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Abstract

To efficiently solve exact discrete optimization problems,
branch and bound algorithms require tight bounds. In con-
straint programming, for optimization, soft arc consistencies
typically derive much stronger bounds than those offered by
domain or bound consistencies applied to a cost variable. The
reason is that soft local consistencies exchange marginal cost
information between variables whereas domain consistencies
rely only on shrinking domains, which is less informative.
However, CP solvers equipped with soft arc consistencies
have so far offered limited support for efficient processing
of global constraints.
In this work, we show how we can efficiently enforce soft
local consistency over the ALLDIFFERENT constraint, re-
lying on algorithms for the Linear Assignment Problem
(LAP). We implement this propagator in toulbar2, the state-
of-the-art weighted CP solver exploiting soft local consis-
tencies for bounding. We show that, equipped with this
new propagator, toulbar2 outperforms state-of-the-art domain
consistency-based CP as well as integer programming solvers
for the Quadratic Assignment Problem and shows better per-
formance for miniCOP instances of the 2024 XCSP competi-
tion with ALLDIFFERENT constraints.

Introduction
Combinatorial optimization is a problem that has been at-
tacked with techniques from many different disciplines,
from inexact methods like metaheuristics and local search,
to exact mathematical programming or constraint program-
ming methods. In the context of constraint programming,
there are two conflicting approaches: using a CP solver on
a model using soft global constraints, or using a Weighted
Constraint Satisfaction Problem (WCSP) solver on a model
expressed as a graphical model such as a Cost Function Net-
work (Cooper et al. 2010; Schiex, Fargier, and Verfaillie
1995). The latter approach is very successful in certain appli-
cations, such as resource management (Bensana, Lemaı̂tre,
and Verfaillie 1999), bioinformatics (Simoncini et al. 2015;
Sanchez, de Givry, and Schiex 2008), machine learning
(Zanfir and Sminchisescu 2018), computer vision (Haller
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et al. 2022), and others (Hurley et al. 2016). The reason for
this success is that WCSP solvers use soft consistencies to
compute bounds. These soft consistencies are enforced with
propagation-based algorithms which exchange not only do-
main pruning information, as standard CP techniques do, but
also updates of the unary costs of variables. This deeper
communication between variables leads to stronger lower
bounds and in turn stronger pruning and improved branch-
ing heuristics. Unfortunately, the requirement for this more
involved communication means that until recently, only tab-
ular representations of constraints were practical for WCSP
solvers. The exception was decomposable global constraints
(Allouche et al. 2012). While there were some efforts to inte-
grate global constraints into the WCSP framework (Lee and
Leung 2009), the performance was not sufficient to address
problems that required such global constraints.

Recently, Montalbano et al. (2022), proposed a method
for propagating linear inequalities in WCSP. This method,
based on a new consistency called F∅IC, proved effective
and led to state-of-the-art performance in some domains.

Our Contributions
In this work, we show how to integrate ALLDIFFERENT
constraints in a WCSP solver that uses soft consistencies to
derive bounds. Specifically

• We show how to enforce full zero-inverse consistency
(F∅IC) on a permutation constraint, and how to refor-
mulate a WCSP instance using the primal and dual solu-
tions computed by a solver for the LAP.

• We show how to handle non-permutation ALLDIFFER-
ENT constraints, with strictly more values than variables.

• We implement this algorithm in a state of the art WCSP
solver and demonstrate significant performance improve-
ments in standard benchmarks for quadratic assignment
(QAPLIB) and for COP (XCSP competition).

Related Work
ALLDIFFERENT is one of the most studied global con-
straints in constraint programming. There exist algorithms
that enforce generalized arc consistency for both its hard
version (where the unary costs are all assumed to be 0)



(Régin 1994) and its weighted version (Sellmann 2002;
Claus, Cambazard, and Jost 2020). Additionally there ex-
ist algorithms for generalizations such as cost GCC (Régin
1999), where the bounds on the number of occurrences of
each value can be arbitrary rather than exactly 1 or at most
1. The main difference between our work and these prop-
agators is they can only communicate with the rest of the
problem via domain prunings, i.e., by removing values that
may not appear in any feasible solution or any optimal so-
lution. In our approach, communication occurs through the
unary costs of variables, leading to stronger propagation and
stronger bounds.

