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Élise Jorge,1 Sylvain Foissac,1 Pierre Neuvial,2 Matthias Zytnicki3

and Nathalie Vialaneix 3,∗

1GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet-Tolosan, France, 2Institut de Mathématiques de Toulouse, UMR
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Abstract

Motivation: The three-dimensional organization of the genome plays a crucial role in various biological processes. Hi-C
technology is widely used to investigate chromosome structures by quantifying 3D proximity between genomic regions.
While numerous computational tools exist for detecting differences in Hi-C data between conditions, a comprehensive
review and benchmark comparing their effectiveness is lacking.
Results: This study offers a comprehensive review and benchmark of ten generic tools for differential analysis of Hi-C
matrices at the interaction count level. The benchmark assesses the statistical methods, usability, and performance (in
terms of precision and power) of these tools, using both real and simulated Hi-C data. Results reveal a striking variability
in performance among the tools, highlighting the substantial impact of preprocessing filters and the difficulty all tools
encounter in effectively controlling the false discovery rate across varying resolutions and chromosome sizes.
Availability: The complete benchmark is available at https://forgemia.inra.fr/scales/replication-chrocodiff

using processed data deposited at https://doi.org/10.57745/LR0W9R.
Contact: nathalie.vialaneix@inrae.fr
Supplementary information: Supplementary data are available at Briefings in Bioinformatics.
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Introduction

Chromosomes are highly compacted within the cell nucleus,

resulting in the spatial proximity of linearly distant genomic

positions [1]. Hi-C [2] is a widely used technology to profile

the three-dimensional (3D) organization of the genome. It

does so by estimating the spatial proximity between pairs of

genomic positions through their frequency of interaction. The

typical output of a Hi-C experiment, after preliminary data

preprocessing, is usually summarized as a symmetric matrix

of counts, where the entry (i, j) (or (j, i)) corresponds to the

number of interactions registered during the Hi-C experiment

between genomic regions (“bins”) i and j. Hi-C has been

widely used to uncover structural genomic elements at different

hierarchical levels, such as A/B chromatin compartments,

TADs and loops [2, 3, 1]. Many computational tools exist to

call these structures from Hi-C data, with variable reliability

however [4, 5, 6].

Changes in 3D structures have been implicated in gene

expression, cell division, cell differentiation, developmental

disorders and cancers [7, 8, 9]. This underscores the need

for reliable methods and tools to compare Hi-C data across

different conditions. One approach to comparing Hi-C data is

to compute a similarity score for a pair of matrices, either

at the level of the entire matrix (matrix-level) or for specific

genomic regions (bin-level). Gunsalus et al., 2023 [10] reviewed

several methods for the pairwise comparison of Hi-C matrices,

classifying them into three categories: basic methods, which

directly compute a similarity score (e.g., a correlation) between

two matrices [11], map-informed methods, which first calculate

a Hi-C-related metric along a 1D track for each matrix

separately (e.g., Directionality Index) and then compare the

resulting tracks [12], and feature-informed methods, which

predict specific chromatin structures for each matrix (e.g.,

TAD boundaries or chromatin loops) before comparing the

predictions [13]. While these methods offer various similarity or

dissimilarity metrics, none provide statistical guarantees such

as p-values. Moreover, they focus solely on pairwise matrix

comparisons without incorporating biological replicates.

Another approach to comparing Hi-C data is differential

analysis. Instead of quantifying the overall similarity between

two Hi-C matrices (one for each condition), differential

analysis aims at identifying local differences with statistical
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guarantees, often leveraging biological replicates for each

condition. Following the previous classification, some of the

methods can be considered as map-informed, as they use 1D

metrics to detect differential structures such as TAD boundaries

[14, 15] or chromatin compartments [16] at the bin level. Other

methods fall under the feature-informed category, aiming to

identify differential TADs, for instance [17]. However, most

tools for differential analysis of Hi-C data do not fit into

these categories, as they test for differences at the level of

the bin pair, focusing on interaction counts between genomic

regions [18, 20, 21, 22, 23, 24, 25, 26]. To our knowledge, these

methods have not been extensively reviewed or benchmarked.

A recent book chapter [27] describes a few (four) such methods.

While it provides technical instructions on their use and

visualization of results, it does not evaluate the quality of the

results.

To address this gap, we propose a comprehensive review

of the following tools for the differential analysis of Hi-

C data: ACCOST [18], CHESS [19], diffHic [20], FIND [21],

HiCcompare [22], HiCDCPlus [23], multiHiCcompare [24],

Selfish [25] and sslHiC [26]. We also considered a former version

of HOMER1, which included a test to perform comparisons

between two matrices, although 3D structure changes is not

the primary focus of that tool. Our review provides a detailed

technical description of each tool, focusing on implementation

aspects, usability, and scalability. We explain the differences

between the statistical methods employed by these tools and

analyze their expected impacts on the results.

We also conducted two extensive benchmarks of the tools

using real Hi-C data from the literature. The first benchmark

used Hi-C data generated from a human tissue sample, with

an artificially introduced ground truth to allow a quantitative

evaluation of each tool’s precision and power. The second

benchmark involved Hi-C data from a CTCF depletion study

during mouse cell cycle progression, evaluating the biological

relevance of each tool’s results by comparing them to findings

from ChIP-seq experiments.

The article is organized as follows: The first section

“Methods” reviews the statistical grounds of the different tools

in a rigorous way. The second section “Implementation and

usability” describes the technical aspects of the tools. The third

section “Numerical experiments” introduces our benchmark

protocol and the fourth section “Results” analyses the tools’

performances.

Methods

Methodological overview of the tools
This article covers tools that all aim at answering the same

question: Given a set of n Hi-C matrices, M1, . . . , Mn,

belonging to K different groups of biological interest (that

we will call “conditions”), are we able to find bin pairs with

significantly different interaction counts between conditions?

While several descriptive metrics (such as correlation or other

similarity measures) can be used for this purpose, we focus on

approaches that provide statistical guarantees for identified bin

pairs. Such approaches perform one statistical test for each bin

pair. The result of each of these tests can be summarized by a

p-value (or an adjusted p-value), which quantifies the statistical

evidence of a significant difference.

1 The version available and documented at http://homer.ucsd.

edu/homer/interactions/.

The tools discussed in this article all have a common

workflow (Figure 1). In short, this workflow takes Hi-C matrices

from different conditions and performs a statistical test, which

results in a p-value (or an adjusted p-value) for each bin pair.

CHESS is the only tool that slightly differs from this description

because it provides p-values for fixed-sized windows of the Hi-C

matrix (and not for every bin pair; see Section “Methodological

background of the tools”).

As shown in Figure 1, the Hi-C differential analysis workflow

can be decomposed into four main steps:

• filtering, which consists in removing bin pairs considered

not relevant from the analysis in all Hi-C matrices;

• normalization, which consists in making bin pairs in

a matrix or bin pairs between different matrices more

comparable;

• model and p-value computation, which is the core of the

statistical analysis and performs a test on all remaining bin

pairs, using normalized interaction values;

• multiple testing correction, which aims at accounting for

the fact that a large number of tests have been performed.

Most tools operate at the chromosome level, detecting

intra-chromosomal (cis) differential interactions only. However,

diffHic, HOMER, and sslHiC can also detect inter-chromosomal

(trans) interactions.

The steps of the Hi-C differential analysis workflow and

the various options used by different tools are described in

detail in the sections below. Table 1 summarizes the main

methodological characteristics of the tested tools in relation to

the steps of this workflow.

