
Perl One-liner

Philippe Bardou
Cédric Cabau

Table of Content

❖ Introduction
❖ Send data to my Perl one-liner
❖ Store data
❖ Manipulate data
❖ Conditional constructs
❖ Looping constructs
❖ Perl command options
❖ Regex

2

Organisation

Organisation

All the course material (slides, input data, practical exercises, corrections)
is available online:

https://web-genobioinfo.toulouse.inrae.fr/~formation/21_Perl

https://bioinfo.genotoul.fr/index.php/events/onelineperl

3

https://web-genobioinfo.toulouse.inrae.fr/~formation/21_Perl
https://bioinfo.genotoul.fr/index.php/events/onelineperl

Your command lines on steroids…

4

What are you going to learn?

What you should already know?

❖ How to connect to a remote unix server (mobaXterm)?

❖ What a unix command looks like?

❖ How to move around the unix environment?

❖ How to edit a file?

5

wget https://web-genobioinfo.toulouse.inrae.fr/~formation/21_Perl/input.tgz

❖ An unix terminal (mobaXterm)

❖ The set of files available at this URL :

https://web-genobioinfo.toulouse.inrae.fr/~formation/21_Perl

❖ Set up the working environment for the practical sessions :

➢ Create a working directory and move into it

➢ Add the files required for the practical sessions

mkdir Formation_Perl ; cd Formation_Perl

What will you need during the training?

6

https://web-genobioinfo.toulouse.inrae.fr/~formation/21_Perl

Perl’s name

❖ Practical Extraction and Reporting Language
❖ Perl is the language

perl is the compiler
❖ Created by Larry Wall in 1987

Inspired by the C language and the scripting languages sed, awk and
shell (sh)

❖ Perl is an interpreted, versatile language, that is well-suited to
processing textual data. Perl is a general-purpose glue for almost
anything.

❖ Official documentation https://perldoc.perl.org

7

https://perldoc.perl.org

Perl: script or cmd line

8

more hello.pl

print "Hello, World!\n";

perl hello.pl

perl -e 'print "Hello, World!\n";'

Script

Command line

Basic syntax

❖ all statements should end with ;
❖ Perl is case sensitive

Creating a Perl one-liner

our first Perl one-liner

9

perl -e 'print "Hello world!\n";'

perl -le 'print "Hello world!";'

does the same as

Creating a Perl one-liner

10

$ perl -h
Usage: perl [switches] [--] [programfile] [arguments]
 -0[octal] specify record separator (\0, if no argument)
 -a autosplit mode with -n or -p (splits $_ into @F)
 -C[number/list] enables the listed Unicode features
 -c check syntax only (runs BEGIN and CHECK blocks)
 -d[:debugger] run program under debugger
 -D[number/list] set debugging flags (argument is a bit mask or alphabets)
 -e program one line of program (several -e's allowed, omit programfile)
 -E program like -e, but enables all optional features
 -f don't do $sitelib/sitecustomize.pl at startup
 -F/pattern/ split() pattern for -a switch (//'s are optional)
 -i[extension] edit <> files in place (makes backup if extension supplied)
 -Idirectory specify @INC/#include directory (several -I's allowed)
 -l[octal] enable line ending processing, specifies line terminator
 -[mM][-]module execute "use/no module..." before executing program
 -n assume "while (<>) { ... }" loop around program
 -p assume loop like -n but print line also, like sed
 -s enable rudimentary parsing for switches after programfile
 -S look for programfile using PATH environment variable
 -t enable tainting warnings
 -T enable tainting checks
 -u dump core after parsing program
 -U allow unsafe operations
 -v print version, patchlevel and license
 -V[:variable] print configuration summary (or a single Config.pm variable)
 -w enable many useful warnings
 -W enable all warnings
 -x[directory] ignore text before #!perl line (optionally cd to directory)
 -X disable all warnings

Run 'perldoc perl' for more help with Perl.