The work of Dlask and Savchynskyy (2025) is closest
to our own. They showed how to integrate ALLDIFFER-
ENT constraints in a Block-Coordinate Descent (BCD) al-
gorithm, specifically showing how to find points on the rel-
ative interior of the polytope, which are known to yield bet-
ter performance for such algorithms (Werner, Průša, and
Dlask 2020). This is in contrast to our approach which is a
combinatorial algorithm based on propagation. More impor-
tantly, while BCD algorithms and the related VAC (Cooper
et al. 2008) have demonstrated the ability to obtain stronger
bounds, they are relatively expensive and their use for exact
solving has remained limited to a preprocessing step. To our
knowledge, no branch-and-bound solver uses them for com-
puting bounds during search despite efforts to do so (Nguyen
et al. 2014; Trösser, De Givry, and Katsirelos 2020).

Background
Cost Function Networks
A Cost Function Network (CFN) P is a triple ⟨V,D,C⟩,
where V is a set of variables 1, . . . , n, D is a set of domains,
where Di is a function mapping variable i to its domain and
C is a set of cost functions. An assignment I to a set of vari-
ables S is a mapping from each variable i ∈ S to a value
in Di. Let ℓ(S) = Πi∈SD

i denote the set of all possible as-
signments for S. An assignment is complete if S = V , oth-
erwise it is partial. The projection of I to S′ ⊂ S is denoted
I[S′]. Each cost function cS ∈ C, S ⊆ V , maps each assign-
ment to the variables in S to N≥0 ∪ {⊤}, where ⊤ indicates
infeasibility1. We say that S is the scope of cS . The cost of
a complete assignment I is cP (I) =

∑
cS∈C cS(I[S]). To

simplify notation, we write ci instead of c{i} for cost func-
tions with unary scope and cij instead of c{i,j} for functions
with binary scope. We also assume that there always exists
ci for each i ∈ V and a cost function with empty scope, c∅,
which represents a constant in the objective function. All
costs being non-negative, c∅ is a lower bound for the cost
of any assignment to the variables of the CFN. Finally, we
assume there is at most one cost function for a given scope2.
The Weighted Constraint Satisfaction Problem (WCSP) is
the problem of finding an assignment with minimum cost. It
is NP-hard (Cooper, de Givry, and Schiex 2020).

1It is possible to use rationals instead of integers, but dealing
with integer costs makes exact computation simpler.

2This assumption does not necessarily hold in practice and is
only used to simplify notation, so it does not otherwise affect any
of the algorithms discussed.

Algorithm 1: MOVE(S1, S2, I1, α): Move α units of cost be-
tween tuple I1 of scope S1 and all tuples I2 that extend I1 in
scope S2

Require: scopes S1 ⊂ S2; tuple I1 ∈ ℓ(S1); transfer cost
α

1: cS1(I1)← cS1(I1) + α
2: for all I2 ∈ ℓ(S2) such that I2[S1] = I1 do
3: cS2(I2)← cS2(I2)− α
4: end for

In order to compute lower bounds for WCSPs, we can use
very fast static techniques (Dechter 1999) or slightly slower
dynamic techniques based on propagation, called soft con-
sistencies (Cooper et al. 2010; Schiex 2000). The latter have
proved more effective for branch-and-bound solvers (Hurley
et al. 2016), so we focus on them here.

A crucial notion for these bounds is reformulation.
Definition 1 (Equivalence and Reformulation). Let P =
⟨V,D,C⟩ , P ′ = ⟨V,D,C ′⟩ be CFNs, then P and P ′ are
equivalent if cP (I) = cP ′(I) for all I ∈ ℓ(V ). If addition-
ally, the multiset of scopes of P and P ′ are identical, i.e.,
⊎{S | cS ∈ C} = ⊎{S | cS ∈ C ′}, then P and P ′ are
reformulations of each other.

It has been shown (Kolmogorov 2006) that all such refor-
mulations can be derived as a set of MOVE operations, an
example of equivalence preserving transformation (Cooper
et al. 2010).

There are three particular cases of MOVE that are of inter-
est in this paper:
• PROJECT-C0(S, α) = move(∅, S,∅, α), where α > 0.

In this case, we move cost from cost function cS directly
to c∅, increasing the lower bound. If |S| = 1, we call this
UNARYPROJECT.

• PROJECT(S1, S2, a, α) = Move(S1, S2, a, α), where
|S1| = 1, S2 ⊃ S1, α > 0, which moves cost from a
non-unary cost function to the value a of a unary cost
function.