Filtering
Several tools propose to remove some bin pairs before the

analysis. The rationale behind this step is that low quality bin

pairs or bin pairs with low interaction counts have little (if any)

chance to be identified as differential but increase the number

of hypothesis tests that are performed. Including such bin pairs

can affect the test power, due to stronger multiple testing

correction (see corresponding section below for further details).

Discarding bin pairs before the test (and independently from

its result) is a standard way to reduce this impact [28, 29].

The most common filters used in Hi-C differential analyses

are:

• low count filtering (implemented in diffHic, HiCcompare,

HiCDCPlus, multiHiCcompare, and Selfish). These filters

simply remove from the analysis bin pairs that have

interaction counts below a certain threshold. This threshold

is either user-defined (i.e., all bin pairs for which the average

or total interaction counts across analyzed matrices is below

the threshold as in diffHic, HiCcompare, multiHiCcompare,

and Selfish) or data-driven (the threshold is obtained as an

estimation of a “background signal” from the data as in

diffHic and HiCDCPlus);

• bin quality filtering (implemented in CHESS, ACCOST, and

HiCDCPlus). These filters remove bin pairs including at

least one bin with low mappability or, alternatively, bin

pairs for which the interaction counts is below the expected

(data-driven) value considering the bin mappability and

GC content. These filters require that mappability or GC

content is provided for each bin.

http://homer.ucsd.edu/homer/interactions/
http://homer.ucsd.edu/homer/interactions/
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Fig. 1. A schematic representation of the typical workflow for differential analysis of Hi-C matrices at the bin-pair (pixel) level. Input matrices from two

conditions, with or without replicates, are first filtered and normalized (first two steps). Statistical tests are then conducted to generate raw p-values,

which are subsequently adjusted for multiple testing correction (last two steps). Additionally, a (log) fold change matrix can be generated, representing

the ratio of average interaction values between conditions for each bin pair (not shown).

Additionally, Selfish allows to discard all bin pairs for which

the genomic distance between the two bins is larger than a

certain (user-defined) value, typically targeting bins with low

interaction counts. Also, HiCcompare has an option to let users

specify a set of bins that should not be considered in the

analysis. Supplementary Table S1 summarizes the type of filters

available in each tool.

Normalization
Hi-C matrix normalization is an important step of the workflow.

It aims at removing technical or biological biases that can

impede a fair comparison between bins or between matrices

[30]. The main known biases that can affect Hi-C data analysis

are scale differences between matrices (e.g., due to differences

in sequencing depths), scale differences between bins in a given

matrix (e.g., due to differences in mappability), or effects of the

genomic distance in interaction counts within a given matrix.

In the current section, we discuss these biases, their impact on

the analysis, and how the different tools address them.

Differences in total interaction counts between matrices.

Total interaction counts across all bin pairs can differ between

matrices due to experimental factors, such as variations in

sequencing depth or library complexity. To prevent false

positive predictions that would incorrectly label bin pairs as

“differential”, these technical artifacts must be accounted for,

as commonly done in RNA-seq [31] or ChIP-seq data [32, 33]

differential analyses.

The most straightforward method to correct this bias is the

Total Sum Scaling (TSS) that simply aligns the total counts of

all matrices in the dataset (implemented in sslHiC and advised,

but not implemented, in HiCcompare). However, this approach

has been shown to be generally inefficient for sequencing data,

as it is strongly influenced by large outlier counts [31].

Hence, the article of Lun & Smyth, 2016 [33] emphasizes

the need for an adequate between-matrix normalization and

proposes the MA correction (correction of the trend in an MA

plot, where the difference “M” between two or more matrices

is displayed as a function of their average count “A”). This

correction, performed by cyclic Locally Estimated Scatterplot

Smoothing (LOESS), has been shown to be efficient for ChIP-

seq data and robust to a large proportion of low counts.

It is implemented in diffHic (and advised in FIND but not

implemented).

A more sophisticated alternative is used in HiCcompare and

multiHiCcompare. The MA correction is replaced by an MD

correction (where D stands for the genomic distance between

bin pairs, instead of its average count). However, since A

and D are strongly related in Hi-C matrices (the larger the

distance between the two bins of a pair, the lower the count for

this bin pair), both methods are expected to result in similar

corrections.

Finally, although this does not strictly aim at correcting

differences in sequencing depths, sslHiC also implements a

min/max normalization applied to log10-transformed matrices

so as to make all counts in a given matrix lie between 0 and 1

(and thus be more comparable).

Differences in total counts between bins within a given

matrix.

The total number of interactions assigned to a specific bin or

over a given genomic region depends on local properties of

the genomic sequence, such as GC content, mappability, or

restriction site density [34]. Since the purpose of differential

analysis is to compare bin pairs between matrices and not bin

pairs within the same matrices, correcting for these biases is

not strictly necessary from a statistical perspective. However,

several tools nevertheless recommend or implement methods for

correcting these biases.

Among the most popular methods for within-matrix

normalization, non-parametric methods do not explicitly use

GC content or mappability values to remove biases between

bin counts. On the contrary, similarly to TSS normalization,

they align the observed total count across all bins of a given

matrix. These include Iterative Correction and and Eigenvector

decomposition (ICE) [35], implemented in HOMER, or Knight-

Ruiz (KR) matrix balancing [36], implemented in diffHic. Other

tools (FIND and Selfish) benefit from the juicer data format

[37] and embed values that allow for KR correction. Finally,
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CHESS and HiCDCPlus recommend the ICE correction but do

not implement it.

An alternative to choosing a specific method to correct

between-bin biases is to let users provide bin-specific correction

values. This is the course of action taken by ACCOST (that

recommends using ICE but allows for any other type of bin

correction values to be used).

Finally, note that if all bin sums in a given matrix are aligned

to the same total count B (e.g., B = 1 for KR correction), then

it is sufficient to use the same B for all matrices to align, at the

same time, overall total interaction counts between matrices.

Genomic distance related differences between

interaction counts within a given matrix.

Hi-C matrices are strongly structured with respect to the

genomic distance between bin pairs. Likewise biases between

bin total counts within a given matrix, this bias does not

necessarily require correction but is nevertheless accounted for

in several tools.

One of the most popular approach to correct for this

bias is to compute an “observed over expected” matrix. The

interaction count of a bin pair is divided by the average

interaction counts of all bin pairs with the same genomic

distance. This approach is implemented in CHESS. Similarly,

the interaction count of a bin pair at the same genomic

distance can be centered and reduced to unit variance (as

implemented in Selfish) or scaling factors for bin pairs at

the same genomic distance (e.g., median) can be computed

and used for normalization (as implemented in ACCOST and

HiCDCPlus).

Other normalizations.

Other methods designed to correct various other biases are also

implemented: diffHic proposes a method based on DNA Copy

Number Variation (CNV) estimation to correct for this bias.

However, as discussed by Servant et al., 2018 [38], CNV could

be of interest in cancer studies and it is therefore not necessarily

sound to always use this correction.

Finally, note that all tools that use the genomic distance

between bins for the normalization are restricted to detect

intra-chromosomal (cis) differential interactions only and

cannot consider inter-chromosomal (trans) interactions.

Supplementary Table S2 summarizes the different

normalization options offered by the tools.

Methodological background of the tools
This section describes the methodological premises and

solutions of the different tools. The tools can be classified

according to the following two questions:

• Can the tool use biological replicates to perform the test

(i.e., handle more than one matrix in each condition)?