TP - first steps

❖ Create a working directory and move into it

❖ Add the files required for the practical sessions

❖ First perl commands:

➢ display the perl command help

➢ write your first perl command to display "Hello world!"

11

How to send data
to my Perl one-liner?

12

STDOUT / STDIN

❖ From STDIN

13

echo Hello World | perl -lne 'print'

cat myfile.txt | perl -lne 'print'

for i in Hello World

 do echo $i | perl -lne 'print'

done

From file

❖ By giving a file as a parameter

14

perl -lne 'print' myfile.tsv

How to store data?

15

Data types - Glossary

16

❖ Variable
➢ name
➢ address
➢ value
➢ (type)

❖ (Declaration)

❖ Assignment

❖ Accession

❖ Test

value
(type)

name

address

Data types

17

names: 0 1 2 3 …

user: name age email tel …

$scalar

@array

%hash

name

Scalar

$scalar variable
❖ a place where we can store data
❖ store a single item of data
❖ need a name
❖ starts with $

18

$age = 63; # assigning

$firstname = 'Kristin';

$login = "$firstname-$age"; # accessing

63

Kristin

Escaped sequences and quoting

Escaped sequences
❖ consist of a backslash followed by one character
❖ special espace sequences

➢ \n inserts a new line

➢ \t inserts a tabulation

19

print "$195"; # prints “”

print "\$195"; # prints “$195”

Array

@array variable
❖ an ordered list of scalar values
❖ each value is stored at a specific index
❖ could be sorted
❖ starts with @

20

@fruits = ("apple","orange","grape","pear"); # assigning

@numbers = (23,42,78);

@random_scalars = ("Kristin",63,"Scott Thomas","$login");

fruits: 0 1 2 3 …

apple orange grape pear

Array

@array variable

21

@fruits = ("apples","oranges","grapes"); # assigning

print $fruits[0]; # accessing - prints “apples”

$fruits[2] = "lemons";

print $fruits[2]; # prints “lemons”

print $fruits[-1]; # last element - prints “lemons”

%user = ("name"=>"Kristin",

 "age"=> 63,

 "email"=>"kst@gmail.com"); # assigning

Hash

22

user: name age email tel …

Kristin 63 kst@... 06…

%hash variable
❖ a set of key-value pairs
❖ keys are unique strings

the values can be any scalars
❖ hashes are not sorted
❖ starts with %

Hash

%hash variable

23

$name = $user{"name"}; # accessing

print $user{"age"}; # prints “63”

$user{"tel"} = "01020304"; # assigning

$user{"age"} = 64;

%user=("name","Kristin","age",63,"email","kst@gmail.com");

❖ $_ - is the “default variable” - input space

❖ @ARGV - the command line arguments to your script

❖ $/ - the input record separator, newline \n by default

❖ $. - line number for the last filehandle accessed

Magic variables

24

TP - variables

❖ Write a one-liner Perl command that initializes a scalar variable with "Hello
world!" and then display it

❖ Write a one-liner Perl command that initializes an array variable with three
values : "Hello", "world", "!" and then display "world"

❖ Write a one-liner Perl command that initializes a hash variable with three
keys/values: "name":"YOUR NAME", "age":"YOUR AGE" and then display
"You are truly in the prime of life,YOUR NAME!"

25

How to manipulate data?

26

Arithmetic operators

Arithmetic operators

❖ standard
➢ add +, subtract -, multiply *, divide /

❖ less standard
➢ mod %, exp **

27

$speed = $distance / $time;

$vol = $length * $breadth * $height;

$area = $pi * ($radius ** 2);

$odd = $number % 2;

Arithmetic operators

Shortcut operators : increment, decrement

28

$a = $b = 3;

$a = $a + $b;

can be abbreviated to

$a += $b;

$a++; # same as $a += 1 or $a = $a + 1

$a--;

String operators

String operators

❖ concatenation

❖ shortcut

❖ funny (repetition)

29

$page .= $line; # same as $page = $page.$line

$name = $firstname." ".$name;

$knocking = "toc" x 3; # $knocking is “toctoctoc”

$line = "-" x 10; # $line is “----------”

File test operators

File test operators

❖ does the file exist

❖ is the file a normal file

❖ is the file a directory

30

-f $file

-e $file

-d $file

Some other operators

❖ Range operator ..

