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Abstract
Motivation: The spatial organization of the genome plays an essential role in regulat-
ing cellular functions, with A/B chromatin compartments reflecting broad differences
in transcriptional and epigenetic activity. Hi-C enables genome-wide identification of
such compartments, but robust differential analysis between groups of samples re-
mains challenging. Existing approaches largely rely on Principal Component Analysis,
which, applied on Hi-C matrices separately, requires heuristic sign choices to merge
results and does not naturally incorporate replicates.
Results: Here we present HiCDOC, a Bioconductor package for the prediction and dif-
ferential analysis of chromatin compartments from Hi-C data with replicates. HiCDOC
uses constrained k-means clustering to jointly analyze multiple Hi-C matrices, incorpo-
rating replicate information to enhance robustness, and provides empirical statistical
support for predicted compartment switches.
Applied to Hi-C datasets from human tissues and mouse cell lines, HiCDOC identified
biologically relevant compartment changes supported by transcriptional differences.
Comparisons with existing tools showed both overlap and complementarity, while a
controlled benchmark with artificially introduced changes confirmed high sensitivity.
Although extensively tested on pairwise comparisons, HiCDOC offers a flexible frame-
work compatible with more complex designs and, in principle, with more than two
compartment states.
By combining replicate-aware clustering, automatic A/B assignment across chro-
mosomes, extensive quality control, and statistical evaluation, HiCDOC provides an
alternative and complementary approach to PCA-based methods for compartment
analysis. HiCDOC thus expands the methodological toolkit for exploring 3D genome
dynamics and its role in cellular processes.
Availability: HiCDOC is implemented in R and C++, and is available on Bioconductor:
https://bioconductor.org/packages/release/bioc/html/HiCDOC.html
Contact: sylvain.foissac@inrae.fr
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Introduction2

The three-dimensional (3D) organization of the genome in the nucleus plays a crucial role3

in regulating essential functions of eukaryotic cells (Oudelaar and Higgs, 2020; Spielmann et al.,4

2018). It has been shown to be involved in cancers (Johnstone et al., 2020; Rhie et al., 2019;5

Xu et al., 2022), cell differentiation (Bonev et al., 2017; Oudelaar et al., 2020), and development6

(Lupiáñez et al., 2015; Marti-Marimon et al., 2021). The 3D conformation of chromosomes is7

organized by specific structural features at different scales, including DNA loops, Topologically8

Associating Domains (TADs), and chromatin compartments (Rao et al., 2014; Rowley and Corces,9

2018). These compartments are characterized by distinct chromatin states that exhibit different10

epigenetic properties and gene expression patterns, typically classified into two types. Generally,11

“A” compartments are associated with more active histone modification marks, chromatin acces-12

sibility, and expressed genes compared to “B” compartments (Lieberman-Aiden et al., 2009). As13

epigenetic components of the genome, chromatin compartments are dynamic, implying that the14

compartment type of a given genomic position can change over time. Consequently, comparing15

chromatin compartmentalization between different biological groups of cells can reveal valuable16

information on the functional role of 3D variations of the genome (Bonev and Cavalli, 2016).17

Identifying chromatin compartments, i.e., determining the compartment type of each ge-18

nomic position, can be achieved by analyzing data from genome-wide Chromatin Conformation19

Capture (Hi-C) experiments (Lieberman-Aiden et al., 2009). From a given biological sample, the20

Hi-C experiment produces pairs of sequencing reads from interacting genomic regions. A stan-21

dard analysis pipeline processes these reads to generate an interaction matrix, which shows the22

frequency of observed interactions between pairs of genomic regions, or “bins.” The bin size23

of a matrix defines its resolution. Due to the proximity-dependent ligation principle of Hi-C, in-24

teraction counts serve as a proxy for the spatial proximity of associated genomic regions. The25

Hi-C matrix often displays a strong signal along the diagonal and a plaid pattern, similar to a26

chessboard with variably sized squares. This pattern is a characteristic signature of chromatin27

compartments.28

The traditional method for detecting this signal involves a Principal Component Analysis29

