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Abstract 

Gene expression is a dynamic phenotype influenced by tissue-specific regulatory 

mechanisms, including promoters, enhancers, and repressors, often located in non-coding 

genomic regions. Regulatory sequences can modulate gene expression directly through cis 

factors or indirectly via trans factors. Identifying genetic variants, such as single nucleotide 

polymorphisms (SNPs), in these regulatory regions can improve both expression quantitative 

trait locus (eQTL) mapping and gene expression prediction. The use of whole genome 

sequencing (WGS) data offers the possibility for enhanced eQTL mapping accuracy, but the 

detection of causal variants remains challenging. In this study, we evaluate the potential 

added-value of integrating tissue-specific epigenetic annotations, such as chromatin 

accessibility and methylation status, into within-breed genomic predictions of gene expression 

for three distinct pig breeds: Duroc, Landrace, and Large White. By incorporating functional 

annotations from early developmental stages, we demonstrated improved eQTL mapping 

interpretability and highlighted the enrichment of trait-relevant QTLs. However, while 

functional annotations improved the interpretability of eQTL mapping within breeds, 

predictions across breeds remain challenging due to differences in genetic architectures and 

linkage disequilibrium. Our work contributes to the understanding of gene expression 

regulation in livestock and suggests that incorporating functional annotations into genomic 

prediction models holds promise for targeting causal mutations, despite continued challenges 

for predictions across breeds. 
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Highlights 

● Matched whole-genome sequences and expression reveal transcriptional regulatory 

variants. 

● Early epigenetic marks can guide transcriptome prediction and eQTL mapping. 

● Annotation-guided models can enhance the interpretability of eQTL mapping. 

● Porting predictions across pig breeds remains challenging even with annotations. 

● A case study linked IGF2 liver eQTLs with annotations and cholesterol QTLs. 

1. Introduction 

Gene expression represents a heritable intermediate phenotype that can be expected to be 

more closely tied to the genome than conventional phenotypes (Stranger et al. 2007). 

Expression is notably impacted by tissue-specific regulatory mechanisms, which may have 

properties of inhibition, modulation, or promotion; examples include promoters, enhancers or 

repressors, which are located in non-coding or more rarely coding genomic regions (Ong and 

Corces 2011). Regulatory sequences may modulate gene expression either directly (cis 

factors, generally in proximity to the gene on the same chromosome), or indirectly by acting 

as trans factors, located more distantly (Wittkopp, Haerum, and Clark 2004). These regulatory 

sequences can be affected by mutations, including for instance single nucleotide 

polymorphisms (SNPs), in turn impacting gene expression. Identifying and capitalizing on 

these genetic variants holds promise for improved expression quantitative trait locus (eQTL) 

mapping and prediction of gene expression based on genomic sequence (Bessière et al. 2018; 

Agarwal and Shendure 2020). Large-effect variants in regulatory sequences are typically 

identified using expression genome-wide association studies (eGWAS), while more subtle 

effects remain difficult to detect, for example due to epistatic effects and low allele frequency 

of causal variants, leading to low linkage disequilibrium with variants available on commercial 

SNP-chips and thus insufficient power.  

 

The use of whole genome sequencing (WGS) data offers the possibility to discover these rare 

variants (Cirulli and Goldstein 2010), and thus the potential to lead to an improvement in eQTL 

mapping and prediction quality. A potential strategy to better exploit WGS data for prediction 

models may be the prioritization of certain regions of the genome through the use of functional 

annotations. In particular, integrating information on regulatory mechanisms in predictions of 

gene expression from WGS data could lead to prediction gains and shed insight on the 

underlying regulatory processes (Avsec et al. 2021), thus providing a better understanding of 

the biological processes driving complex traits and consolidating future genome annotations. 

Many types of models have been proposed for simultaneous QTL mapping and genomic 

prediction of complex traits, including BayesR (Erbe et al. 2012), which has been shown to be 

well-suited for traits with a small number of moderate to strong QTLs (Moser et al. 2015; 

Mollandin, Rau, and Croiseau 2021). A natural extension of this approach is the BayesRC 

model (MacLeod et al. 2016), which proposes the use of functional annotations to partition 

SNPs into categories that are independently modeled with the BayesR mixture model. One 

limitation of BayesRC is the need for disjoint annotation categories; however, complex, large-

scale functional annotations now cover multiple tissues, temporalities, and types of assays 

(Clark et al. 2020), generating substantial overlaps across annotation categories. The recently 

proposed BayesRCπ model implemented in the BayesRCO software (Mollandin et al. 2022) 

overcomes this limitation by disambiguating among multiple annotations for SNPs by 
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preferentially assigning them to the most representative annotation, thus making it a promising 

approach to account for complex, overlapping functional annotations. Current efforts to 

incorporate functional annotations into genomic prediction models have not generally led to 

significant gains in prediction accuracy for livestock production traits, although improvements 

in QTL mapping precision have been observed (Abdollahi-Arpanahi, Morota, and 

Peñagaricano 2017; Xiang et al. 2021). A practical framework for the most appropriate use of 

prior annotation information has yet to be identified, and the most relevant sets of annotations 

must typically be identified on a case-by-case basis.  

 

Gene expression represents a highly dynamic phenotype, in some cases with high specificity 

in tissues or during development, suggesting the potential importance of using functional 

annotations from closely related developmental stages and tissues (Cardoso-Moreira et al. 

2019; Sonawane et al. 2017). As such, constructing annotations based on tissue-specific 

information (Foissac et al. 2019; Pan et al. 2021) or developmental stage (Acloque et al. 2022) 

stands out as a promising strategy. Epigenetic marks, such as chromatin accessibility (Klemm, 

Shipony, and Greenleaf 2019) and methylation (Corbett et al. 2022), are particularly relevant 

for gene expression given the strong impact of epigenetic mechanisms on gene transcription. 

Contrary to human and mouse, to date relatively few studies have identified regulatory 

elements and analyzed their phenotypic impact in livestock species. Recent efforts, such as 

the Functional Annotation of ANimal Genomes (FAANG) and Farm Animal Genotype-Tissue 

Expression (FarmGTEx) consortia, have sought to fill this gap by providing insight into the 

regulatory mechanisms of gene expression in multiple tissues and several livestock species, 

notably through rich publicly available catalogs of tissue-specific functional annotations in pigs 

and cattle (Clark et al. 2020; Liu et al. 2022; Teng et al. 2024). In this context, the GENE-

SWitCH project (Acloque et al. 2022) generated extensive functional genomic annotations in 

a variety of different tissues during early developmental stages for both pig and chicken 

(https://data.faang.org/projects/GENE-SWitCH).  