When biological replicates are available, it is still possible

to use a tool designed to only compare one matrix in

each condition by merging (computing the sum of) the

replicates of each condition. However, it is strongly advised,

from a statistical perspective, that these replicates are

used in order to relate the inter-condition variability to the

intra-condition variability.

• Does the tool consider interaction counts as independent

from each other, or does it try to take advantage of the fact

that two bin pairs, (i, j) and (i′, j′) in the matrix, tend to

have more similar interaction counts when they are close

to each other (e.g., |i − i′| + |j − j′| is “small”)? We will

use the term “2D-agnostic” for the tools that consider bin

pairs independent and the term “2D-aware” for the tools

that account for this property.

These two typology levels for the tools are provided in the

two columns of Table 1 named “use of replicates” and “2D-

aware”. We now give a brief overview of each tool based on the

answer to these two questions.

Comparison of two matrices

The tools designed to perform differential analysis between two

matrices are: HiCcompare (2D-agnostic), CHESS, Selfish, and

sslHiC (2D-aware).

2D-agnostic method.

A 2D-agnostic method means that a measure of the difference

between the two matrices is obtained at bin pair level and

transformed into a Z score, from which a p-value is derived

using the Gaussian distribution. More precisely, HiCcompare

uses the M-value (log-fold change between the two matrices)

of the interaction count to obtain a Z score.

2D-aware methods.

Existing 2D-aware methods that perform tests between two

matrices are based on different premises: CHESS first partitions

the Hi-C matrix into fixed-size square submatrices and

computes a Structural Similarity Index (SSIM). This index is

commonly used in imaging analysis to quantify the similarity

between two matrices. It depends on the average signal in each

submatrix, the variance of the signal in a given submatrix and

the signal correlation between the two submatrices. A p-value

is then derived for each square from this index, quantifying

the exceptionality of the observed index with respect to a

background model.

Selfish performs a sort of “local smoothing” of the matrices:

For each bin pair, it applies Gaussian filters centered at the bin

pair, with increasing radius. The idea is to take advantage of

the spatial self-similarity in contact maps to improve statistical

evidence. Differences of the Gaussian filter evolutions between

the two matrices are then assumed to be Gaussian, from which

a p-value is derived for each radius. The final p-value is defined

as the minimum radius-specific p-value across radii. However,

since no multiple testing correction is applied at this stage, the

resulting p-values are invalid.

Finally, sslHiC is based on a Graph Neural Network (GNN)

[39, 40]. The idea is to represent a Hi-C matrix as a graph

in which bins are nodes and positive interaction counts are

edges (weighted by the interaction count). Bin pairs of the form

(i, i+1) (linking two bins that are neighbors on the chromatin)

are also linked with an edge to encode the genome structure

in the Hi-C graph. The authors propose a new architecture

of GNN, which they call “edge-enhanced GNN” (EEGNN) that

aims at better exploiting the information carried by edges in the

message passing process of the GNN. Using this architecture,

all the bin pairs (i, j) in the matrix are represented by their

embeddings hk
(i,j), d-dimensional vectors organized in different

layers, k. The method is fully aware of the whole matrix since

the embedding hk
(i,j) at layer k is passed to the other bin pairs

that share a common node to compute their embeddings at

layer k + 1. The method finally derives a p-value for (i, j)

by assuming Gaussian distribution of the Euclidean distance

between embeddings hK
(i,j) of the two matrices in the last layer

K.
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Comparison of multiple matrices for each condition.

Tools that leverage replicates to perform differential analysis

are ACCOST, diffHic, HiCDCPlus, HOMER, multiHiCcompare

(2D-agnostic), and FIND (2D-aware). As explained above,

an important advantage of these tools from a statistical

perspective is that they can account for the variability across

replicates within each condition (e.g., by computing variances,

which cannot be done when a single replicate is available).

2D-agnostic methods.

2D-agnostic tools that account for replicates (ACCOST, diffHic,

HiCDCPlus, HOMER, and multiHiCcompare) all assume that

the interaction counts follow a Negative Binomial (NB)

distribution. This is a standard hypothesis already used in other

differential analysis methods for sequencing data, notably for

RNA-seq. More precisely, diffHic and multiHiCcompare integrate

edgeR [41] functions that fit a NB Generalized Linear Model

(GLM) (and thus directly benefit from the flexibility of this

framework, able to account for complex experimental designs).

The main difference with the standard RNA-seq pipelines is

the addition of an offset derived from the MA (diffHic) or MD

(multiHiCcompare) normalization in the NB GLM. Similarly,

HiCDCPlus and HOMER use DESeq2 [42] and differ from DESeq2

by the preprocessing performed on Hi-C matrices, especially the

filtering step described in the “Filtering” section. Alternatively,

HOMER can also use an edgeR model. Even if it does not

directly depend on DESeq2, ACCOST also derives its method

from DESeq2’s NB model, plugging the bin-specific correction

values described in “Normalization” into the NB GLM method

of DESeq2.

2D-aware method.

The only 2D-aware tool able to account for replicates is FIND.

In FIND, a bin pair is described by its position (i, j) in the

matrix 2D structure and its interaction counts across matrices.

The resulting triplet is distributed as a spatial Poisson process

(a count process that has a spatial structure) with condition-

specific intensity parameter λ1 and λ2. A first-level p-value for

the test of the null hypothesis λ1 = λ2 is then obtained for

each bin pair. The final p-value at each bin pair is obtained by

aggregating the first-level p-values in the local neighborhood

around the bin pair, using the r-ordered p-value (rOP) method

[43]. However, the resulting p-value may not be valid since the

rOP method assumes independence between the hypotheses to

be aggregated.

Multiple testing correction
All the evaluated tools perform one statistical test for each

bin pair (i, j), with FIND and Selfish deriving this p-value

by aggregating results from other previous tests. Therefore,

a multiple testing correction is necessary to control false

positives–bin pairs identified as differential by chance rather

than due to a true difference in interaction levels between

the two conditions. Multiple tests in genomic studies are

generally handled by controlling the False Discovery Rate

(FDR). The FDR corresponds to the expected proportion of

false positives among the bin pairs called significant by a given

method and the state-of-the art method for FDR control is the

Benjamini-Hochberg (BH) method [44].

However, multiple testing correction is handled in different

ways across tools. diffHic, HiCDCPlus, HOMER and sslHiC

implement FDR control using the Benjamini-Hochberg (BH)

method. While ACCOST does not directly provide multiple

testing correction, its authors also used the BH method

in [18]. A different strategy is implemented in HiCcompare,

multiHiCcompare, and FIND. These methods perform multiple

testing correction on a per-distance basis, also using the

BH method. This implies that the FDR of their results is

(theoretically) not globally controlled at the chromosome level,

which means that more false positives can be expected for

these tools. Notably, as the typical use case of the tools

considers individual chromosomes, looking for differences in

cis-interactions, multiple testing correction is not performed

by these methods at the genome-level.

Handling more complex experimental designs
Finally, diffHic and multiHiCcompare are designed to perform a

test between more than K = 2 conditions or are able to include

external covariates in the model. The latter is useful when an

experimental factor is not of primary interest for the differential

analysis but might influence the results (e.g., a noise effect,

like the sex or the tissue, could mask the differences due to

the factor of interest, like the treatment). In this case, it is

common practice to account for this covariate as a “blocking

factor,” correcting the effect without testing for it. However,

due to the high cost of Hi-C data generation, such complex

designs (involving more than two conditions and/or covariates)

remain rare. As a result, while these features may be valuable

for future experimental designs, they are not the primary focus

at present.