(PCA) of the distance-normalized (“observed/expected”) interaction matrix. Based on dimension-30

ality reduction, this approach usually classifies genomic loci into A and B compartments based31

on the sign of the first eigenvector (PC1) values (Lieberman-Aiden et al., 2009). Despite their32

popularity, PCA-based methods have several limitations:33

• As they perform dimensionality reduction, PCA-based approaches rely on the strong as-34

sumption that all relevant information can be retrieved in a single eigenvector of the35

entire interaction matrix.36

• PC1 may not always be the most suitable eigenvector for identifying compartments,37

depending on factors such as the chromosome, species, or data resolution (Lieberman-38

Aiden et al., 2009). This often requires a tedious, case-by-case inspection of the results39

for each chromosome and dataset to confirm that PC1 is the most appropriate choice40

(Kai et al., 2023; Kalluchi et al., 2023; Rahman et al., 2023).41

• The signs of the eigenvectors are arbitrarily assigned by a distinct PCA for each matrix.42

This makes it impossible to directly and consistently assign “A” or “B” compartment types43

to either the positive or negative PC1 sign (Kalluchi et al., 2023). To achieve consistent44

A/B labels across different chromosomes and datasets, it is necessary to “synchronize”45
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the assignment using external genome annotation data, such as gene density, GC content,46

or epigenetic marks (Chakraborty et al., 2022; Lieberman-Aiden et al., 2009). In practice,47

this information may not be always available in the required format for the species or48

tissue of interest. Additionally, depending on the computational tool, this synchronization49

process may require a manual, per-chromosome check to decide if compartment types50

need to be swapped.51

• Despite these known limitations and the lack of a reliable, automated method for con-52

sistent compartment type assignment, most available PCA-based tools do not include53

dedicated quality control (QC) procedures to assess the validity of these choices and54

processes.55

Comparative analysis of chromatin compartmentalization is even more challenging. Most56

comparative studies to date use a two-step qualitative approach: they first predict compartments57

for each biological group, often by merging replicates into a single matrix, and then compare58

the predictions. While straightforward and widely used, this approach has no statistical support59

and is heavily influenced by factors such as matrix resolution, dataset size, and intra- or inter-60

group variability (Kalluchi et al., 2023; Marti-Marimon et al., 2021). Some studies have adopted61

more quantitative approaches, comparing compartment-related metrics often derived from PCA62

(Dixon et al., 2015; Narang et al., 2023; Rahman et al., 2023). However, these approaches are63

typically implemented as “in-house” scripts designed for a specific project, and do not provide a64

generic computation tool for broader a usage and evaluation.65

Nonetheless, a few statistical methods have been specifically developed and implemented66

to identify significant differences in compartmentalization between groups of matrices. HOMER67

(Heinz et al., 2018) performs a PCA and compares PC1 values from different conditions using68

a gene expression analysis based on the limma R package (Ritchie et al., 2015). The choice of69

the PC and of its sign has to be manually checked and potentially corrected for each individual70

matrix. Additionally, HOMER is not compatible with standard Hi-C matrix formats and requires71

the completion of its entire Hi-C workflow beforehand, making it challenging to analyze exist-72

ing matrices. DcHiC (Chakraborty et al., 2022) also adopts a PCA approach, where PC values73

between conditions are quantile-normalized and compared using the Mahalanobis Distance to74

detect atypical bins and assess statistical significance. Unlike HOMER, dcHiC automatically de-75

termines which PC to use and how to orient it based on GC content and gene density, requiring76

users to provide this information. DARIC (Kai et al., 2023) is the only differential method that77

does not rely on PCA. Instead, it calculates a Preferential Interaction Score (PIS) for A vs. B com-78

partment at each bin and compares them between conditions to identify differences using a79