 

Among livestock species, pigs hold particular interest as both an important source of meat for 

humans and as a highly relevant human biomedical model due to their similarity in anatomical 

structure, physiology, and immunology (Lunney et al. 2021). Over the last century, pig 

breeding programs and the introduction of crosses with specialized dam and sire lines enabled 

rapid genetic improvements and the development of multiple breeds and more diverse 

breeding goals reflecting societal needs (Merks 2000; Neeteson-van Nieuwenhoven, Knap, 

and Avendaño 2013). For example, the Duroc (DU), Landrace (LD), and Large White (LW) 

commercial breeds differ considerably in muscle growth and structure (Lee et al. 2012; Tang 

et al. 2020). Previous eQTL studies in pigs have typically focused on breed-specific analyses 

(Ballester et al. 2017; Maroilley et al. 2017). A recent study instead sought to identify genetic 

polymorphisms associated with gene expression variability in the duodenum, liver, and muscle 

shared across the DU, LD and LW breeds, yielding a set of nearly 14 million significant cis 

and trans expression-associated regulatory variants within and across tissues (Crespo-

Piazuelo et al. 2023). 

 

In this work, we capitalize on the multi-breed and multi-tissue pig eQTL data from (Crespo-

Piazuelo et al. 2023) to evaluate the potential added-value of tissue-specific epigenetic 

annotations for within-breed eQTL mapping of liver and muscle gene expression using base 

pair-resolution genotypes in three highly distinct commercial pig breeds: DU, LD and LW. In 

particular, we make use of tissue-specific annotations that were generated by the GENE-
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SWitCH project to characterize chromatin accessibility and methylation status at three different 

early developmental stages, and we focus on the expression of a target subset of genes of 

interest. Our study further evaluates the potential for these epigenetic annotations to guide 

genomic predictions across breeds through the prioritization of shared regulatory 

mechanisms. 

2. Results 

2.1 Exploring the pertinence of tissue-specific epigenetic annotations for an 

intermediate molecular phenotype. 

Our objective was to leverage epigenetic annotations obtained at several early developmental 

stages, as well as predicted variant effects, to prioritize putative regulatory variants in genomic 

prediction models of tissue-specific gene expression in three commercial pig breeds (Figure 

1). Transcriptome data in liver and muscle and genotype data were collected for a total of 

n=100 animals for each breed (DU, LD, LW). Rather than performing a transcriptome-wide 

analysis, we focused our attention on liver and muscle expression for a targeted subset of 10 

genes distributed on 8 chromosomes (Supplementary Table 1). These included a set of 3 

genes previously highlighted as being regulated by methylation: IGF2 (Van Laere et al. 2003), 

PRKAG1 (Kai et al. 2022) and LEPR (Hao, Cui, and Gu 2016). In addition, to explore the 

potential added-value of tissue-specific functional annotations for tissue-specific eQTL 

mapping and prediction, we focused on a subset of 7 genes (DET1, NUDT22, SUPT3H, 

CELF2, R3HCC1, HUS1, SLA-7) with cis-regulatory variants consistently found across 

multiple tissues (Crespo-Piazuelo et al. 2023). We hypothesize that leveraging tissue-specific 

annotations can reveal pertinent regulatory mechanisms for these genes beyond the 

previously identified shared signals across tissues. 

 

We used annotations generated post-mortem from independent Large White samples at early 

organogenesis (30 days post-fertilisation; dpf) and late organogenesis (70 dpf) as well as in 

newborn (NB) piglets (Acloque et al. 2022). We focused on liver- and muscle-specific 

epigenetic annotations generated at each developmental stage for two different functional 

genomic assays: methylation profiling by whole genome bisulfite sequencing (WGBS) and 

chromatin accessibility profiling by assay for transposase-accessible chromatin with high-

throughput sequencing (ATAC-seq). For the former, genomic regions were categorized as 

being unmethylated (UMR), roughly corresponding to promoters, or lowly methylated (LMR), 

corresponding to putative enhancers (Stadler et al. 2011). For the latter, genomic regions were 

categorized as open chromatin regions (OCR), potentially representing enhancers, promoters, 

repressors or insulators (Roadmap Epigenomics Consortium et al. 2015). We additionally 

incorporated two broad tissue-agnostic annotations based on the Variant Effect Predictor 

(VEP) tool (McLaren et al. 2016): non-synonymous coding (NSC) variants and potential 

regulatory (REG) variants. Finally, tissue-specific epigenetic annotations (OCR, LMR, UMR) 

at each of the 3 developmental stages (30 dpf, 70 dpf, newborn) were concatenated with 

tissue-agnostic predicted variant effect categories (REG, NSC), and SNPs were assigned to 

one or more annotation category according to their genomic position; any non-annotated 

variants were assigned to a final “other” category. 

 

For each of the 10 targeted genes, we then used as learning data the n=100 animals within 

each breed as well as the set of genetic variants located on the respective chromosome of the 

gene. In this way, our genomic predictions were constructed using an extensive definition of 
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cis-regulatory variants. Genomic prediction models that were agnostic to annotations 

(BayesR) or that incorporated the aforementioned annotations as prior information 

(BayesRCπ) were fit to each learning dataset to perform eQTL mapping. We subsequently 

evaluated the portability of prediction models across breeds by assessing the prediction quality 

of the learning model on each of the two remaining breeds. 

 

 

Figure 1. Schematic overview of the study. (A) Matched whole genome sequencing and liver and muscle gene 

expression data were available for n=100 pigs in each of three breeds (DU, LD, LW). (B) We focused on a targeted 

subset of 10 genes either regulated by methylation or with cis-regulatory variants found consistently across multiple 

tissues. (C) Functional annotations included both non-context dependent annotations and epigenetic annotations 

dependent on developmental stage and tissue. The former correspond to predicted variant effects (McLaren et al. 

2016), i.e. those predicted to cause a nonsynonymous coding change (NSC) and those predicted to have potential 

regulatory roles (REG). The latter correspond to open chromatin regions (OCR) identified by assay for transposase-

accessible chromatin using sequencing (ATAC-seq), as well as unmethylated regions (UMR) and lowly methylated 

regions (LMR) identified by whole genome bisulfite sequencing (WGBS). Epigenetic annotations were available for 

two tissues (liver, muscle) at three developmental stages: 30 days post-fertilisation (dpf), 70 dpf, and newborn. (D) 

Tissue-specific eQTL mapping and gene expression prediction were performed using BayesRCπ for each 

combination of {gene x tissue x breed} using variants on the respective chromosome of each gene and the full set 

of functional annotations. Created in BioRender. Mollandin, F. (2025) https://BioRender.com/l37n199  

 

2.2 Considerable genomic and transcriptomic variability is observed among three 

commercial pig breeds. 