• EXTEND(S1, S2, a, α) = Move(S1, S2, a,−α), where
|S1| = 1, S2 ⊃ S1, α > 0, which moves cost from the
value a of a unary cost function to a non-unary cost func-
tion.

The most important soft consistencies for this work are
node consistency and full ∅-inverse consistency.
Definition 2 (Node consistency). A CFN P is Node Consis-
tent (NC) (Larrosa 2002) if for every variable i ∈ V there
exists a value a ∈ Di such that ci(a) = 0 and for every
value b ∈ Di, c∅ + ci(b) < ⊤.

Enforcing NC allows to eliminate values that are guaran-
teed to be infeasible with respect to unary cost functions,
while ensuring a zero-cost local assignment exists by ap-
plying UNARYPROJECT, resulting in increased lower bound
c∅. This inference mechanism can be generalized to non-
unary cost functions through ∅-inverse consistency (∅IC).
Definition 3 (∅-Inverse Consistency). A CFN is ∅-Inverse
Consistent (∅IC) (Zytnicki et al. 2009) if for every cost func-
tion cS ∈ C there exists I ∈ ℓ(S) such that cS(I) = 0.



Similarly to NC, the existence of a zero-cost local assign-
ment can be guaranteed by shifting costs from every cost
function cS ∈ C to c∅ using PROJECT-C0. This definition
can be strengthened by integrating unary cost functions.
Definition 4 (Full ∅-Inverse Consistency). A CFN is Full
∅-Inverse Consistent (F∅IC) (Montalbano, de Givry, and
Katsirelos 2022) if for every cost function cS ∈ C there
exists I ∈ ℓ(S) such that cS(I) +

∑
i∈S ci(I[{i}]) = 0.

State of the art solvers for WCSP by default enforce a
variant of arc consistency, called Existential Directional Arc
Consistency (De Givry et al. 2005). We do not give a full
definition here for lack of space, but we note that it sub-
sumes F∅IC. It is, however, challenging to generalize to
non-binary constraints (Lee and Leung 2009).

Linear Programming (LP) and Linear Assignment
Problem (LAP)
A linear program is a problem of the form min cTx : Ax =
b, x ∈ Rn

≥0, where x is a vector of n non-negative ratio-
nal variables, c is a vector in Rn, b is a vector in Rm and
A is a matrix in Rn×m. The problem max bT y : AT y ≤
c, y ∈ Rm, where y is a vector of m rational variables, is
called the dual problem. Linear programs can be solved in
polynomial time (Vaidya 1989). Given a linear program P ,
we write opt(P ) for the value of its optimum, and P ′ for
the dual. For any feasible solution of P ′, i.e., for any ŷ such
that AT ŷ ≤ c, it holds that bT ŷ ≤ opt(P ). Similarly, for
any feasible x̂, cT x̂ ≥ opt(P ′). The theorem of strong dual-
ity states that opt(P ) = opt(P ′), i.e., for optimal solutions
(x∗, y∗), cTx∗ = bT y∗. Due to the strong mathematical re-
lationship between the primal and dual problems, analyzing
the dual provides rich information about the primal. In par-
ticular, given a dual solution ŷ, the reduced cost of primal
variable xi can be computed as the slack of the correspond-
ing dual constraint: rcŷ(xi) = ci − AT

i ŷ. In a minimization
problem, if ŷ is optimal, the reduced cost of a primal vari-
able xi indicates by how much coefficient ci would need to
decrease before the optimal solution changes. Reduced costs
are always non-negative.

The Linear Assignment Problem (LAP) is the following
LP:

min
∑

i,j∈[1,n]

cijxij s.t. (1)

∑
j∈[1,n]

xij = 1 ∀i ∈ [1, n] (2)

∑
i∈[1,n]

xij = 1 ∀j ∈ [1, n] (3)

where n is an integer and cij are given costs. The LAP can
be seen as a graph problem. Consider a complete bipartite
graph G = V ∪ U,E, with E = V ×U . A perfect matching
of G is a set of edges M ⊆ E such that exactly one edge
in M is adjacent to any vertex in V and to any vertex in
U . Given a function c : E → R≥0, the cost of a perfect
matching M is c(M) =

∑
e∈M c(e). LAP is equivalent to

finding a perfect matching of minimum cost, where an edge
(i, j) is in the matching if and only if xij = 1.