❖ Conditional operator COND ? THEN : ELSE

❖ I/O operator <>

31

$value = ($value <= $max) ? $value : $max;

@int = (1..6); # @int is (1,2,3,4,5,6)

$first_line = <STDIN>;

TP - operators

❖ Calculate the price of an item during the sales. Complete the following
line to return the price remaining to be paid after applying a discount
of 10, and 40%
echo 275 | perl ...

❖ Count the number of lines in the fastq file (ERR.fastq) using wc -l
and then use Perl to determine whether the file is valid (correct
number of lines).

32

Builtin functions

❖ can take more arguments than operators
❖ arguments follow the function name
❖ used either with or without parentheses around its arguments
❖ see Perlfunc for a complete list

Functions can return scalar or list (or nothing)

33

$age = 29.75;
$years = int($age);
@list = ("a","random","collection","of","words");
@sorted = sort(@list);
@sorted is ("a","collection","of","random","words")

https://perldoc.perl.org/perlfunc

String functions

❖ chomp removes the last character if it is a newline (\n)
❖ length returns the length of a string
❖ uc, lc, ucfirst, lcfirst allow playing with case

34

$fname = <STDIN>; # echo 'kristin'|perl -e '… '
$len = length($line);
print $len # prints “8”
chomp($fname);
print length($line); # prints “7”
print uc($fname); # prints “KRISTIN”
print ucfirst($fname); # prints “Kristin”

String functions

❖ substr EXPR,OFFSET,LENGTH returns substring from a string

❖ split /PATTERN/,EXPR cut the string on a pattern

35

$str = "Kristin Scott Thomas";
print substr($str,0,7); # prints “Kristin”
print substr($str,8,5); # prints “Scott”
@x = split(/ /, $str);
@x is ("Kristin","Scott","Thomas")

Scalar Context Sensitivity

❖ context refers to the kind of value that is expected
❖ influence how an expression or a function behaves
❖ two main types of context in Perl

➢ list context - Perl gives the list of elements
➢ scalar context - it returns the number of elements in the array

36

$str = "Kristin Scott Thomas";
@x = split(/ /, $str);
$x = split(/ /, $str);
print join(" ", @x); # prints “Kristin Scott Thomas”
print $x; # prints “3”

Array manipulation

❖ push LIST,EXPR add a new
element to the end of an array

❖ pop LIST removes and returns
the last element in an array

❖ unshift, shift do the same
for the start of an array

❖ sort LIST returns a sorted list
❖ join EXPR,LIST takes an

array and returns a string
❖ scalar LIST returns the array

length
37

push(@array, $newlast);

$last = pop(@array);

unshift(@array, $newfirst);

$first = shift(@array);

@sorted = sort(@random);

print join(" ", @line);

$len = scalar(@array);

Hash functions

❖ delete EXPR removes a
key/value pair from a hash

❖ exists EXPR tells you if a key
exists in a hash

❖ keys HASH returns a list of all
the keys in a hash

❖ values HASH returns a list of all
the values in a hash

38

%user = (
 "name"=>"Kristin",
 "age"=> 63,
 "email"=>"kst@gmail.com"
);

delete($user{$email});
exists $user{"age"} ? … : …
@keys = keys(%user);
@keys is ("name","age")
@values = values(%user);
@values is ("Kristin",63)

Some other functions

❖ int(EXPR) returns the integer
portion of EXPR - rounding

❖ q() same as ''

❖ qq() same as ""

❖ grep EXPR,LIST returns
elements for which EXPR is true

❖ system(EXPR) or `EXPR`
executes EXPR as a system cmd

39

print 17/3," ",int(17/3)
prints 5.66666666666667 5

print q(I said, "You said,
'She said it.'");
prints
I said, "You said, 'She said it.'"

my @f = grep(/^a/, @fruits);

print `ps -l $$`;
prints
 PID TTY STAT TIME COMMAND
2189865 pts/43 S+ 0:00 perl -le print `ps $$`

TP - functions

❖ Create an array that contains the first five natural numbers. Print the
array. Create an new array shifting the elements left by one position
(element 1 goes to 0) and setting the first element in the last position.
Print the new array.