Implementation and usability of the tools

Table 2 summarizes technical information for each tool,

including the programming language, whether the tool is

packaged and easy to install, which input formats are handled,

whether a documentation is provided and when it has been last

updated.

Inputs and input formats
Almost all the tested tools assume that the raw sequencing

reads have preliminary been processed with a Hi-C data

analysis pipeline and consequently converted into interaction

matrices. Notable exceptions are diffHic, which can also handle

BAM or FASTQ files, and HOMER, which requires BAM or

FASTQ files.

During the construction of the interaction matrix, paired-

end reads are usually mapped to a genomic reference sequence.

Chromosomes are then discretized into fixed-size bins, and

interaction matrices are obtained by counting for each bin pair

the number of read pairs that link the corresponding bins.

In short, interaction matrices are essentially symmetric square

matrices with non-negative entries and many zeros.

Several file formats have been proposed to store these

matrices, with different degrees of adoption. Although none

of them has become the universal standard yet, a few

are used by several tools. Such common formats include

binary (and possibly compressed) formats, like the .hic [37],

.cool, .mcool [45] and .fanc [46] formats, and text-based

formats like the HiC-PRO [47] or BEDPE [48] formats. A

majority of the tested tools (namely CHESS, FIND, HiCcompare,

multiHiCcompare, Selfish, and sslHiC) use these standard formats

(Table 2). Note that sslHiC can take as input a .cool file or

a contact matrix file similar to the one generated by HiC-

PRO. In the latter case, unlike the other tools, it does not

require an index file but only the matrix resolution (only certain

resolutions are allowed; see Methods). The matrix file is then
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given as an .mtx file in the Matrix Market format, or can

directly be passed as a binary Python/numpy file (.npy or .npz).

The other tools use more specific formats. For instance,

ACCOST requires a tab-delimited format file, with columns

<chr1> <mid1> <chr2> <mid2> <#reads>, where midi is the

position of the middle of bin i (i = 1, 2), and #reads is the raw

interaction count. HiCDCPlus and diffHic use the GInteractions

Bioconductor class [49] as input format. HOMER is the only

tool in the list that exclusively accepts raw reads as input,

rather than interaction matrices. As a result, users must map

the data with HOMER, making it incompatible with pre-existing

matrices for differential analysis.

Furthermore, some tools require additional data with

the interaction counts. ACCOST requires a bin-specific

normalization score for each bin, which can be obtained

with the ICE method [35], as implemented, e.g., in

Bioconductor/HiC-PRO package [47] or in Cooler [45]. Note

that ACCOST can accommodate any possible bin-specific bias

as input, allowing to use parametric methods based on GC

content, mappability, or restriction site density, as long as they

provide a score for each bin. Additionally, ACCOST requires a

mappability score for each bin, but this information is only used

to discard some bins from the analysis.

Likewise, HiCDCPlus requires GC content information, but

the tool can compute it internally as long as the corresponding

genome is available from BioConductor [50]. Optionally,

mappability information can also be provided. In contrast to

other tools, CHESS performs a test and derives a p-value only

if a set of background regions, where no difference is expected

between the two matrices, is provided. Otherwise, CHESS only

computes similarity scores between the matrices and does not

return a p-value.

Finally, some of the tools contain format converters, like

HiCcompare and multiHiCcompare that provide functions to

convert .hic and .cool files to their own internal format.

Of note, sslHiC is the only tool that restricts the bin size.

Namely, it can only analyze Hi-C matrices at resolutions 10

kb, 50 kb, or 500 kb, because the authors trained their deep-

learning models for these resolutions only.

Programming languages and packaging
Most of the tools reviewed are implemented in Python

and/or R (Table 2), with the exception of HOMER. From a

user perspective, availability through a package management

system (like pip, conda, or the CRAN repository) is highly

valuable because dependencies are usually handled during the

installation process, making it much easier to install compared

to non-packaged tools. Bioconductor packaging [50] offers

additional stability for several reasons: The code is extensively

reviewed before acceptance, every release is tested on the

three main operating systems, and extensive documentation

is required (including a use case vignette). Python packages

often rely on an external documentation website, which can be

extensive and detailed (such as the ones hosted on the “Read

the Docs” documentation service https://about.readthedocs.

com/).

From this point of view, the R/Bioconductor packages

diffHic, HiCcompare, HiCDCPlus, and multiHiCcompare are easy

to install, thanks to the Bioconductor common installation

process. FIND is also easy to install, even if not included in

an official package repository.

Similarly, for Python tools, CHESS and Selfish are easy

to install, thanks to pip. In addition, Selfish also proposes T
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an installation process via a Docker or a Singularity/Apptainer

container, providing further reproducibility and robustness. In

contrast, ACCOST does not offer a pip installation and is just

provided as Python scripts. For ACCOST, the authors simply

mention its dependency with Python 2.7 and R, as well as with

numpy, scipy, and some scikit-learn libraries. In contrast, sslHiC

is easier to use thanks to a provided conda environment setting

file. HOMER includes a script, which installs and configures

the tool. A description of the documentation of the tools,

together with their comprehensivenesses and readabilites and a

description of issues encountered during installation of the tools

are provided as Supplementary section 3.1 and 3.2 respectively.

Illustrative datasets
In addition, having some data included in the tool for

illustration is usually appreciated by users. From this

perspective, HOMER and Selfish do not include any dataset.

diffHic includes a small BAM file used in its manual, while

its vignette features three external datasets also mentioned in

their article. FIND, HiCcompare, HiCDCPlus, and sslHiC include

(part of) the processed data from [3] (GEO: GSE12878), which

they used in their documentation and also (except for FIND)

in the results of the article. ACCOST also includes part of the

same dataset but does not use it in the HTML manual for

illustration (this dataset is discussed in their article, however).

sslHiC also includes datasets simulated from chromosome 21

of a GM12878 cell line dataset (the original dataset is only

used to illustrate another feature of the tool on a replication

measure). The simulated dataset consists in three couples of

matrices including a certain percentage of simulated differential

interactions with varying fold changes (2, 4, and 6). CHESS

includes the processed data from [52] (ArrayExpress: E-MTAB-

5875) and multiHiCcompare part of the data from [53] (GEO:

GSE104888). Both use these datasets in their documentation

and article.

Note that all datasets are not provided under the same

format. ACCOST provides compressed .tsv files that correspond

to their input format, CHESS and HiCDCPlus provide .hic files,

FIND and HiCcompare embed data in their tool (they can then

be loaded using the function data, directly properly formatted

for usage in their functions or as GInteractions objects [49]).

Numerical experiments

In this section, we present the extensive numerical experiments

that we performed to assess the statistical performance of the

tools. In particular, we describe the datasets, the tools, and

how we designed the tests to evaluate the Type-I error control,

the power, and the biological relevance of the results.

Tested tools
Among the tools described in “Methods,” we excluded three

tools from the simulation study:

1. CHESS because it is made to provide p-values for fixed-sized

windows of the Hi-C matrix that “cannot be smaller than

20× the bin size of the data”2, which is hardly comparable

with the other tools (that obtain results at a bin pair

resolution);

2 User documentation even recommends to use regions spanning

at least 100× the bin size of the data.