Hidden Markov Model. Statistical significance is determined by comparing replicates from the80

same group to estimate an expected background. However, DARIC requires a pre-existing com-81

partment annotation to operate, making it dependent on other predictors to assign compartment82

types. Moreover, its current version can only be used with human and mouse genomes (mm9,83

mm10, hg19, hg38), which significantly limits its applicability to the broader animal genome re-84

search community (Cheng et al., 2024; MacPhillamy et al., 2021).85

In order to address these shortcomings and to provide an alternative method, we present86

HiCDOC, a Bioconductor package dedicated to the differential analysis of chromatin compart-87

mentalization from Hi-C data. HiCDOC features several unique properties. Unlike PCA-based88

methods that rely on comparing the results of independent dimensionality reductions, HiCDOC89
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performs a k-means clustering of the bins from all matrices for each chromosome, leveraging90

the consistency between replicates. In addition, HiCDOC uses interaction values to automati-91

cally assign A and B compartment types for all bins and matrices, eliminating the need for ex-92

ternal annotation data. HiCDOC also uses several QC metrics to automatically detect potential93

artifacts, and an empirical p-value estimation method to assess the statistical significance of the94

results. Last, HiCDOC is implemented as an R Bioconductor package, enabling easy integration95

with existing workflows and data structures.96

We demonstrate the effectiveness of HiCDOC in identifying significant compartment differ-97

ences between various cell types and experimental conditions. Comparisons with existing tools98

highlight both the relevance and the complementarity of HiCDOC’s results on public datasets.99

By implementing an alternative method for chromatin compartment analysis, HiCDOC provides100

a new approach to investigate the intricate spatial organization of the genome and its role in101

cellular processes.102

Materials and Methods103

Differential compartment analysis with HiCDOC104

Method overview. The aim of HiCDOC is to identify significant differences of chromatin com-105

partmentalization along the genome between groups of Hi-C matrices. Each group typically cor-106

responds to a biological factor of interest (or “condition”), and contains one matrix per replicate.107

Most studies compare two groups. Broadly, HiCDOC first assigns a compartment type A or B108

to each genomic bin for each group, assuming that the compartmentalization status should be109

the same for all replicates of the same group. Bins with a different compartment type between110

groups (A vs. B) are considered as candidate “switches.” To identify true switches, a statistical111

significance is computed and assigned to each candidate using an empirical background, assum-112

ing that most of the genome does not change compartment between conditions. The processing113

steps are the following.114

(1) Data loading and preprocessing115

(2) Normalization116

(3) Compartment prediction117

(4) Quality Control and visualization118

Data loading and preprocessing. Briefly, the package first reads a list of matrices encoded in .hic,119

.cool, .mcool, or tabular HiC-Pro file format, and a metadata file describing the experimental de-120

sign, i.e., which biological group is assigned to each matrix. The first step performs data cleaning121

and filtering. It removes short chromosomes (less than 100 bins by default), sparse replicates (less122

than 30% positive interaction counts), and bins with few interactions (less than one interaction123

on average). The parameter settings can be changed if necessary.124

Data normalization. Data normalization can be decomposed into three steps. First, an inter-125

matrix normalization is performed in order to account for technical biases like sequencing126

depth discrepancies across libraries. For this, HiCDOC applies a cyclic loess normalization, im-127

plemented in Stansfield et al. (2019), in order to jointly normalize matrices from various groups128

and replicates. Then, to account for biases like repeat or restriction site density variations along129

the sequence, an intra-matrix normalization is performed by applying the KR algorithm to each130
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matrix (Knight and Ruiz, 2012), so that all the bins end up with the same total number of inter-131

actions. Last, an observed/expected MD-loess (Stansfield et al., 2018) normalization allows to132

obtain comparable interaction values regardless of the distance to the diagonal.133