❖ Use the 3 tables below to print the favorite shoe color and size per
each family member. Output lines should be in the format:
"Homer wears brown shoes size 12".

40

@family = ("Homer","Marge","Bart");
@shoe_color = ("Marge","blue","Bart","yellow", "Homer","brown");
@shoe_size = ("Bart",8,"Homer",12,"Marge",10)

Conditional constructs

41

For what purpose?

42

❖ Conditional constructs allows us to choose different routes of
execution through the program

❖ This makes for far more interesting programs

❖ The unit of program is a block of code

❖ Blocks are delimited with braces {...}

❖ Blocks are controlled by the evaluation of an expression which could be
true or false

❖ But what is truth?

What is truth?

❖ In Perl, it’s easier to answer the question “what is false?”

➢ 0, '0' (the number or string 0)

➢ '' (the empty string)

➢ undef (an undefined value)

➢ () (an empty list)

❖ Everything else is true

➢ even the string 'false'
43

$x = undef; undef($x);

Comparison operators

Compare two values

❖ equal?

➢ numeric ==, !=

➢ string eq, ne

❖ greater than?

➢ numeric >, <, >=, <=

➢ string gt, lt, ge, le

44

Comparison operators

Combine two or more conditional expressions

❖ EXPR_1 and EXPR_2 - true if both EXPR_1 and EXPR_2 are true

❖ EXPR_1 or EXPR_2 - true if either EXPR_1 and EXPR_2 are true

❖ not EXPR - true if EXPR is false

❖ alternative syntaxes

➢ && means and

➢ || means or

➢ ! means not

45

- if -

First conditional statement

46

if (EXPR) { BLOCK }

if (exists $user{"age"}) {
print "$user{'name'} is $user{'age'} years old\n";

}

Only executes BLOCK if EXPR is true

- unless - negative version of if

First conditional statement

47

unless (EXPR) { BLOCK }

Only executes BLOCK if EXPR is false

More readable version of

if (not (EXPR)) { BLOCK }

Clever way of making one line block code more readable

First conditional statement

48

if (EXPR) { BLOCK }

could be written

BLOCK if (EXPR)

print "Hello you\n" if ($user{"name"} eq "Kristin");
print "My contact list is empty\n" unless %user;

- if - else -

Extended if statement

49

if (EXPR) { BLOCK1 } else { BLOCK2 }

if (exists $user{"age"}) {
print "$user{'name'} is $user{'age'} years old\n";

} else {
print "The age of $user{'name'} is not known\n";

}

If EXPR is true, execute BLOCK1 otherwise execute BLOCK2

TP - conditional statement

50

❖ Using the samples.tsv file and knowing the size of the genome
(2,922,600,443 bp), display the number of samples with coverage <10X,
between 10 and 50X and >50X

❖ How was the header taken into account and why?

Looping constructs

51

- while - repeat the same code

While looping constructs

52

while (EXPR) { BLOCK }

while ($contacts) {
print "I’ve got a friend\n";
$contacts--;

}

Repeat BLOCK while EXPR is true

- for - more complex loop

For looping constructs

53

for (INIT; EXPR; INCR) { BLOCK }

for ($i=0; $i<=$max; $i++) {
print $fruits[$i]."\n";

}

Execute INIT

if EXPR is false, exit loop

otherwise, execute BLOCK, execute INCR and retest EXPR

- foreach - more friendly loop over list

Foreach looping constructs

54

foreach VAR (LIST) { BLOCK }

foreach $fruit (@fruits) {
print "$fruit\n";