2. ACCOST because it is not actively maintained anymore (it

resulted in errors with Python. We contacted the authors

about this problem which they intend to solve);

3. HOMER, which led to an error with our data. We contacted

the authors about this problem without success.

Supplementary Table S3 provides the link to the source code

and the version or date at which it was accessed for installation.

All tools were launched successfully for all experiments

except for:

• multiHiCcompare that filtered out all bin pairs in chr 21

experiments with the semi-simulated dataset. All bin pairs

were also filtered for chr 13, 14 and 15 of the CTCF

depletion dataset. The tool was successful but no results

were produced;

• sslHiC that we could run only on 500 kb resolution matrices.

The tool was successful for this setting but not designed for

the other settings.

Tool parameters
These tools were tested with their default parameters

whenever possible. The exceptions to this choice are listed in

Supplementary Table S4 and correspond to parameters with no

default but required by the tool to work, as for FIND.

In addition, by default FIND filters out results for which the

adjusted p-value was above a certain threshold. We turned this

filter using qvalue = 1 to retrieve all results3. We also used the

option to split the computation into several chunks (otherwise,

using the tool resulted in memory overload).

Similarly, diffHic provides several functions that can perform

different types of filtering before the differential analysis. In our

experiments, we did not filter out bin pairs with a low logCPM

but we used their filterTrended filter.

For a given experiment and tool, p-values were adjusted

independently for each chromosome. The BH procedure [44] was

used to adjust p-values when the tool did not provide adjusted

p-values. For tools that perform a per-distance-basis FDR

correction (HiCcompare and multiHiCcompare), we kept their

adjusted p-values and also computed adjusted p-values at the

chromosome level (“standard” BH procedure). In the Results

section, these two types of results are identified by HiCcompare

(original adjusted p-value of the tool) and HiCcompare-realFDR

(re-computed adjusted p-value). We were unable to perform this

correction for Selfish, FIND, and sslHiC, which unfortunately do

not provide raw p-values.

Semi-simulated data study
We first used a use case where the ground truth of difference

locations is precisely controlled. One possibility to do this

would have been to rely on a simulation study, generating data

from a specific probability distribution. A natural choice for

this distribution would be the negative binomial model, since

a number of differential analysis tools rely on this distribution

(diffHic, HiCDCPlus, multiHiCcompare, and ACCOST). However,

the evaluation process would have then been biased in favor

of these tools. More generally, any choice of a particular

distribution induces biases since the true data generating

distribution is unknown.

3 Using this setting results in FIND returning adjusted p-values
equal to one as zeros, which is not desirable. We manually

corrected this setting in our code.
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Fig. 2. Design of the simulations. (a) The available matrices used for the numerical experiments consist in five technical replicates from three

chromosomes (1, 7 and 21) generated at three different resolutions (200 kb, 500 kb, 1 Mb). Numbers at the bottom row correspond to genomic positions

(in Mb), indicating the size of these matrices.

(b) Illustration of the simulation process for Type-I error assessment (H1 setting, top right) and assessment of False Positive Rate (FPR) and True

Positive Rate (TPR) (H0 setting, bottom left). Type-I error control was assessed by splitting technical replicates randomly into two groups, while FPR

and TPR were assessed by generating artificial true positive examples where read counts are increased in a target zone by adding resampled Hi-C data

from the remaining technical replicate.

We therefore used semi-simulated data coming from real

Hi-C data. This type of approach has previously been applied

multiple times to benchmark tools for, e.g., RNA-seq data

[54, 55, 56]. More specifically, we used an ENCODE dataset [57]

from a Hi-C experiment performed on a human colon sample

(experiment accession: ENCSR295BDK), that includes five

technical replicates (sequencing runs). To obtain Hi-C matrices,

raw sequencing reads of each technical replicate were processed

using the nf-core/hic pipeline [58] v1.2.2 on the assembly

version GRCh38 of the human genome (see Supplementary

section 4.1 for further details). Hi-C matrices at three different

resolutions and for three different chromosomes were finally

used, as shown in Figure 2a. Processed data are available at

https://doi.org/10.57745/LR0W9R.

To assess the Type-I error control, we ran each tool on

technical replicates randomly split into two groups, where no

signal is expected. We also assessed the statistical power of the

tests by creating a controlled difference in a given part of some

matrices. Figure 2 illustrates (a) the data matrices used and

(b) the test protocol.

Type-I error control (H0 setting)

The quality of statistical tests is usually assessed via their

mathematical validity (proper control of the Type-I error, or

false discoveries) and by their performance (statistical power or

ability to detect true positives). In this first simulation setting,

we generated data under the null hypothesis (H0) in which no

signal is expected, as described in Figure 2b.

For each chromosome, we assigned the five technical

replicates to two conditions (three replicates in a condition

and the other two in the other condition) and processed

them with the six tools to extract p-values for differential

interactions between the two conditions. The C3
5 = 10 possible

assignments of the replicates into two groups were obtained

and considered as independent experiments (i.e., p-values were

adjusted independently in each assignment and chromosome).

For tools designed to compare only two matrices (one for

each condition), i.e., HiCcompare and Selfish, we merged the

replicates of the same condition into a single matrix before

processing the two resulting matrices with the tool (Figure 2b).

Also, Selfish results were not symmetric (the p-value assigned to

the bin pair (i, j) was not always equal to the p-value assigned

to the pair (j, i) whereas the Hi-C matrix is symmetric by design

and logFC were found identical between the two pairs). For

instance, for simulation 6, chromosome 21 and resolution 1 Mb,

Selfish returned a p-value of 0.9 for the pair (2810, 2805) and a

p-value of 7.4e − 4 for the pair (2805, 2810), as documented in

our code repository). To address this, we arbitrarily kept one

of the two p-values returned by the tool (the one corresponding

to i < j).

The total number of performed tests, the percentage of

significant results (based on p-values and adjusted p-values)

at different risk levels as well as the empirical cumulative

density function were obtained for each tool, chromosome, and

resolution. Note that not all tools provided raw p-values. FIND,

Selfish, and sslHiC only returned p-values adjusted for FDR

control. For these tools, one can only verify that the average

number of tests declared significant (at any target FDR level)

is zero for a H0 setting.

Simulations with ground truth signal (H1 setting)

The same dataset was used to generate pseudo-simulated

experiments corresponding to the existence of a region with

a positive signal, as described in Figure 2b. More specifically,

the five technical replicates of each chromosome were used in

the following way:

• two replicates were used as the Hi-C matrices of the first

condition;

• two other replicates were modified to be used as the Hi-

C matrices of the second condition. We first selected a

region, called “target zone”, and increased the counts of

the matrices of the second condition in this region by adding

https://doi.org/10.57745/LR0W9R
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Table 3. Total number of bin pairs (third column) and number

of bin pairs in the target zone for the evaluation of true

positive detection rates (fourth column; H1 setting only), for each

chromosome and resolution. Note that, due to filters in the tools,

not all these bin pairs were actually tested for each method.

Chr. Resolution Total In target

1 1 Mb 26,741 1,275

7 1 Mb 12,765 861

21 1 Mb 861 45

1 500 kb 105,231 5,151

7 500 kb 49,967 1,888

21 500 kb 3,218 136

1 200 kb 637,599 31,375

7 200 kb 306,209 10,936

21 200 kb 17,558 730

the corresponding values from the fifth replicate. The target

zone consisted of bin pairs where both bins were located

within the 20th to 40th percentile range of chromosome

length, with 0% representing the start of the chromosome

and 100% representing the end.