After removing genetic variants with a minor allele frequency (MAF) < 5% or with >10% 

missing genotype calls in the full set of n=300 animals, the original genomic dataset included 

25,315,878 polymorphisms (Crespo-Piazuelo et al. 2023); for the set of 8 chromosomes 

corresponding to the 10 target genes, the number of SNPs varied from 542,356 (chr18) to 

1,815,427 (chr1). Given our objective of evaluating the portability of genomic prediction 

models across breeds, we applied an additional filter to remove variants with a per-breed MAF 

< 5% in one or more of the breeds considered, which removed approximately a third of these 

variants (Supplementary Table 2); a total of 14,489,226 polymorphisms were retained across 

the 8 chromosomes, varying from 177,240 (chr18) to 629,069 (chr1) per chromosome, that 

were relatively uniformly distributed across each chromosome (Supplementary Figure 1). After 
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filtering, we observed considerable genomic (Figure 2A) and, to a lesser extent, transcriptomic 

(Figure 2B) heterogeneity among the three pig breeds likely due to differences resulting from 

selection or drift. As expected, a strong separation of DU from the two other breeds is seen 

along the first principal component, particularly for the genomic and muscle transcriptome 

data, perhaps reflecting stronger selection constraints on muscle than liver. A secondary 

separation between LD and LW is present on the second principal component, with a weaker 

distinction observed in the liver transcriptome. Similar separation between the three pig breeds 

is observed for chromosome-specific genomic principal components analyses 

(Supplementary Figure 2). 

 

As previously noted, our focus here is on the liver- and muscle-specific expression of 10 target 

genes (Figure 2C); note that as LEPR displays very low expression in the muscle, we consider 

only its expression in the liver in the following. Variability in the expression of these target 

genes is observed both across breeds within a given tissue (e.g., LEPR in liver) as well as 

between genes (e.g., generally strong expression for IGF2, generally weak expression for 

NUDT22). In the original study design, the DU and LD breeds included both males and 

females, whereas the LW breed had only males; to avoid sex-specific biases, log2 counts per 

million (CPM) expression values for the DU and LD breeds were corrected for an intercept 

(i.e., overall mean) and sex fixed effect, while those for the LW breed were corrected only for 

an intercept (Supplementary Figure 3). 

 

Beyond the heterogeneity of the expression of these genes, we also observed considerable 

variability in the heritability of their expression, both between tissues as well as across breeds 

(Figure 2D). We further remark slightly higher expression heritabilities for LW in liver, and 

generally higher heritabilities in muscle for LD. These breed-specific differences are also 

reflected by disparities in the learning quality for each breed, as quantified by the correlation 

between observed and predicted expression values for each breed, with generally higher 

learning prediction accuracies for LD models trained on muscle compared to liver, and for LW 

models trained on liver compared to muscle (Figure 2E).  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 11, 2025. ; https://doi.org/10.1101/2025.03.05.641618doi: bioRxiv preprint 

https://doi.org/10.1101/2025.03.05.641618
http://creativecommons.org/licenses/by-nc/4.0/


7 

 
Figure 2. Genome- and transcriptome-wide heterogeneity among three pig breeds. (A) Principal components 

analysis (PCA) on genomic data from autosomal chromosomes. (B) PCA on transcriptomic data (sex-corrected log 

counts per million values; CPM) by tissue. Percentage variance explained for each of the first two components is 

indicated in text for each PCA. (C) Boxplots of transcriptomic data (sex-corrected log CPM values) for target genes 

by breed and tissue. (D) Distribution of estimated heritabilities of expression (across targeted genes and breeds) 

in liver and muscle, colored by the training breed. (E) Spearman correlations across targeted genes in learning 

data by breed and tissue. DU=Duroc (red); LD=Landrace (green); LW=Large White (blue). 

 

 

2.3 Annotations related to tissue-specific epigenetic marks during early development 

are biologically relevant for the analysis of complex traits.  

Annotations related to the predicted potential impact of variants as well as tissue-specific 

epigenetic marks such as chromatin accessibility and methylation are of particular interest for 

gene expression data, both with respect to prediction and for identifying potentially important 

regulatory regions. Overall, 16.9% and 14.1% of the filtered variants on the 8 chromosomes 

were assigned to one or more epigenetic or predicted variant effect categories in liver and 

muscle, respectively (Figure 3A). Although most variants were assigned to a single annotation, 

a considerable number were assigned to multiple categories, with a maximum number of multi-

annotations corresponding to 8 (Figure 3B); generally similar patterns were observed between 

the two tissues. When considering each of the annotation categories separately (Figure 3C, 

Supplementary Table 2), we remark that the two VEP categories are those with the sparsest 

(NSC) and densest (REG) densities. Tissue- and stage-specific epigenetic annotations were 

intermediate in terms of the number of annotated SNPs, with a slightly higher density in liver 

than muscle, particularly for early developmental stages (OCR at 30 dpf; LMR and UMR at 30 

and 70 dpf, respectively). Annotation categories unsurprisingly tended to cluster together 
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(Figure 3D) first according to type of epigenetic mark (OCR, UMR, LMR) and predicted variant 

effect (NSC, REG), followed by tissue type (liver, muscle); we also generally remark a 

consistency between developmental stages and the annotation category clustering structure.  

 

 
Figure 3. Annotations related to predicted variant effects and tissue-specific epigenetic marks during early 

development. (A) Percentage of SNPs annotated according to tissue-agnostic variant effect predictions (VEP)  or 

tissue-specific epigenetic annotations in liver (left) and muscle (right). (B) Number of SNPs annotated with one or 

more annotation categories in liver (blue) and muscle (green). (C) Number of annotated SNPs for each category. 

(D) Dendrogram representing a hierarchical clustering of annotation categories based on the Jaccard distance and 

complete linkage. Liver- and muscle-specific epigenetic annotations are represented in blue and green, 

respectively, and VEP annotations in black. (E) Odds ratio and associated -log10 P-values from a Fisher’s exact 

test of the enrichment of QTLs from PigQTLdb broad trait categories within each grouping of annotation categories: 

tissue-agnostic VEP annotations (top), liver-specific (middle) and muscle specific (bottom) epigenetic annotations. 