Compartment prediction by constrained clustering. To predict the compartment type of each bin134

in eachmatrix, HiCDOC performs a constrained k-means clustering (Wagstaff et al., 2001) of the135

vectors of interaction values, processing each chromosome separately. The clustering considers136

two clusters (k = 2) per biological condition to represent the A and B compartments, itera-137

tively assigning each vector to the closest centroid. As a specific property of the constrained138

k-means clustering, vectors from replicates of the same condition have to be assigned to the139

same centroid. The assumption behind this constraint is that intragroup variability should not140

exceed intergroup variability. At the end of the clustering, each bin of each matrix is assigned to141

one of the two clusters.142

Then, each compartment type (A or B) is assigned to a centroid. Instead of relying on user-143

provided external data, HiCDOC uses an empirical property of the matrices based on a new144

metric: the Self-Interaction Ratio (SIR). For each bin of each matrix, the SIR is the number of145

interactions between the bin and itself, divided by the total number of interactions in the bin. The146

SIR therefore represents the proportion of interactions along the diagonal of the matrix. Since147

the matrices are KR-normalized at this stage, the diagonal value can simply be used directly in148

practice. The cluster with the highest median SIR is labeled compartment A and the other one149

compartment B. Consequently, all matrices feature a sequence of A/B compartment predictions,150

defining two types of bins: stable bins, with the same compartment label in both conditions, and151

switching bins, with different compartments.152

For each bin of each matrix, HiCDOC computes the concordance, a number between −1 and153

+1 that reflects the relative distance between the corresponding interaction vector and both154

centroids. The concordance of a bin x , considering centroids cA and cB of compartments A and155

B respectively, is156

2 × ratio(x , cB, cA) − ratio(cB, cB, cA)

ratio(cA, cB, cA) − ratio(cB, cB, cA)
− 1

with ratio(x , cB, cA) = ||x−cB||+ε
||x−cA||+ε , and ε a small value (10−10 in the implementation) to avoid157

divisions by zero. A concordance of −1 means that the bin is very similar to the centroid of158

compartment B, while a concordance of +1 indicates a close proximity to compartment A.159

In order to obtain a background distribution under the null hypothesis (i.e. no compartment160

switch), the concordances of stable bins are considered. For each stable bin, we compute the161

median concordance in each group, then the difference between thesemedians. This distribution162

is then used to assess the statistical significance of the switching bins. Resulting p-values are163

subsequently adjusted for multiple testing using the Benjamini–Hochberg procedure (Benjamini164

and Hochberg, 1995).165

Quality controls and visualizations. HiCDOC automatically performs three quality controls on166

each chromosome to assess the consistency of the clustering process.167

The first step focuses on how the centroids ended up distributed in the subspace. If normal-168

ization and clustering provided expected results, centroids of the same type should be close to169

each other, i.e. the compartment type should be more discriminant than any other factor. To con-170

trol for this, a PCA is performed on the centroids. The resulting first Principal Component must171
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fulfill two conditions: (1) its sign should be the same for centroids of the same type, and (2) its172

inertia should account for at least 75% of the PCA dispersion. Otherwise, the chromosome gets173

flagged by the QC process.174

The last control focuses on the relevance of the A/B label assignment and on the actual dis-175

crepancy between the two compartment types. We gathered the SIR values of the bins assigned176

in the A compartment, the SIR values of the bins assigned in the B compartment, and compared177

the two distributions with aWilcoxon test. If no significant difference is found, the chromosome178

is flagged. This control helps to avoid improper segmentation of the chromosome, not driven by179

biological condition but by another factor such as the chromosome arm, for example (Lieberman-180

Aiden et al., 2009).181

Implementation. The HiCDOC package is developed in R and is available as a Bioconductor pack-182

age (Gentleman et al., 2004): https://bioconductor.org/packages/release/bioc/html/183

HiCDOC.html. As such, it is fully compliant with the Bioconductor’s data structures. In addition,184

while each step of the analysis can be executed independently, a global function allows to run185

the entire workflow as an integrated pipeline.186

Benchmark187

Evaluated tools. We compared HiCDOC version 0.99.15 with HOMER version 4.11 (Heinz et al.,188

2018), DARIC version 0.2.20 (Kai et al., 2023), and dcHiC v2.0 (Chakraborty et al., 2022). All189

tools were used with their default options.190

Unlike the other tools, which can process interactionmatrices, HOMERneeds to run an entire191

