme-
try pattern, as previously observed for the entire set, with a prevalence of positive and negative
logFC expression values in BA and AB switches respectively (Figure 3 and Table 1). These results
highlight the specific value of HICDOC compared with dcHiC, emphasizing the importance of
complementary analysis methods for chromatin structure studies.

HiCDOC performs well on a dataset with ground truth

In order to perform an evaluation using a known ground truth, we edited the Mus musculus
Hi-C matrices. In brief, all consistently predicted compartment transitions between adjacent bins
were artificially shifted by one bin downstream in each replicate of one condition, generating 49
artificial switches created from real data (see Methods). We then processed this edited dataset
with HICDOC and dcHiC.

Among the 49 newly introduced compartment differences, dcHiC identified 29 of them as
differential (59.2%). HICDOC, on the other side, correctly predicted all 49 of them as differential.
This results highligths HICDOC's capacity to accurately detect differences in chromatin compart-
mentalization.

Discussion

In this report, we presented HiCDOC, a method for the identification and differential analy-
sis of chromatin compartments from Hi-C data. By integrating replicate information into a con-
strained clustering framework, HICDOC provides a robust basis for consistent compartment
assignments. Unlike PCA-based methods, which process Hi-C matrices separately and rely on
heuristic sign choices to merge results, HICDOC jointly analyzes all replicates and experimental
groups from the normalization step onward, accounting for inter-matrix biases and automati-
cally synchronizing compartment types across chromosomes. In addition, by comparing candi-
date switches with a background distribution derived from stable bins, HICDOC provides an
empirical framework to assess statistical significance, avoiding strong assumptions about the
underlying data distribution. Together, this design complements existing approaches and offers
an alternative perspective on compartment organization.

Applied to Hi-C datasets from human and mouse, HICDOC identified consistent and bio-
logically relevant compartment switches. Notably, HICDOC predicted fewer tool-specific differ-
ences than other state-of-the-art methods, supporting the robustness of its results. Moreover,
HiCDOC predictions showed concordance with gene expression changes between conditions,
reinforcing their biological relevance. Importantly, although HICDOC and dcHiC often converged
on similar results, HICDOC-specific predictions also corresponded to expression differences,
suggesting that non-PCA-based methods can provide complementary insights into chromatin
dynamics. Considering the large variability in predictions across tools and datasets, these find-
ings underline the importance of developing alternative methods and applying multiple com-
putational approaches when analyzing chromatin structure data, as already exemplified in the
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AB
HiCDOC N=178
dcHiC N= 187
HOMER N= 1232
Daric N=328
HiCDOC* N= 66
5 10
BA
HiCDOC N= 236
dcHiC 4&'\12164
HOMER N= 1041
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HiCDOC* N=112
5 0 5 10
(a) Human data
AB
HiCDOC N= 364
dcHiC N= 475
HOMER N= 5693
Daric N= 2507
HiCDOC* N= 182
1 1
BA
HiCDOC
dcHiC
HOMER
Daric
HiCDOC*

1 0 1
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Figure 3 - Differential gene expression in predicted compartment switches. Distributions
show the average differential gene expression values (logFC, x-axis) of the genes located
in bins with a predicted AB or BA compartment switch between conditions: muscle vs.
colon for human (top) and ES vs. NP for mouse (bottom). Numbers of switching bins
are indicated on the right, and median values by vertical bars. Genomic regions with
a compartment switch from A to B are expected to show chromatin compaction and
negative logFC values on average, while the opposite is expected for AB opening regions.
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a8 context of TAD and loop detection (Dali and Blanchette, 2017; Liu et al., 2023; Zufferey et al.,
30 2018).

350 Evaluation on a semi-artificial dataset with a controlled ground truth further highlighted the
351 capacity of HICDOC to recover experimentally introduced compartment changes with high sen-
352 sitivity and precision. While this specific setting only evaluates the capacity of the methods to
353 identify a limited number of targets, semi-artifical datasets represent a powerful framework for
354 complete estimation of type-I and type-Il errors in Hi-C benchmarks (Jorge et al., 2025).

355 Two perspectives deserve emphasis. First, while HICDOC has so far been applied to the clas-
356 sical two-compartment (A/B) framework, its clustering-based method is in principle compatible
357 with detecting more than two chromatin states. This feature provides an original approach to
358 explore finer levels of chromatin modification that cannot be captured using PCA-based meth-
350 0ds, like subcompartment dynamics for instance. Second, although our evaluations and our tests
360 focused on pairwise comparisons between two experimental groups, HICDOC is inherently com-
361 patible with more complex experimental designs.

362 In summary, HICDOC introduces a practical and robust method for differential analysis of
363 the chromatin compartment. By leveraging replicate information, providing extensive quality-
364 control metrics, and achieving strong concordance with both gene expression and ground truth
365 data, HICDOC expands the computational toolkit available for studying chromatin structure. We
366 anticipate that HICDOC will help to build a more comprehensive picture of 3D genome organi-
367 zation and its links to cellular function.
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