OCR: open chromatin regions; UMR: unmethylated regions: LMR: lowly methylated regions; REG: predicted 

regulatory variant; NSC: predicted nonsynonymous coding variants; dpf: days post fertilization.  

 

 

To evaluate the extent to which these annotations colocalized with previously identified 

variants of interest in GWAS of pig traits (Figure 3E), we then tested each category for 

overrepresentation of curated QTLs for high-level trait categories (Meat and Carcass Traits, 

Health Traits, Exterior Traits, Production Traits and Reproduction Traits) identified in the 

PigQTLdb (Hu, Park, and Reecy 2021). The distribution of QTLs for each high-level trait 

category across chromosomes is shown in Supplementary Figure 4. Our results suggest that 

there is little overlap between LMR variants and previously identified QTLs in both liver and 

muscle; similarly, the variant effect prediction categories (REG, NSC) did not show strong 

enrichment. However, the remaining tissue-specific epigenetic categories were found to be 

highly enriched in PigQTLdb QTLs, supporting the biological relevance of these categories 
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with respect to the genetic architecture of complex traits. A complementary analysis of the 

enrichment results of each high-level QTL trait category for annotations is shown in 

Supplementary Figure 5. 

 

2.4 eQTL mapping is enriched in pig trait QTLs when guided by functional annotations 

in muscle and liver  

We next sought to evaluate the impact of leveraging predicted variant effects and tissue-

specific epigenetic annotations to prioritize variants in genomic prediction models fit for each 

breed independently. As previously noted, these annotations reflect partially redundant prior 

information (Figure 3B), where SNPs may be simultaneously assigned to one or more 

categories. The annotation-agnostic BayesR genomic prediction model (Erbe et al. 2012), 

which is based here on a prior five-component mixture model (null, very small, small, medium 

or large SNP effects), was recently extended in the BayesRCπ model (Mollandin et al. 2022) 

by incorporating complex overlapping variant annotations through a prior distribution. For both 

BayesR and BayesRCπ, eQTL mapping can be performed by ranking SNPs according to their 

estimated posterior variance (see Material and Methods). 

 

One measure of the biological pertinence of highly ranked SNPs is the enrichment of known 

QTLs among those with large estimated posterior variances (Supplementary Figure 6). When 

investigating the distribution of gene set enrichment analysis (GSEA) results for each 

PigQTLdb trait across the 10 target genes and 3 learning breeds for each tissue, we remark 

significantly stronger enrichment of known QTLs for the annotation-aware BayesRCπ model 

as compared to the annotation-agnostic BayesR model in both tissues (Figure 4A;  

Kolmogorov-Smirnov test, P = 2.5 x 10-16 and P = 2.3 x 10-9 for liver and muscle, respectively). 

When specifically considering the number of scenarios (10 target genes x 3 learning breeds x 

5 PigQTLdb broad trait categories) where statistically significant enrichments were observed 

among highly ranked SNPs (Figure 4B), we remark that BayesRCπ generally leads to as many 

or more high-level trait categories with significant enrichments as compared to BayesR, with 

the exception of the Exterior traits in liver. In particular, in both tissues considerably more 

scenarios with significant QTL enrichments are observed for Reproduction and Meat and 

carcass traits when using annotations, and for Health traits in liver. Detailed results for each 

of the individual PigQTLdb traits with significant enrichment among estimated posterior 

variances are shown in Supplementary Tables 3 and 4 (BayesRCπ and BayesR, respectively).  

 

We similarly investigated QTL enrichments among high-level trait categories in each tissue for 

each gene individually (Figure 4C). The distribution of enrichment P-values for BayesRCπ 

estimated posterior variances across scenarios (learning breeds x PigQTLdb trait within each 

high-level category) reveals an enrichment of Health QTLs among IGF2 eQTLs in liver, as well 

as of Meat and carcass QTLs among PRKAG1 eQTLs in both liver and muscle. Taken 

together, these results suggest that biologically relevant QTLs for a variety of trait categories 

are enriched in relevant tissues when using an annotation-guided genomic prediction model. 

We thus focus the remainder of this work on results from the BayesRCπ model.  
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Figure 4. Guiding eQTL mapping of gene expression in muscle and liver with functional annotations.(A) 

Density plot of -log10 P-values for the enrichment of QTLs among estimated posterior variances for BayesR (grey) 

and BayesRCπ (orange) in each tissue across all scenarios (genes, learning breeds). (B) Number of scenarios 

(genes, learning breed) with significant enrichments (P-value < 0.05) in QTLs for different categories of pig traits 

based on estimated posterior variances for BayesR (grey) and BayesRCπ (orange). (C) Distribution (across 

learning breeds and individual traits) of -log10 P-values corresponding to the enrichment of QTLs for broad trait 

categories among BayesRCπ posterior variances for each gene within each tissue. In each panel, the dotted 

vertical line corresponds to a P-value threshold of 0.05 for reference. 

 

 

2.5 Predicting expression across breeds is challenging, but not due to differences in 

pig trait QTL enrichments.  

Our results suggest that using predicted variant effects and tissue-specific epigenetic 

annotations leads to a more meaningful eQTL mapping with respect to known QTLs for a 

variety of trait categories (Figure 4). We next sought to evaluate whether these annotations 

were similarly useful for performing genomic predictions of gene expression across breeds. 

To assess the BayesRCπ prediction portability across breeds, we first learned model 

parameters on each breed individually and subsequently predicted gene expression values 

for the remaining two breeds (10 target genes x 3 learning breeds x 2 tissues, with the 

exception of LEPR with only liver-specific expression). 

 

Globally, Spearman correlations between predicted and observed gene expression tended to 

be modest across genes for each learning-validation breed pair and quite variable across 

genes, with a maximum of 0.1561 on average (standard deviation = 0.228) when learning on 
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LW and validating on LD in liver, and a minimum of 0.0173 (standard deviation = 0.240) on 

average when learning on LW and validating on DU in liver (Figure 5A). Given the strong 

genetic distinctness of DU compared to LD and LW (Figure 2A), it is somewhat surprising that 

these global trends do not align with the expectation of systematically worse performance for 

learning-validation breed pairs including DU. However, these global average trends do mask 

the considerable variability in prediction quality among genes for each tissue and among 

learning-validation breed pairs (Figure 5B). For example, HUS1 has very strong predictive 

performance for across breeds predictions in both tissues (ranging from 0.373 to 0.791), in 

particular for muscle, regardless of the pair of breeds used for learning and validation. At the 

other extreme, SUPT3H in muscle has negative validation correlations (ranging from -0.219 

to -0.058) for all combinations of learning and validation breeds. Most genes are intermediate 

to these two cases, with no evident pattern revealing systematically advantageous or 

disadvantageous choices for learning and validation breed. 