Hi-C data workflow, starting from raw reads. These reads are trimmed, mapped, and aggregated192

to build the interaction matrices. Each matrix is normalized, first by library size, then by distance193

from the diagonal (observed/expected). A Principal Component Analysis is then used to segment194

the chromosome into compartments, usually using the first eigenvector PC1. The correct sign195

of the PC1 to be used for A/B assignation can be inferred using user-provided annotation data,196

like histone marks or Transcription Start Sites.197

While DARIC can process distance-normalized interactionmatrices, it needs a corresponding198

A/B compartment prediction, obtained by another tool. For each bin, it computes a Preferential199

Interaction Score (PIS), which is the log2-transform of the average interaction with a bin in the200

A compartment, divided by the average interaction with a bin in the B compartment. This PIS201

is smoothed using a gaussian filter and normalized using a robust rescaling of the MA-plot. A202

Hidden Markov Model then segments the genome into four states: strong “A to B”, weak “A to203

B”, and the converse for the changes “B to A”. Last, a null distribution of the difference between204

PIS from replicates is used to provide a p-value for the strong changes found in the previous205

step.206

dcHiC starts from an interaction matrix, which is processed through a PCA. The genomic GC207

content is used to assign A/B compartments. A multivariate distance measure, the Mahalanobis208

distance, is computed using the quantile-normalized eigenvectors from all the matrices. A chi-209

square test on this distance identifies significant changes, using variance across replicates as210

covariates for independent hypothesis weighting.211

Evaluation data. Three datasets were used to benchmark the tools.212

• The human Hi-C datasets were generated by the ENCODE consortium (The EN-213

CODE Project Consortium, 2012) and were downloaded from the ENCODE data214
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portal (Luo et al., 2019) at https://www.encodeproject.org/ with the follow-215

ing identifiers: ENCBS393MMT, ENCBS476FKF, ENCBS565LDI, ENCBS564MPZ,216

ENCBS836DBQ, ENCBS494DUH. These data come from Hi-C experiments that217

were performed on samples from two tissues: transverse colon and skeletal muscle218

(gastrocnemius medialis), each with 3 biological replicates (different donors). To ob-219

tain Hi-C matrices, raw sequencing reads were processed using the nf-core/hic220

pipeline (Ewels et al., 2020) v1.2.2 on the assembly version GRCh38 of the human221

genome using the following arguments: --min_mapq 10 --restriction_site ’ˆGATC’222

--ligation_site ’GATCGATC’ --min_insert_size 20 --max_insert_size 1000223

--rm_singleton --rm_dup --skip_ice --bwt2_opts_end2end --very-sensitive224

-L 30 --score-min L,-0.6,-0.2 --end-to-end --reorder –bwt2_opts_trimmed225

--very-sensitive -L 20 --score-min L,-0.6,-0.2 --end-to-end --reorder.226

Hi-C matrices were generated at a 200 kb resolution. Gene expression values from227

RNA-seq experiments were also retrieved for the same samples on the ENCODE data228

portal. A mean expression value was assigned to each bin per tissue by averaging the229

TPM values of all genes within the bin across replicates. These values were then used to230

compute a logFC ratio between tissues.231

• ThemurineHi-C datasets come from a neural development study (Bonev et al., 2017) and232

were downoladed from the SRA (https://www.ncbi.nlm.nih.gov/sra) using the acces-233

sion ID SRP101791 (GEO: GSE96107). To obtain Hi-C matrices, raw sequencing reads234

were processed using the nf-core/hic pipeline (Ewels et al., 2020) v1.3.0 on the assem-235

bly version GRCm39 of the mouse genome using the following arguments: --min_mapq236

10 --digestion ’dpnii’ --min_insert_size 20 --max_inser_size 1000237

--bwt2_opts_end2end --very-sensitive -L 20 --score-min L,-0.6,-0.3238

--end-to-end --reorder --bwt2_opts_trimmed -5 5 --very-sensitive -L 20239

--score-min L,-0.6,-0.3 --end-to-end --reorder. Samples correspond to 3 cellu-240

lar differentiation stages during neuronal development: mouse embryonic stem cells241