This simulation setting was designed to obtain a controlled

differential area in the matrix approximately mimicking a

structure similar to a TAD. In particular, this setting should

favor 2D-aware tools, e.g., tools that exploit the spatial

autocorrelation of the 2D Hi-C matrix (FIND, Selfish, and

sslHiC).

Finally, the four matrices (from two conditions) were

processed as described in “Type-I error control (H0 setting)”,

distinguishing results for the target zone from the others. The

Precision-Recall (PR) curves based on adjusted p-value filtering

were then obtained to simultaneously assess the precision (i.e.,

the ratio of bin pairs in the target zone among bin pairs declared

positive) and the recall (i.e., the ratio of bin pairs declared

positive among bin pairs in the target zone). Note that the

recall is also named power in the framework of statistical tests

and that “1− Precision” indicates if the test properly controls

the FDR.

Table 3 gives the total number of bin pairs for each

chromosome and resolution, as well as the number of bin pairs

in the target zone.

CTCF depletion study
To test the tools on a real life use case, we retrieved

publicly available data from a CTCF depletion study in

post-mitotic mouse cells [59]. This study features a Hi-C

chromatin structure profiling of a murine erythroblast cell line

under two conditions: either under accute depletion of CTCF

through an auxin-inducible degron system (CTCF- condition)

or in the control condition without auxin-induced depletion

(CTCF+ condition). Hi-C libraries were generated, sequenced

and processed for three biological replicates per condition. We

downloaded the six corresponding interaction matrices (GEO

Accession GSE168251) and ran all the tools on each autosome

independently at the resolution of 100 kb.

Although no precise and exhaustive ground truth exists for

such a real case dataset, it is well known that the CTCF

protein plays a major role in chromatin loop and TAD boundary

formation. As reported in the original study, many structural

differences are therefore expected between the two conditions,

involving in particular genomic regions with a high density

Fig. 3. Average percentage of performed tests (across the 10

repeats) compared to the number of bin pairs passed as input to the tool

(given in Table 3) across chromosomes and resolutions (200kb, 500kb, and

1Mb) in the H0 setting. sslHiC could only be used on 500 kb resolution

data.

of active CTCF binding sites [59]. In order to assess the

biological consistency of the predicted differential interactions,

we compared the corresponding genomic positions with those

of the active CTCF binding sites that were profiled by ChIP-

seq experiments on the same cell line (GEO ACCESSION

GSE129997, [60]). More precisely, for each 100 kb bin of the

genome, we both computed:

• the number of times this bin was included in a bin pair

found significantly different by the tool;

• the number of CTCF active sites (called peaks) present in

this bin pair.

The joint distribution of these two quantities was thus

obtained, and the Spearman correlation was computed to assess

the general biological consistency of each tool’s results.

Computational time
All tools were tested on the same infrastructure (Genotoul-

Bioinfo cluster) on a single CPU node, except for sslHiC that

was tested on a different node because it required GPU. For

comparison purposes, we ran the tools on one processor only

and recorded computational times in the H1 setting and for the

CTCF depletion study.

Processed data as used in the numerical experiments along

with scripts implementing the different tools and performing

the result analysis are made available at https://forgemia.

inra.fr/scales/replication-chrocodiff.

Results

Number of tested bin pairs
We used the H0 setting to assess the differences in the number

of bin pairs filtered before the test procedure by the different

tools. Figure 3 provides the proportion of tests performed for

each tool in the H0 setting (relative to the maximum number

of possible tests, as given in Table 3 for each chromosome and

resolution). The difference in the numbers of tested bins are

thus only due to differences in the filtering step.

https://forgemia.inra.fr/scales/replication-chrocodiff
https://forgemia.inra.fr/scales/replication-chrocodiff
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The different tools apply pre-filtering steps that resulted

in a very different number of tested bin pairs. HiCcompare

performed a number of tests that is constantly close to the

maximum and HiCDCPlus constantly performed a very low

number of tests because it only tests (the union of) regions with

an interaction considered significantly above the interaction

background (FDR adjusted p-value < 10%). For the relatively

short chromosome 21, multiHiCcompare did not perform any test

(all interactions were filtered out at preprocessing). However,

it performed a number of tests close the maximum for the

other two chromosomes at resolutions 500 kb and 1 Mb. At

a 500 kb resolution (the only resolution available for this tool),

sslHiC performed a number of tests close to the maximum for

the three chromosomes. Finally, diffHic and Selfish filtered out

approximately half of the bin pairs.

Note that the differences in the number of tested bin pairs

are partially due to default values set differently by different

tools for the same parameter: For instance, HiCcompare filters

out bin pairs with an average A value smaller than the 10-th

percentile of A values while multiHiCcompare filters out bin pairs

with an average A value smaller than 5.

Type-I error control (H0 setting)
Figure 4 provides the percentage of tests declared significant

for all chromosomes, resolutions and tools, based on a 5% and

a 1% thresholding of p-values and adjusted p-values. Figure S1

in Supplementary material additionally provides the same plots

for a 10% threshold.

In H0 settings, the percentage of p-values below 5% is

expected to be at most 5% if the test is properly calibrated

(type-I error control). A percentage much smaller than 5%

indicates that the Type-I error control is valid but that the tool

is conservative, suggesting that the test may be underpowered

in non-H0 situations. Also, since some tools only returned

the adjusted p-value, we also gave the percentage of adjusted

p-values below 5%. Since p-values are adjusted to control

the FDR, this percentage is expected to be 0 if the test is

properly calibrated. However, it is not possible to assess how

conservative the test is only based on adjusted p-values.

The results shown in Figure 4 are remarkably consistent

across resolutions. This illustrates the fact that since FDR

corresponds to a proportion of false positives, FDR control is a

priori designed to be comparable across studies with different

numbers of tests. Overall, the results show that only diffHic

and multiHiCcompare properly controlled the Type-I error on

this dataset, with a percentage of tests declared positive very

close to the expected value. Nonetheless, for chromosome 21,

multiHiCcompare did not perform any test as discussed above

(see Figure 3).

HiCcompare, which does not account for replicates and hence

for variability within conditions, suffered from a small excess

of false positives (e.g., chromosome 21, 1 Mb resolution, 1%

risk). On the contrary, HiCDCPlus detected very few false

positive results, except for chromosome 21 which displays a

massive excess of false positives. This discrepancy between

chromosomes could be related to the very low proportion of

bin pairs passing the HiCDCPlus filters (see Figure 3). Both

Selfish and, in particular, FIND produced a large number of

false positives, as visible in the plots based on adjusted p-

values (bottom). For both methods, this could be explained

by a statistical issue in the definition of the bin pair-level p-

value (lack of multiple testing correction across radii for Selfish,

and incorrect assumption of independence between aggregated

p-values for FIND), as explained in Section “Methodological

background of the tools.” sslHiC did not return any positive

result based on adjusted p-value thresholding (which is the

expected behavior). However, since it does not provide raw p-

values, we were not able to assess its proper control of Type-I

error. Finally, no large difference was observed between the

standard BH correction (“XXX -realFDR”) and the multiple

test correction implemented in multiHiCcompare and HiCcompare.

This is confirmed by the strong linear relationship between

these two quantities (Supplementary Figure S2).