 

Expression predictions across breeds thus remain challenging despite the use of relevant 

annotations (Figure 3) as prior biological information, which is perhaps to be expected given 

the genetic and transcriptomic separation of these three breeds (Figure 2A and B) and the 

variability inherent in gene expression across breeds (Figure 2C and D). To investigate 

whether part of this difficulty could be explained by breed-specific PigQTLdb QTL enrichments 

among estimated posterior variances, we examined GSEA results across genes for each 

learning breed (Figure 5C). Although some variability can be observed across breeds, we do 

not observe any systematic breed-specific trends. Similarly, we sought to determine whether 

marked differences in inferred genetic architecture could play a role by investigating the 

distribution of correlations between sliding windows of cumulative estimated posterior 

variances for each pair of breeds (Figure 5D). Generally high correlations (> 0.90) were 

observed regardless of the pair of learning and validation breeds, although those including DU 

tended to be lower than that of LD and LW. Similar results were observed when estimating 

the correlation between individual rather than window-based estimated posterior variances 

(Supplementary Figure 7). Taken together, these results suggest that the difficulty of across 

breeds expression prediction is not linked to breed-specific annotation differences. 
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Figure 5. Predictions of expression in liver and muscle across breeds. (A) Heatmap of Spearman correlations 

from BayesRCπ for each combination of learning and validation breed within each tissue, averaged across genes. 

Grey boxes along the diagonal correspond to cases where the learning and validation data are the same. (B) 

Individual Spearman correlations by gene for each tissue and each combination of training and validation breed 

(indicated by different colors and shapes). The vertical dotted line indicates 0 as a reference point. (C) Boxplots 

(across genes and learning breeds) of -log10 P-values for the enrichment of broad trait QTLs per breed. DU=Duroc 

(red); LD=Landrace (green); LW=Large White (blue). (D) Distribution (across genes) of the correlations between 

window-based posterior variance estimates for each pair of learning breeds.  

 

2.6 Annotation-driven eQTLs for IGF2 expression in liver colocalize with stage-specific 

epigenetic marks and cholesterol QTLs. 

Finally, we investigated in greater detail the role played by the predicted variant effects and 

tissue-specific epigenetic annotations in the eQTL mapping for a specific case study. Our 

previous results highlighted the strong enrichment of Health QTLs among BayesRCπ 

estimated posterior variances in liver for IGF2, which is located on chromosome 2 (Figure 4C). 

For IGF2 liver expression, the Health trait with the most significant enrichment in both the DU 

and LD breeds (Supplementary Table 3) was LDL cholesterol (Chen et al. 2013); in the case 

of DU, a highly ranked SNP with a large posterior variance and previously identified as being 

associated with LDL cholesterol corresponded to chr2:50750725 (rs81359856; Figure 6A). 

The distribution of genotypes for this SNP in each breed (Figure 6B) unsurprisingly reveals an 

association with IGF2 expression in DU, notably higher expression associated with the AA 

homozygote. A similar but less marked trend is seen for this SNP in the LD breed, whereas 

only a small frequency of AA homozygotes at this locus are observed in LW.  

 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 11, 2025. ; https://doi.org/10.1101/2025.03.05.641618doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?j3TlSD
https://doi.org/10.1101/2025.03.05.641618
http://creativecommons.org/licenses/by-nc/4.0/


13 

We next examined the colocalization of breed-specific eQTLs (based on estimated posterior 

variances) for IGF2 liver expression with the predicted variant effect and tissue-specific 

annotations as well as the PigQTLdb high-level trait QTLs in a 1Mb window around this leading 

SNP (Figure 6C). Although some similarities can be seen in the genetic architectures identified 

for each breed from annotation-guided genomic prediction, breed-specific regions are indeed 

evident despite the use of a common set of annotations, in line with the results shown in Figure 

5D. Similar conclusions can be drawn from chromosome-wide Manhattan plots of the window-

based cumulative posterior variances for IGF2 in both liver (Supplementary Figure 8) and 

muscle (Supplementary Figure 9), as well as in the 1Mb window directly surrounding IGF2, 

rather than around the leading SNP from the LDL cholesterol enrichment analysis 

(Supplementary Figure 10). By investigating the physical positions of each annotation as well 

as those of known PigQTLdb QTLs, we remark interesting overlaps between mapped eQTLs 

within each breed; for example, variant chr2:50750725 (rs81359856), which had a large 

posterior variance in DU, corresponding to a known Health QTL (Figure 6C, middle panel), is 

also annotated as being LMR at 30 dpf as well as UMR at 70 dpf (Figure 6C, bottom panel). 

As another example, the top ranked SNP for IGF2 liver expression in DU in this window 

(chr2:51256286; rs341162083) is annotated as OCR at all three developmental stages (Figure 

6C). Overall, the proportion of medium- to large-effect variants identified within each 

annotation category (Figure 6D) supports the biological relevance of the NSC predicted variant 

effect category as well as the accessible and unmethylated regions in early development (30 

and 70 dpf), with early development LMRs and predicted regulatory variants showing weaker 

enrichment in such effects; similar results are observed across the three breeds.  
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Figure 6. Annotation-guided eQTL mapping for IGF2 expression in liver. (top) Position of IGF2 and density of 

SNPs (grey) on chromosome 2, with the region visualized in panel C highlighted in black. (A) Enrichment plot for 
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cholesterol QTLs from PigQTLdb based on posterior variances for liver IGF2 expression in the DU breed. (B) 

Boxplots of top-ranked DU variant for cholesterol enrichment (chr2:50750725, panel A) in DU, LD and LW. (C) 

Neighborhood +/- 1 Mb around variant chr2:50750725, a highly ranked variant for IGF2 expression in liver. 

Estimated posterior variances of effects for each genetic variant in the window are shown in the middle panel for 

each learning breed (DU=Duroc: LD = Landrace; LW = Large White). The bottom panels indicate the position of 

QTL categories from PigQTLdb and of predicted variant effect annotations and liver-specific epigenetic annotations 

(circles). The position of variants chr2:50750725 and chr2:51256286 are indicated with a dotted line, and 

annotations located at this positions are highlighted with diamonds. (D) BayesRCπ frequency of VEP and liver-

specific epigenetic annotations among medium (lighter shading) or high (darker shading) effect SNPs for each of 

the three learning breeds. The position on chromosome 2 of IGF2, the density of markers, and the region presented 

in panel C are highlighted in the karyotype at the top of the figure. 