(mESC), neural progenitor cells (NPC), and cortical neurons (CN), with 4 replicates per242

cell type. In line with the comparison made in the dcHiC article, we chose to compare243

ESC and NPC, at 100 kb resolution. Gene expression values from Chakraborty et al.,244

2022 were downloaded from GEO using accessions GSM2533843-48 and processed as245

described for the human data.246

• The semi-simulated data was generated from the mouse data (see above), introducing247

artificial compartment modifications at known positions to have a ground truth. First,248

consistent predictions from both dcHiC and HiCDOCwere considered, focusing on com-249

partment transitions, i.e. bin pairs where bin i was assigned to one compartment type by250

both tools in both conditions, and bin i +1 was assigned to the other compartment type251

by both tools in both conditions. For all replicates of the second condition, the interaction252

vector of bin i was copied into the bin i + 1 to artificially shift the compartment transi-253

tion by one bin downstream. In addition, this new i + 1 vector was also shifted by one254

bin along the j axis to preserve the diagonal structure of the matrix. As a consequence,255

the bin i + 1 should not be assigned to the same compartment type in both conditions,256

producing a true positive target. A total of 49 compartment transitions were modified in257

this way.258
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Results259

In order to assess HiCDOC’s performances, we ran it on real publicly available data from two260

distinct studies: one from the ENCODE project, comparing human tissue samples from muscle261

and colon, and one from a neural cell differentiation study in mouse, comparing embryonic stem262

cells (ES) and neuronal progenitors (NP). We also processed these datasets with three state-of-263

the-art tools for differential compartment calling: HOMER, DARIC and dcHiC.264

In addition, we performed a complementary test using real but edited data in order to com-265

pare the best predictors in the context of a controlled setting (“semi-artificial data”). Details about266

the datasets and the tools are provided in the Materials and Methods section.267

HiCDOC identifies consistent compartment switches in real data from human and mouse268

In both human and mouse data sets and regardless of resolution, the number of predicted269

compartment differences between conditions varies widely between the tools (Figure 1).270

(a) Human chromosome 1 (200 kb bins)

(b)Mouse chromosome 1 (100 kb bins)

Figure 1 – Compartment switch predictions along the first chromosome of each species
between conditions: muscle vs. colon tissue samples in human (top) and ESC vs. NPC
cell lines in mouse (bottom). Horizontal tracks show AB (green) or BA (orange) predicted
switches according to Daric, dcHiC, HiCDOC and HOMER along the first chromosome
(x-axis: genomic position in bp).

8
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In general, HOMER produced the highest number of predicted switches for both species,271

with 4, 049 switching bins of 200 kb in human and 14, 593 bins of 100 kb in mouse, representing272

about 27% and 49% of the genome, respectively (Figure 1, 2). DARIC predicted 1, 015 human and273

7, 476 mouse switches, dcHiC 1, 024 and 1, 240, and HiCDOC 765 and 1, 696 (Figure 2).274

(a) Human data

(b)Mouse data

Figure 2 – Number of significant compartment differences predicted from each tool for
human (top) and mouse (bottom). Horizontal bars on the left indicate the total number
of switching bins predicted by each tool, while vertical bars represent common or tool-
specific predictions.

As true compartment switches are not known for these datasets, we evaluated the consis-275

tency between tools by comparing their predictions, assuming that predictions that are sup-276

ported by several tools are more likely to indicate genuine compartment switches compared to277

tool-specific predictions. Prediction consistency also varies across tools and datasets (Figure 2).278
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The highest proportion of tool-specific predictions was generated by HOMER, with a large ma-279

jority of its predictions not supported by any of the other tools (68% in human 53% in mouse). On280

the other side of the spectrum, HiCDOC seems to produce the most consistent results: unlike281

the other tools, most of the HiCDOC predictions are supported by at least two other tools (60%282

in human and 90% in mouse), with dcHiC closely following (45% and 86%, respectively). This283

proportion is much lower for the other tools: from 6% to 25% for DARIC and from 11% to 13%284

for HOMER, suggesting more consistent results from HiCDOC and dcHiC. In addition, HiCDOC285

produced the smallest number of tool-specific predictions in both species (3 switches in mouse286

and 98 in human). These results support the reliability of HiCDOC’s predictions.287