}

For each element of LIST

set VAR to equal the element

execute BLOCK

Breaking out of loops

❖ next - jump to next iteration of loop

❖ last - jump out of the loop

❖ redo - jump to start of the same iteration of loop

55

Special code blocks

❖ BEGIN - code block executes immediately

❖ END - code block is executed as late as possible

56

BEGIN { BLOCK }

END { BLOCK }

❖ $_ - is the “default variable” - input and pattern-searching space

❖ @F - autosplit mode -a (splits $_ into @F)

❖ @ARGV - the command line arguments to your script

❖ $/ - the input record separator, newline \n by default

❖ $. - line number for the last filehandle accessed

❖ $a,$b - special package variables when using sort()

Magic variables

57

TP - functions and structures

❖ Read the samples.tsv file, calculate the read length per line with
perl and use the sort and uniq shell commands to get the number
of samples with the same read length.

❖ Same exercise but without using sort and uniq.

❖ Read the samples.tsv file, calculate the average number of reads
and the average number of bases between all samples.

58

The perl command options

59

The perl command options

The perl command has relevant options to write one-liners

❖ -e to enter one line of program
Perl does not look for a file name to execute

❖ -l to
➢ remove the record separator on input
➢ add the record separator to all print instructions on output

❖ -n to enclose your program in a loop of the following type

60

while (<STDIN>) { my_program }

The perl command options

The perl command has relevant options to write one-liners

❖ -p to enclose your program in a while loop, like the -n option, and
display the lines automatically

❖ -a to enable the auto-split mode when used with -n or -p and thus an
implicit split command to the @F array is done at the start of the
while loop (an alternate delimiter may be specified using -F)

61

while (<STDIN>) { my_program } continue { print }

while (<STDIN>) { @F=split(' '); my_program }

Quiz perl command options

https://digistorm.app/p/8191099

62

https://digistorm.app/p/8191099

Regex - enter the
wonderful world of
regular expressions

63

Regular expressions

Allow you to search patterns that match strings

The simplest regex is a simply

Expression like this are useful in conditionals

The sense of the match can be reverse by using the !~ operator

64

"Hello world" =~ /World/;

print "Matches" if $string =~ /World/;

print "No match" if $string !~ /World/;

Regular expressions

To specify where the regex should match we would use the anchor
metacharacters ^ and $

The ^ means match at the beginning of the string

The $ means match at the end of the string

65

print "Start with Hello" if $string =~ /^Hello/;

print "Ends with World" if /World$/;

Character classes

A character class allows a set of possible characters, rather than just a
single character. Character classes are denoted by brackets []

66

/[bcr]at/; # match “bat”, “cat” or “rat”
/[yY][eE][sS]/; # match “yes” case-insensitive
/yes/i; # match “yes” case-insensitive (modifier)

The special character - acts as a range operator

/item[0-9]/; # match “item0” or … or “item9”
/[0-9a-f]/i; # match a hexadecimal digit

Character classes

The special character ^ in the first position of a class denotes a negated
character class - matches any character but those in the brackets

Both [] and [^] must match one character or the match fails

67

/[^a]at/; # “aat” or “at” but “bat”,“cat”,“1at”,“ at”,…

/[^0-9]/; # match non-numeric character

/[a^]at/; # match “aat” or “^at”; “^” is ordinary

Character classes

Perl has several abbreviations for common character classes

❖ \d is a digit character [0-9]
❖ \D is a non-digit character [^\d]
❖ \s is a whitespace character [\t\r\n\f]
❖ \S is a non-whitespace character [^\s]
❖ \w is a word character [0-9a-zA-Z_]
❖ \W is a non-word character [^\w]
❖ the dot . matches any character but [^\n]

68

Character classes

Abbreviations can be used both inside and outside of character classes

69

/\d\d:\d\d:\d\d/; # match a hh:mm:ss time format

/\d\s/; # match any digit or whitespace character

/..rt/; # match any two chars, followed by “rt”

/end\./; # match “end.” (escape character)

/end[.]/; # again match “end.”