3. Discussion 

In this work, we used predicted variant effects and tissue-specific epigenetic marks from early 

developmental stages as informative prior annotations to guide genomic prediction models of 

liver and muscle gene expression in three commercial pig breeds displaying considerable 

genomic and, to a lesser extent, transcriptomic heterogeneity (Figure 2). Whole genome 

sequencing and RNA sequencing data respectively provided high-resolution genotypes and 

an intermediate molecular phenotype to construct predictive models for each breed. We 

focused on a target subset of 10 genes based on a previous eQTL analysis (Crespo-Piazuelo 

et al. 2023) and prior knowledge of the pertinence of epigenetic regulatory mechanisms. 

Tissue-specific epigenetic annotations during early development (early and late 

organogenesis, newborn) were shown to be enriched in previously identified QTLs of complex 

traits, thus supporting the pertinent biological signal therein (Figure 3). A model directly 

incorporating these annotations was shown to improve interpretability of eQTL mapping, as 

measured by the over-enrichment of QTLs of high-level trait categories among variants with 

large estimated posterior variances, in comparison to prediction based on genomic sequence 

alone (Figure 4). However, annotation-guided prediction models did not systematically lead to 

strong performance when performing predictions across breeds. Our results suggest that the 

challenge of porting predictions across breeds here is more likely to be linked to differences 

in genetic architectures rather than disparities in the pertinence of annotations (Figure 5). 

Similar challenges have been observed for the prediction of gene expression across human 

populations (Keys et al. 2020).  

 

Despite similarities in highly prioritized genomic regions across breeds, differences in linkage 

disequilibrium, allele frequency, and fixed mutations due to intensive selection or drift 

complicate prediction across breeds even when incorporating relevant annotations to better 

target potential causal mutations. For example, around IGF2, a haplotype segregating at low 

frequency in the 1977 LW ancestral population increased to high frequency, with a particularly 

strong increase in a 1.5 Mb segment at the end of the region corresponding to the location of 

the IGF2 gene, where the haplotype was almost fixed (Boitard et al. 2023). The signature 

observed in this region was most likely due to the selection of the quantitative trait nucleotide 

allele that increases muscle growth in pigs. We provided a more in-depth look at the eQTL 

mapping results for IGF2 liver expression, which were strongly enriched for health trait QTLs 

and showed interesting overlap with early development epigenetic marks (Figure 6). IGF2 liver 

expression represents a particularly interesting case study due to its established link with 

hepatic lipid homeostasis (Kessler et al. 2016; Lopez et al. 2018). In addition, the complex 

structure of the IGF2 locus and its effect on growth and fatness traits has been described in 

previous studies, including a trans-epistatic interaction with chromosome 13 for fatness trait 
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QTLs in this region (Tortereau, Sanchez, et al. 2011) as well as a second nearby QTL for pig 

fatness in French LW and Dutch LD based designs (Tortereau, Gilbert, et al. 2011). Our 

annotation-guided prediction model enabled the identification of eQTLs that may be good 

candidates for directly regulating IGF2 expression in different breeds within the same genomic 

region. These results suggest the interest in using functional annotations from several time 

points during early embryonic and foetal life to identify genetic variants in putative regulatory 

regions that affect complex traits in adults, a central point that we sought to address  within 

the European GENE-SWitCH project, which is part of the FAANG initiative (https://www.gene-

switch.eu/).  

 

There are several limitations of this work that are worth noting. First, variability in gene 

expression is both genetically driven as well as linked to complex tissue-specific regulatory 

mechanisms that respond to environmental stimuli, highlighting the challenge of predicting 

gene expression based on genotypes; compounding this difficulty are the modest learning 

sample sizes (n=100) available for each breed. To balance biologically reasonable 

assumptions with computational constraints, we used as explanatory variables in our 

predictive models only chromosome-wide cis-genetic variants; this strategy implicitly assumes 

that trans-variants have a limited impact on gene expression and thus does not capture 

potential long-range regulatory mechanisms. In addition, preprocessing steps for functional 

annotation data as well as the genomic and transcriptomic data are particularly important for 

annotation-guided genomic prediction and eQTL mapping. We have chosen here to reduce 

the number of SNPs in the WGS data by filtering on per-breed minor allele frequency to focus 

on a common set of SNPs across breeds, which is quite  stringent given the modest sample 

sizes in each breed and may ignore potentially important breed-specific variants that have 

been fixed due to selection. Epigenetic annotations were obtained from a different set of LW 

animals with a limited number of replicates, which leaves the possibility that they do not 

completely reflect potential regulatory mechanisms of the DU and LD breeds or that some 

regions have greater within-breed variability than that captured here. In addition, only 

annotations from early developmental stages (30 and 70 dpf, newborn) were used, while the 

tissue-specific expression data used as an intermediate molecular phenotype were collected 

from 6-month-old animals. Predictive models based on gene expression data sampled 

concomitantly to phenotypes were recently shown to improve phenotypic predictions (Perez 

et al. 2022); similarly, it might be reasonable to assume that the most meaningful annotations 

would correspond to those obtained at the stage closest to the sampling time of the expression 

data. However, a more complicated picture emerges from our results. For example, newborn 

UMRs have the highest proportion of medium- and large-effect variants for IGF2 liver 

expression (Figure 6D), closely followed by chromatin accessibility during early and late 

organogenesis.  

 

For future work, although extending this study to the full transcriptome would likely be 

computationally over-demanding, it would be interesting to conduct a comparative analogous 

study for a complementary set of genes. Alternative strategies for constructing prior 

categorization of variants according to epigenetic marks could also be considered. One 

plausible hypothesis would be to consider a category of SNPs in regions characterized by 

changes in methylation or chromatin accessibility between developmental stages, i.e. so-

called regulatory switches, which may represent dynamic regulation mechanisms involved in 

gene expression. In addition, other annotations could prove to be useful, including for example 
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tissue-specific chromatin conformation and histone marks or eQTL signals from PigGTeX 

(Teng et al. 2024); we leave such investigations to future work. 

4. Conclusions 

Genomic prediction models are widely used for the prediction of complex traits or disease risk, 

and they can similarly be used to perform eQTL mapping and prediction of gene expression 

data. We sought to construct predictive models of liver and muscle gene expression in pigs 

using base pair-resolution genotypes for three commercial breeds. We investigated the added-

value of augmenting our predictive models of gene expression with prior annotations of 

polymorphisms based on predicted variant effects and tissue-specific epigenetic marks from 

early development. Our results suggested the utility of these functional annotations for eQTL 

mapping, though they did not systematically lead to strong predictive results across breeds. 