HiCDOC produces biologically relevant results288

Although no ground truth is available for these datasets, compartment switches are known289

to be associated with changes in gene expression. On average, chromatin accessibility tends to290

be positively correlated with gene expression in several species (Dixon et al., 2015; Foissac et291

al., 2019). Therefore, in order to assess the biological relevance of the predictions, we computed292

the average difference of gene expression as logFC values between conditions in each predicted293

switch, considering “A→B” (AB) and “B→A” (BA) switches separately. In principle, the resulting294

distributions of the logFC expression values should differ between AB and BA switches. Remark-295

ably, this is the case for all tools, each producing significantly different distributions in human296

andmouse (p-values < 3.10−3, Wilcoxon test, Figure 3). However, in both species, the difference297

between the median logFC values is higher in the case of dcHiC and HiCDOC than in the case298

of HOMER and DARIC (Figure 3). Furthermore, considering the asymmetry of the distributions,299

we computed for each tool the proportion of predicted AB and BA switches with negative and300

positive logFC values, respectively. Again, this proportion is higher for HiCDOC and dcHiC than301

for HOMER and DARIC (Table 1), suggesting a higher consistency with expression data for the302

tools. Taken together, these results strongly support the biological relevance of the results from303

HiCDOC and dcHiC.304

Method Dataset AB switches BA switches
total logFC < 0 total logFC > 0

Daric human 328 163 (49.7%) 209 128 (61.2%)
mouse 2 507 1 812 (72.3%) 2 488 1 869 (75.1%)

HOMER human 1 232 810 (65.8%) 1 041 739 (71.0%)
mouse 5 693 3 759 (66.0%) 4 607 3 170 (68.8%)

dcHiC human 187 156 (83.4%) 164 150 (91.5%)
mouse 475 378 (79.6%) 363 298 (82.1%)

HiCDOC human 178 138 (77.5%) 236 188 (79.7%)
mouse 364 285 (78.3%) 790 622 (78.7%)

HiCDOC* human 66 47 (71.2%) 112 74 (66.1%)
mouse 182 135 (74.2%) 545 409 (75.1%)

Table 1 – Number of 200 kb (human) and 100 kb (mouse) genomic bins with a predicted
compartment switch between conditions according to each tool. Proportions of binswith
a gene expression difference of the expected sign (negative and positive logFC for AB
and BA switches, respectively) are also indicated. HiCDOC* is the set of predictions given
by HiCDOC, but not dcHiC.

Finally, we sought to assess the specific contribution of HiCDOC predictions compared305

to those from dcHiC. For this, we focused on differential gene expression results in HiCDOC306
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switches that were not predicted by dcHiC, ignoring the overly abundant predictions of DARIC307

and HOMER (Figure 3 and Table 1, HiCDOC* predictions). Similarly to the entire set of predic-308

tions, we obtained a significant difference between distributions of logFC differential expression309

values in AB vs. BA HiCDOC-specific switches (p-value < 10−8 in human and < 10−38 in mouse,310

Wilcoxon test). Also, HiCDOC-specific logFC distributions showed the same expected asymme-311

try pattern, as previously observed for the entire set, with a prevalence of positive and negative312

logFC expression values in BA and AB switches respectively (Figure 3 and Table 1). These results313

highlight the specific value of HiCDOC compared with dcHiC, emphasizing the importance of314

complementary analysis methods for chromatin structure studies.315

HiCDOC performs well on a dataset with ground truth316

In order to perform an evaluation using a known ground truth, we edited the Mus musculus317