For the tools that returned unadjusted p-values, Figure 5

provides the empirical cumulative density function (ECDF) of

p-values. Note that the data displayed in Figure 4 corresponds

to the values of the ECDF at risk x =5% (a) and 1% (b),

respectively.

For all resolutions and chromosomes, diffHic was the tool

closest to the expected uniform distribution, followed closely by

the slightly conservative multiHiCcompare (Figure 5). HiCcompare

exhibited a slight excess of very small p-values; in the area

where the p-value is below 0.1%, the ECDF of HiCcompare was

frequently above the diagonal (see also Figure 4). This behavior

can be explained by its incapacity to account for variability

across replicates of one condition, resulting in an excess of

false positives. In contrast, HiCDCPlus generally displayed the

opposite behavior, suggesting a lack of power (especially for

chromosomes 1 and 7). However, it occasionally presented a

strong excess of false positives, as observed on chromosome 21.

Precision and Recall (H1 setting)
Figure 6 (a) provides the proportion of tested interactions

that are located within the target zone, where positive calls

are expected (true signal). This proportion may vary even

for tools that rely on similar models or methods, because

different data filtering methods are applied before testing for

differential interaction. Results confirmed that this filtering

step can have per se a strong impact on the test. In particular,

HiCDCPlus predominantly discarded interactions outside the

target zone rather than inside, which may be a desirable

behavior. However, the overall number of retained interactions

was generally very low for this tool (see Figure 3 and the

corresponding discussion). The other tools tended to generally

have a proportion of tested interactions in the target zone close

to the corresponding proportion in the original matrix (before

filtering).

Figure 6 (b) displays PR curves based on predictions

computed from adjusted p-values, for all chromosomes,

resolutions and tools. An ideal classifier would have a precision

of one and a recall of one. The resulting PR curve, based

on various adjusted p-value thresholds, would then be the

horizontal line joining the point at (0, 1) coordinates to point

at (1, 1) coordinates (i.e., varying power depending on the

number of interactions selected by the threshold, but all true

positives), followed by a vertical line joining (1, 1) and (1, 0)

(i.e., negative interactions are all selected after the positive

one, for larger thresholds). The symbols on the PR curves

in Figure 6 (b) indicate for each tool the obtained precision

and recall when thresholding the adjusted p-values provided at

risk 5%, a threshold that corresponds to standard practice. A

well calibrated tool should have a precision above the dashed

horizontal line at 95% (for a clearer visualization of these

results, Figure S3 in Supplementary material also provides the

obtained precision and recall for additional adjusted p-values

thresholds).
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(a) p-values below 5% (b) p-values below 1%

(c) adjusted p-values below 5% (d) adjusted p-values below 1%

Fig. 4. Percentage of tests declared significant (H0 setting) for three chromosomes and three resolutions (200kb, 500kb, and 1Mb). Decisions are

taken based on p-values (top) and adjusted p-values (bottom) with 5% (left) and 1% (right) risks. The black horizontal line (top figures) indicates the

risk controlled by raw p-values. When the method did not perform a global FDR correction (see Table 1), we re-computed the adjusted p-values with

the BH method applied to raw p-values (when available). This corresponds to columns named “XXX -realFDR” (bottom figures). sslHiC could only be

used on 500 kb resolution data and multiHiCcompare performed no test on chromosome 21 because of its filtering step.

In Figure 6 (b), diffHic appears to be one of the best tools in

the H1 setting as it yields curves closest to the ideal classifier

in a majority of cases. In particular, it performed best on

smaller chromosomes and at higher resolutions. This variability

seems to be directly related to the number of performed tests:

The smaller the number of tests (chromosome 21 or lower

resolutions correspond to smaller numbers of interactions), the

better the performance. However, in a number of cases, it did

not properly control the FDR (the symbol corresponding to

the 5% threshold of p-values is below the vertical dotted line

at 95%). For instance, for chromosome 1, resolution 200 kb,

the precision of diffHic was between 50% and 75% for the three

thresholds.

multiHiCcompare and HiCcompare often displayed similar

performances (and sometimes better than diffHic), with a

marked disadvantage of HiCcompare for the highest resolution

(200 kb). Aside from this resolution, and despite not utilizing

information on biological replicates, HiCcompare achieved

slightly better results than multiHiCcompare overall. Note that,

similarly to the H0 setting, the difference between the standard

BH correction (“XXX -realFDR”) and the multiple testing

correction implemented in multiHiCcompare and HiCcompare is

small, with a slight improvement of performances when the

standard BH correction is used. However, none of the two tools

and the two versions of the correction properly controls the

FDR at 5%. The only exceptions are HiCcompare at resolutions

1 Mb and 500 kb, but only for chromosomes 1 and 7 and with

a recall of zero for chromosome 1.

From a PR curve point of view, FIND performed rather well

for chromosome 1, especially at resolutions 500 kb and 1 Mb

with a curve consistently close or above the ideal classifier.

However, its performances were bad for chromosomes 7 and 21,

as all interactions had an adjusted p-value equal to 1. Note that,

even for chromosome 1, FIND was far from properly controlling

the FDR when thresholding the adjusted p-value. In all cases,

its precision was close to 0.
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Fig. 5. Empirical cumulative density function (ECDF) of p-values

(H0 setting). Well-calibrated tools are expected to have an ECDF that

closely follows the diagonal, corresponding to a uniform distribution

of p-values under H0. An ECDF below the diagonal indicates a valid

but conservative test, while an ECDF above the diagonal indicates

that the test is not properly calibrated, yielding an excess of false

positives. multiHiCcompare performed no test on chromosome 21 because

of its filtering step.

HiCDCPlus had a rather heterogeneous and mild performance

across chromosomes and resolutions. However, it was

systematically the second or third best performing method.

Finally, although being somewhat heterogeneous between

chromosomes and resolutions, Selfish and sslHiC had poor

performances on this benchmark, altogether with PR curves

usually close or below those of a random classifier.

CTCF depletion study
In order to test the tools in a realistic setting on a full size

dataset, we retrieved and analyzed genome-wide Hi-C matrices

from a CTCF depletion study in mouse [59] (see Methods).

Figure 7 provides for each tool the joint distribution over

the 100 kb bins of the genome between the number of CTCF

sites present in the bin (x-axis) and the number of differential

interactions in which the bin was involved after comparing

matrices from the CTCF+ and the CTCF- conditions (y-axis).

Since CTCF depletion is expected to predominantly impact

genomic regions with CTCF binding sites, a positive correlation

should be observed between these quantities.

This was the case for some of the tools. In particular,

Spearman’s correlation values of r = 0.44, r = 0.42, and r =

0.41 were respectively obtained for multiHiCcompare, HiCDCPlus

and diffHic. Globally, these tools detected more differential

interactions between CTCF-rich regions than between CTCF-

poor regions, as expected. However, in line with previous

results from the H0 setting (Figure 3), HiCDCPlus realized a

low number of tests compared to the total number of bin pairs

in the whole dataset. Less than 5% of bin pairs were kept after

the filtering step (Supplementary Figure S4).

On the contrary, no substantial correlation was obtained for

the other tools, with r = 0.04 for HiCcompare, r = 0.05 for

Selfish, and r = 0.08 for FIND.

Computational time
Figure 8 shows the computational time required for performing

the tests in the H1 setting and for the CTCF depletion

dataset. In addition, Supplementary Figure S5 provides another

representation of these results for the H1 setting with respect to

the number of tests performed, and Supplementary Figure S6

gives the total computational time required for the CTCF

depletion dataset.