We postulate that this is due to differences in genetic architectures between breeds rather 

than disparities in the pertinence of annotations. 

5. Methods 

 

5.1 Study design.  

Samples from three different tissues (duodenum, liver, and muscle) were collected at 

slaughter from n=300 approximately 6-month-old pigs of three different breeds (Duroc, DU; 

Landrace, LD; Large White, LW), with n=100 animals per breed (Crespo-Piazuelo et al. 2023). 

The DU and LD breeds included data for both sexes (DU, 50 castrated males and 50 females; 

LD, 39 entire males and 61 females), while LW included only entire males. Genomic DNA was 

extracted from blood (DU, LD) or liver (LW), and RNA was extracted from duodenum, liver, 

and muscle. DNA and RNA were then paired-end (2 x 150bp) sequenced using the Illumina 

NovaSeq6000 platform. In the current study, we focus in particular on data arising from the 

liver and muscle. 

 

5.2 Whole genome sequencing data.  

Full details about DNA extraction, sequencing, mapping, and variant calling are available in 

(Crespo-Piazuelo et al. 2023). Briefly, sequencing reads were mapped to the Sscrofa11.1 

reference genome assembly with BWA-MEM (H. Li 2012) and genetic variant calling was 

performed with GATK (McKenna et al. 2010). Further data preprocessing steps were carried 

out using PLINK (v1.07) (Chang et al. 2015) to separate variants by chromosome and breed, 

and to remove variants with any missing calls, a minor allele frequency (MAF) less than 5% in 

one or more breeds (n=100 animals per breed), or fixed heterozygosity in one or more breeds. 

To ensure compatibility, minor allele encoding within breeds was specified to be that of the full 

dataset including all three breeds (n=300).  

 

5.3 Transcriptomics data.  

As above, full details about RNA extraction, sequencing, mapping, and quantification are 

available in (Crespo-Piazuelo et al. 2023). Briefly, RNA sequences were mapped to the 

Sscrofa11.1 reference genome assembly with STAR (Dobin et al. 2013). Gene expression 

was quantified by counting reads aligning to genes using RSEM (B. Li and Dewey 2011) and 

normalized using the trimmed mean of M-values (TMM) approach (Robinson and Oshlack 
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2010), yielding log2 counts per million (CPM) values (Robinson, McCarthy, and Smyth 2010). 

Lowly expressed genes (CPM values < 10/minimum library size in millions) were filtered from 

further analyses. To avoid sex-specific biases, transcriptomic data for the DU and LD breeds 

were subsequently corrected by retaining residuals from a linear regression of sex and an 

intercept on log2 CPM values; as LW animals were all male, their log2 CPM values were 

corrected only for an intercept. Finally, all corrected log2 CPM values were multiplied by 100 

to avoid underflow when estimating model parameters; for brevity, we refer to these as 

expression values throughout the text. 

 

5.4 Targeted subset of genes.  

Our aim was to focus on eQTL mapping and genomic predictions of expression for a subset 

of genes of interest; we particularly sought to identify genes that were strong candidates for 

being regulated by genetic or epigenetic variants. In an earlier study (Crespo-Piazuelo et al. 

2023), an eGWAS identified polymorphisms significantly associated (Bonferonni corrected p-

values < 0.05) with gene expression that were subsequently grouped into expression 

quantitative trait locus (eQTL) regions. Cis-eQTL regions were defined as those found within 

a ±1Mb window around their respective gene, and the remaining eQTL regions were denoted 

as trans-eQTLs. Based on these analyses, a set of 7 expressed genes were identified for 

which top polymorphisms in their respective cis-eQTL regions were shared across multiple 

tissues (duodenum, liver, muscle): CELF2, DET1, HUS1, NUDT22, R3HCC1, SLA-7, and 

SUPT3H. We further identified 3 additional genes that were identified as having cis-signals in 

the eGWAS (Crespo-Piazuelo et al. 2023) and have been previously reported to be 

methylated: IGF2, PRKAG1, and LEPR, the latter of which was expressed only in the liver. 

This set of 10 genes was thus used in our subsequent analyses; a description and summary 

of the previous eGWAS results (Crespo-Piazuelo et al. 2023) for these genes can be found in 

Supplementary Table 1.  

 

Heritability of tissue-specific expression was estimated by fitting a Bayesian reproducing 

kernel Hilbert spaces (RKHS) regression (Pérez and de los Campos 2014) using an 

eigenvalue decomposition of the genomic relatedness matrix based on the centered and 

scaled genetic variants on the respective chromosome for each target gene (2000 iterations 

burn-in, followed by 12000 iterations), and calculating the ratio of total additive genetic to total 

variance. Within-breed learning quality was assessed using the Bayesian RKHS model by 

calculating the Spearman correlation between estimated and true gene expression values on 

the learning data for each breed.  

 

5.5 Tissue-specific epigenetic annotations.  

Post-mortem samples were harvested from pig embryos at early organogenesis (n=4 pools at 

30 days post-fertilisation; dpf) and late organogenesis (n=4 individuals; 70 dpf) as well as in 

newborn LW piglets (n=4 individuals; NB). Note that these samples were independent from 

those used for the whole genome sequencing and transcriptomics assays described above. 

We focused on epigenetic annotations generated within each of the aforementioned 

developmental stages in liver and muscle for two different functional genomic assays; these 

data are indexed and freely available on the GENE-SWitCH project page of the FAANG Data 

portal (https://data.faang.org/projects/GENE-SWitCH).  
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First, we considered methylation profiling by whole genome bisulfite sequencing (WGBS) 

assays for n=1 pool or individual at each developmental stage; note that the remaining n=3 

pools or individuals were profiled by Reduced Representation Bisulfite Sequencing (RRBS) 

and were not considered here. Genomic regions were categorized with a hidden Markov 

model (HMM) as being unmethylated (UMR) or lowly methylated (LMR) in a given tissue 

(Stadler et al. 2011; Burger et al. 2013). Briefly, using the recommended settings for the 

MethylSeekR package, thresholds for segmentation were as follows: (1) coverage of > 10 

reads per site, (2) a q-value < 0.05 for regions, and (3) average DNA methylation < 50% for 

methylome segmentation (de Vos 2023).  