Quantifiers

Quantifiers can be used to specify the number of occurrences
Without quantifier, the number of times to match is exactly one

❖ * means zero or more
❖ + means one or more
❖ ? means zero or one
❖ {3} means exactly 3
❖ {3,6} means between 3 and 6
❖ {3,} means at least 3 and {,3} means at most 3
❖ /\d{4}:\d\d:\d\d/ - matches a YYYY:MM:DD date format

70

Quantifiers

If you want to match the minimum number of times possible, follow the
quantifier with a ?, this will change just the "greediness" not the meaning

71

"a,b,c,d,e" =~ /,.+,/; # match “b,c,d”

"a,b,c,d,e" =~ /,.+?,/; # match “b”

Use parentheses for grouping

The grouping metacharacters () allow a part of a regex to be treated as a
single unit. Parts of a regex are grouped by enclosing them in ()

But if we want to make the decimal part optional, we need to group the
dot and the numbers that follow

72

/[+-]?\d+\.\d+/; # match a signed float e.g -1.75

/[+-]?\d+(\.\d+)?/ # match any rational number

Matching this or that

❖ We can match different strings using the alternation metacharacter |

❖ Again, we can use parentheses for grouping

73

/cat|dog|bear/; # match “cat” and “cat and dog”
/^(cat|dog|bear)$/; # match “cat” not “cat and dog”

Extracting matches

❖ The grouping metacharacters () also allow the extraction of the parts
of the string that matched

❖ For each grouping, the part that matched inside goes into special
variables $1, $2, $3, etc

74

extract time in hh:mm:ss format
$time =~ /(\d\d):(\d\d):(\d\d)/;
($hour,$min,$sec) = ($1,$2,$3)

Search and replace

❖ Substitution is performed using s/PATTERN/REPLACEMENT/
❖ The replacement replaces whatever is matched with the regex

75

$x =~ "'Good cat!'";
$x =~ s/cat/dog/; # $x is “'Good dog!'”
$x =~ s/'(.*)'/$1/; # $x is “Good dog!”

$x = $y = "4 by 4";
$x = s/4/four/; # $x is “four by 4”
$y = s/4/four/g; # $y is “four by four” (modifier)

❖ Use the global modifier to replace all occurrences of the regex

❖ $_ - is the “default variable” - input and pattern-searching space

❖ @F - autosplit mode -a (splits $_ into @F)

❖ @ARGV - the command line arguments to your script

❖ $1,$2,… - subpatterns from capturing parentheses of a pattern match

❖ $/ - the input record separator, newline \n by default

❖ $. - line number for the last filehandle accessed

❖ $a,$b - special package variables when using sort()

Magic variables

76

Quiz Perl regex

https://digistorm.app/p/8883214

77

https://digistorm.app/p/8883214

Learn / test your regex

78

https://regexr.com/

❖ Documentation

❖ Build your regex

❖ Enter text to test

❖ Explain your regex

❖ List all matches

https://regexr.com/

TP - regex

❖ Write a regular expression to check whether a DNA sequence begins
with ATG and ends with TAA, TAG or TGA

❖ Write a regular expression to check the validity of an email address

79

TP - Build cmd files to run on a cluster

❖ Write a Perl one-liner that generates a bwa command file from the
samples.tsv file (e.g. bwa mem REF.fa ERR3281353_1.fastq.gz
ERR3281353_2.fastq.gz | samtools sort - > ERR3281353.bam)

80

TP - Stat on GFF

❖ Write a Perl one-liner that counts and displays the number of genes for
each biotype in the GFF file

81

TP - Stat on GFF

❖ Write a Perl one-liner which, per chromosome, counts the total number
of genes, the number of genes on each strand, and calculates the
average length of these genes in the GFF file

82

TP - Correspondence table

83

❖ Write a Perl one-liner which adds the column sample_alias of the file
sample_names.tsv to the file samples.tsv.

❖ Write a Perl one-liner that replaces the sample_accesssion column
in the samples.tsv file with the sample_alias column in the
sample_names.tsv file.