FIND exhibited large computational times for certain

chromosomes and resolutions. However, the scalability of this

tool was not the worst: HiCDCPlus showed the greatest increase

in computational time with respect to the number of performed

tests. This can primarily be attributed to the fact that its

filtering steps removed most bin pairs, and its computational

time scaled with the total number of bin pairs rather than

the number of bin pairs remaining after filtering. The tools

showing the best scalability were HiCcompare, multiHiCcompare,

and Selfish. This result may be partly attributed to the faster

implementation of the cyclic LOESS (used for MA and MD

normalization) available in HiCcompare and multiHiCcompare,

but not in diffHic.

Finally, as sslHiC is designed to run on GPU processors,

its computational time could not be directly compared with

that of the other tools. Despite its relatively short runtime, its

computational resource requirements were substantial.

Discussion and conclusion

Our benchmark allowed to evaluate and compare the statistical

performances of Hi-C data differential analysis tools on

practical examples. Importantly, the results revealed that the

FDR was not properly controlled across all tools. This could

be due to the small number of samples in our experiments

(only two per condition for the H1 setting), highlighting the

importance of that factor. Nonetheless, some tools –particularly

diffHic– still managed to correctly control the Type-I error rate

in the H0 setting. Additionally, the per-distance-basis FDR

correction appeared to have a limited effect, especially when

applied to a single chromosome.

Globally, in our benchmark, diffHic delivered the best

results. It properly controlled the Type-I error rate in the H0

setting and was the only tool to properly control the FDR

in some cases. Its power, for a 5% risk, was also among the

best, always larger than 50% and generally close to 100%.

Interestingly, for the lowest resolution, HiCcompare also showed

interesting performances in the H1 setting but always exhibited

an inflated number of false positives in the H0 setting and gave

disappointing results in the CTCF depletion use case.

diffHic and multiHiCcompare produced comparable results

in the H0 setting and, in terms of PR curves, in the H1

setting. Both tools also showed good biological consistency

between Hi-C and ChIP-seq data in the CTCF depletion

analysis. This alignment was expected, as they rely on the

same model. However, the performance differences observed

between the two tools underscore the importance of filtering

and the choice of default parameters. Notably, the default

filters in multiHiCcompare seemed sometimes too stringent (e.g.,

no results were obtained for some chromosomes in both

the simulated and real-world experiments). Additionally, the

FPR of multiHiCcompare consistently exceeded 30% (and often

surpassed 50%) for a 5% risk threshold. The strong impact

of preprocessing steps is unsurprising and has been previously

acknowledged in other omics studies [61].
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(a) Proportion of tested interactions in the target zone

(b) Precision-Recall curves.

Fig. 6. Results for H1 setting. (a) Proportion of tested interactions that are in the target zone for each tool. The horizontal line indicates the

proportion of interactions within the target zone of the original data before filtering. The reported proportions (y-axis) lie above or below the horizontal

line depending on whether the tools (x-axis) predominantly filter interactions outside or inside the target zone, respectively.

(b) Precision-Recall curves computed from adjusted p-values, displaying recall (or power, x-axis) and precision (y-axis). For each method, the point

corresponding to a threshold = 0.05 (target FDR, as claimed by the method) is marked with a specific symbol. For methods that filtered out all

interactions in the target zone before the test, the Recall can not be computed (because the denominator would be 0). In this case, we arbitrarily

represented them with a circle at (0, 0). Finally, the top horizontal dashed line (in black) corresponds to a Precision of 95% and the bottom horizontal

dashed line (in blue) corresponds to the precision expectation of a uniform random draw of interactions.

sslHiC could only be used on 500 kb resolution data and multiHiCcompare performed no test on chromosome 21 because of its filtering step.

HiCDCPlus was also found to be overly stringent in its

filtering step, consistently performing a very low number of

tests. However, in the CTCF depletion application, it produced

good results.

FIND presents an interesting case. In both simulation

settings, the tool tended to predict too many false positives

for a given threshold. However, on chromosome 1 in the H1

setting, it demonstrated excellent ordering of interactions based

on adjusted p-values, with the PR curve closely approaching

that of a perfect classifier. This suggests that the adjusted

p-values returned by FIND can serve as a reliable score

for ranking interactions by significance level, although they

cannot be statistically interpreted. In this case, using higher

thresholds than typically expected is recommended. However,

for chromosomes 7 and 21, all adjusted p-values returned

by FIND were equal to 1. Overall, contrary to diffHic, the

performance differences observed with FIND do not seem to

be directly related to the number of tested interactions. For

instance, in the H1 setting, FIND performed better on the

largest chromosome but worse for the highest resolution of 200

kb, which has more interactions to test.

Interestingly, 2D-aware tools such as FIND, Selfish, and

sslHiC leverage the spatial auto-correlation inherent to the 2D

Hi-C matrices in their modeling. However, these tools did not

generally show superior performances, even in situations like

the H1 setting, where there is a strong spatial dependency in

differential interaction locations within the 2D Hi-C matrix.

This suggests that the current methods for incorporating

spatial 2D structure may not be effectively capturing its

relevance.

Finally, it is worth noting that the currently available tools

are still unable to accommodate a wide variety of study designs.

Few methods allow to use covariates (see Table 1) and, to the

best of our knowledge, no tool is capable of properly handling

paired data (e.g., differences between two tissues, with multiple

individuals each providing a pair of tissue samples as replicates)

or repeated measurement designs (similarly to what is done in

mixed models).

In this study, we focused on two datasets, encompassing

two simulation settings and a real-world application. Expanding

the investigation to include broader datasets and experimental

settings would be valuable to assess the robustness of our

conclusions across more varied designs, resolutions, and size

effects. Additionally, our analysis underscored the need for

a deeper understanding of the complex interplay between

preprocessing steps—particularly normalization types and

filtering—and the models used.

Key points

• We reviewed and benchmarked available tools for

differential analysis of Hi-C matrices.

• Preprocessing steps differed between tools, strongly

impacting the results, even for tools with the same type

of model.

• None of the tools properly controlled the FDR at the

expected rate in our simulation setting. However, some tools

effectively controlled the Type-I error in situations where no

signal was expected in the data.
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Fig. 7. Joint distribution of the number of CTCF sites and the number of differential interactions per genomic bin of 100 kb in the CTCF

depletion dataset. Each boxplot represents the distribution of differential interactions (y-axis) obtained by a given tool (one per panel) between matrices

from the CTCF+ and the CTCF- conditions for genomic bins with 0, 1, 2 or at least 3 CTCF sites (x-axis). The Spearman correlation between these

values across all bins is provided for each tool (r). Bins with many CTCF sites are expected to be predominantly involved in differential interactions

upon CTCF depletion compared to bins with few CTCF sites, as observed in results from diffHic and HiCDCPlus for instance (left side).

Fig. 8. Computational time. Left: Computational time in seconds (y-axis) needed for each tool (y-axis) to run in the H1 setting. sslHiC could only

be used on 500 kb resolution data and multiHiCcompare performed no test on chromosome 21 because of its filtering step.

Right: Computational time in seconds (y-axis) versus the number of tests performed in a given chromosome (y-axis) for the CTCF depletion dataset.

sslHiC could not be used.

• In our simulations, diffHic yielded the best overall results.

Currently, tools based on a 2D-aware model did not

outperform the others.

• Our review highlighted the need for models and tools able to

handle paired designs and repeated measurement designs.
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