Hi-Cmatrices. In brief, all consistently predicted compartment transitions between adjacent bins318

were artificially shifted by one bin downstream in each replicate of one condition, generating 49319

artificial switches created from real data (see Methods). We then processed this edited dataset320

with HiCDOC and dcHiC.321

Among the 49 newly introduced compartment differences, dcHiC identified 29 of them as322

differential (59.2%). HiCDOC, on the other side, correctly predicted all 49 of them as differential.323

This results highligths HiCDOC’s capacity to accurately detect differences in chromatin compart-324

mentalization.325

Discussion326

In this report, we presented HiCDOC, a method for the identification and differential analy-327

sis of chromatin compartments from Hi-C data. By integrating replicate information into a con-328

strained clustering framework, HiCDOC provides a robust basis for consistent compartment329

assignments. Unlike PCA-based methods, which process Hi-C matrices separately and rely on330

heuristic sign choices to merge results, HiCDOC jointly analyzes all replicates and experimental331

groups from the normalization step onward, accounting for inter-matrix biases and automati-332

cally synchronizing compartment types across chromosomes. In addition, by comparing candi-333

date switches with a background distribution derived from stable bins, HiCDOC provides an334

empirical framework to assess statistical significance, avoiding strong assumptions about the335

underlying data distribution. Together, this design complements existing approaches and offers336

an alternative perspective on compartment organization.337

Applied to Hi-C datasets from human and mouse, HiCDOC identified consistent and bio-338

logically relevant compartment switches. Notably, HiCDOC predicted fewer tool-specific differ-339

ences than other state-of-the-art methods, supporting the robustness of its results. Moreover,340

HiCDOC predictions showed concordance with gene expression changes between conditions,341

reinforcing their biological relevance. Importantly, althoughHiCDOC and dcHiC often converged342

on similar results, HiCDOC-specific predictions also corresponded to expression differences,343

suggesting that non-PCA-based methods can provide complementary insights into chromatin344

dynamics. Considering the large variability in predictions across tools and datasets, these find-345

ings underline the importance of developing alternative methods and applying multiple com-346

putational approaches when analyzing chromatin structure data, as already exemplified in the347
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(a) Human data

(b)Mouse data

Figure 3 –Differential gene expression in predicted compartment switches. Distributions
show the average differential gene expression values (logFC, x-axis) of the genes located
in bins with a predicted AB or BA compartment switch between conditions: muscle vs.
colon for human (top) and ES vs. NP for mouse (bottom). Numbers of switching bins
are indicated on the right, and median values by vertical bars. Genomic regions with
a compartment switch from A to B are expected to show chromatin compaction and
negative logFC values on average, while the opposite is expected for AB opening regions.
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context of TAD and loop detection (Dali and Blanchette, 2017; Liu et al., 2023; Zufferey et al.,348

2018).349

Evaluation on a semi-artificial dataset with a controlled ground truth further highlighted the350

capacity of HiCDOC to recover experimentally introduced compartment changes with high sen-351

sitivity and precision. While this specific setting only evaluates the capacity of the methods to352

identify a limited number of targets, semi-artifical datasets represent a powerful framework for353

complete estimation of type-I and type-II errors in Hi-C benchmarks (Jorge et al., 2025).354

Two perspectives deserve emphasis. First, while HiCDOC has so far been applied to the clas-355

sical two-compartment (A/B) framework, its clustering-based method is in principle compatible356

with detecting more than two chromatin states. This feature provides an original approach to357

explore finer levels of chromatin modification that cannot be captured using PCA-based meth-358

ods, like subcompartment dynamics for instance. Second, although our evaluations and our tests359

focused on pairwise comparisons between two experimental groups, HiCDOC is inherently com-360

patible with more complex experimental designs.361

In summary, HiCDOC introduces a practical and robust method for differential analysis of362

the chromatin compartment. By leveraging replicate information, providing extensive quality-363

control metrics, and achieving strong concordance with both gene expression and ground truth364

data, HiCDOC expands the computational toolkit available for studying chromatin structure.We365

anticipate that HiCDOC will help to build a more comprehensive picture of 3D genome organi-366

zation and its links to cellular function.367
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