 

Second, chromatin accessibility profiling by assay for transposase-accessible chromatin with 

high-throughput sequencing (ATAC-seq) was used to identify open chromatin regions (OCR) 

in n=4 animals (2 males and 2 females). ATAC-seq reads were processed with the nf-core 

ATAC-seq pipeline (https://nf-co.re/atacseq) version 1.2.1. Briefly, reads were mapped to the 

genome with BWA and open chromatin regions (i.e., broad peaks) were obtained from the 

mapped reads using Macs2. Peaks from all samples were then merged into 336,746 

consensus peaks representing potential regulatory regions, and several quality controls were 

provided in a multiQC report.  

 

5.6 Tissue-agnostic predicted variant effect annotations.  

The Variant Effect Predictor (VEP) tool (Ensembl release 106, Sscrofa11.1 reference genome) 

was used to identify the predicted potential impact of variants (McLaren et al. 2016). Predicted 

effect classes were collapsed into two broad tissue-agnostic annotations as proposed in 

(MacLeod et al. 2016): (1) non-synonymous coding (NSC) variants, corresponding to 

{coding_sequence_variant, frameshift_variant, inframe_deletion, inframe_insertion, 

initiator_codon_variant, missense_variant, splice_acceptor_variant, splice_donor_variant, 

splice_region_variant, stop_gained, stop_lost, stop_retained_variant} and (2) potential 

regulatory (REG) variants, corresponding to {3_prime_UTR_variant, 5_prime_UTR_variant, 

downstream_gene_variant, mature_miRNA_variant, non_coding_transcript_variant, 

non_coding_exon_variant, upstream_gene_variant}. 

 

5.7 Global set of annotations 

Tissue-specific epigenetic annotations (OCR, LMR, UMR) at each of the 3 developmental 

stages (30 dpf, 70 dpf, newborn) were concatenated with non context-dependent predicted 

variant effect categories (REG, NSC). The corresponding genomic intervals were overlapped 

with SNP positions in the WGS data using the GenomicRanges Bioconductor package 

(Lawrence et al. 2013). Any remaining unannotated variants were assigned to a final “other” 

category. The final global set of annotations thus corresponded to a binary matrix with a total 

of 12 annotation categories, with 1’s indicating variants assigned to a particular annotation 

and 0’s otherwise. To explore similarities among the global set of annotation categories, we 

performed a hierarchical clustering of annotation categories using complete linkage and the 

Jaccard distance. 

 

5.8 eQTL mapping and prediction with BayesRCπ.  

A general linear model for genomic prediction can be defined as 

 

𝑦 = 𝜇1𝑛 + 𝑋𝛽 + 𝑒, 
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where here y is the vector of sex-corrected log2 CPM values for a given gene of interest, μ the 

intercept, X the centered and scaled marker matrix, β the vector of SNP effects, e the vector 

of residuals, and e follows a centered multivariate normal distribution with variance covariance 

matrix 𝐼𝑛𝜎𝑒
2.  

In this work we used chromosome-specific genetic variants to simultaneously perform eQTL 

mapping and prediction based on each of the three pig breeds considered. In particular, we 

focus on comparisons between a model based on genomic variants alone with a model 

additionally including biologically relevant categorizations of variants obtained from complex 

and overlapping functional annotation maps; to this end, we respectively make use of BayesR 

(Erbe et al. 2012) and BayesRCπ (Mollandin et al. 2022). Both define prior mixture 

distributions for β to model variants with null to large effects; BayesRCπ further introduces a 

mixture of mixtures prior to disambiguate variants with multiple annotations, as is the case in 

the functional annotation categorizations used here. Given the high resolution of the genomic 

sequencing data used here, prior mixture distributions for genetic effect sizes were defined for 

five components, corresponding to 0, 0.001%, 0.01%, 0.1%, and 1% of the total additive 

genetic variance for both models; otherwise, default parameters were used. Models were fit 

for each combination of gene (10 target genes), tissue (muscle, liver), and learning breed (DU, 

LD, LW). Parameters were estimated using a Gibbs sampler for BayesR and BayesRCπ 

(50,000 iterations, discarding the first 20,000 as burn-in and using a thinning rate of 10).  

 

eQTL mapping was performed using estimates of posterior variances from each model. As 

genotypes are centered and scaled, for both models the posterior variance of SNP i is 

estimated as 𝑉̂𝑖 = 𝛽̂𝑖
2, where 𝛽̂𝑖

2 corresponds to the posterior mean of 𝛽𝑖
2 across iterations after 

burn-in. To account for differences in linkage disequilibrium structures across the three breeds, 

in addition to SNP-specific posterior variances, we also considered window-based posterior 

variances, where values in non-overlapping windows of 1 Kb were summed rather than 

considering estimates for individual SNPs; note that one limitation of such an approach is that 

the number of SNPs summed may not be comparable across windows.  

 

Prediction accuracy across breeds was assessed using the Spearman correlation between 

true and estimated gene expression values in each of the two breeds not used for learning. 

 

5.9 Gene set enrichment analysis. 

The biological relevance of annotation categories as well as estimated posterior variances 

from BayesR and BayesRCπ were assessed based on their co-localization with known QTLs 

in pigs for a variety of pig traits. We made use of the PigQTLdb database (Release 45; 

SusScrofa11.1) to obtain curated cross-experiment results of genotype-phenotype association 

studies for pig traits (Hu, Park, and Reecy 2021). Only QTLs corresponding to SNPs were 

considered for the analysis. Gene set enrichment analyses (GSEA) of individual PigQTLdb 

traits among per-SNP estimated posterior variances were performed using the fgsea 

Bioconductor package v1.24.0 (Korotkevich et al. 2016). Enrichment tests with an adjusted P-

value < 0.05 were considered to be significant. Enrichment analysis results were performed 

for both individual traits as well as for a set of 5 broad trait categories, the latter of which 

correspond to the highest level of the PigQTLdb trait hierarchy (Meat and Carcass Traits, 

Health Traits, Exterior Traits, Production Traits and Reproduction Traits). 
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5.10 Statistical analyses.  

Principal components analysis (PCA) was performed on genomic data from autosomal 

chromosomes (chr1 to chr18) using PLINK v1.09 (Chang et al. 2015) and the –pca flag, with 

per-breed MAF filtering as described above as well as LD-based variant pruning using the --

indep-pairwise flag with a window size of 50 Kb, a step size of 10, and a r2 threshold of 0.10. 

PCA was similarly performed on transcriptomic data for each tissue based on uncorrected but 

scaled log2 CPM values using the mixOmics package v 6.28.0 (Rohart et al. 2017). Fisher’s 

exact test was used to test for the overrepresentation of PigQTLdb QTLs among each 

annotation category. Unless otherwise noted, statistical analyses were performed using R 

v4.4.0. 
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