When the sets V and U have different sizes n < m,
the corresponding problem is called the rectangular LAP
(RLAP) (Bijsterbosch and Volgenant 2010):

min
∑

i∈[1,n]
j∈[1,m]

cijxij (4)

s.t. ∑
j∈[1,m]

xij = 1 ∀i ∈ [1, n] (5)

∑
i∈[1,n]

xij ≤ 1 ∀j ∈ [1,m] (6)

The difference here is that we do not require all vertices of
the larger set to be used in an edge of the matching, hence
constraints (6) are inequalities.

For both LAP and RLAP, there exist efficient, practi-
cal, well studied algorithms. LAPJV (Jonker and Volgenant
1987), a variant of the Hungarian algorithm (Kuhn 1955), is
widely regarded as the most efficient exact algorithm for the
LAP (Crouse 2016) and can be easily adapted for the RLAP.

ALLDIFFERENT Constraint
The ALLDIFFERENT constraint over a set of variables S re-
quires that no value is assigned to more than one variable.
One interpretation of it is that it admits maximal matchings
in a bipartite graph where the set V corresponds to variables,
U corresponds to values, and there exists an edge (i, j) if
j ∈ Di. When the number of values is equal to the number
of variables, ALLDIFFERENT corresponds to a LAP with
a constant objective function. When there are more values
than variables, it is an RLAP with a constant objective. The
weighted ALLDIFFERENT constraint has costs associated
with each variable-value. It corresponds to LAP or RLAP
with variable-value costs placed on the edges.

Soft Consistencies for ALLDIFFERENT
We show here how to enforce F∅IC for an ALLDIFFERENT
constraint in WCSP. In order to do so, we first have to model
ALLDIFFERENT as a cost function. Suppose that the scope
of the ALLDIFFERENT constraint is S. The initial cost of
any assignment I ∈ ℓ(S) is:

cS(I) =

{
0 if I[{i}] ̸= I[{j}] ∀i ̸= j, i, j ∈ S
⊤ otherwise

Enforcing F∅IC requires being able to minimize the full
function Cf

S = cS +
∑

i∈S ci. In the general case, once we
compute the minimum of that function, we extend the nec-
essary cost from each unary cost function to cS , so that af-
terwards min cS = minCf

S . Since cS has a non-zero mini-
mum, we can project that cost to c∅ and get an increase in
the lower bound. Note that we do not require the stronger
cS = Cf

S . It is also distinct (neither implies the other) from
Strong ∅IC (Lee and Leung 2009), which requires that all
values have a support with finite cost in the conjunction of
cS and all the unary cost functions.



The difficulty comes from the fact that the EXTEND and
PROJECT-C0 operations may change cS so that it is no
longer a hard constraint. There is no guarantee that tuples
which previously had cost 0 (satisfied the constraint) con-
tinue to have cost 0 after the sequence of EXTEND and
PROJECT-C0 operations. How we address this depends on
whether the constraint is a permutation constraint (as many
values as variables) or not (more values than variables).

When cS is a permutation constraint the problem minCf
S

corresponds exactly to solving an LAP problem, because it
matches the form of a weighted ALLDIFFERENT, which we
showed above is a LAP. We write LAP (S,C) for the LAP
corresponding to the function Cf

S for an ALLDIFFERENT
constraint with scope S and unary cost functions C = {ci |
i ∈ S}.

An interesting feature of the LAP is that it is an LP that
contains only equality constraints. Therefore, the following
textbook theorem holds. We reproduce its proof from the
thesis of Montalbano (2023) for illustrative purposes.
Theorem 1. Let P be an LP of the form min cTx : Ax =
b, x ≥ 0. Let ŷ be a feasible dual solution with cost bT ŷ
and let rcŷ(xi) denote the reduced cost of primal variable
xi given the dual solution y. Then, the following LP P ′ is
equivalent to P : it has the same set of feasible solutions,
and all feasible solutions have the same cost:

P ′ =


min bT ŷ +

∑
i∈[1,n] rc

ŷ(xi)xi

s.t.
Ax = b
x ∈ Rn

≥0

Proof. Since the constraints of both problems are identical,
we only need to show that the objectives are identical, sub-
ject only to Ax = b:

bT ŷ + (rcŷ)Tx = bT ŷ + (c−AT ŷ)Tx =

cTx+ bT ŷ − ŷTAx (7)

Finally, since Ax = b, we have ŷTAx = ŷT b = bT ŷ, so
bT ŷ + (rcŷ)Tx = cTx, as required.

This implies that we can use the reduced costs of the LAP
to reformulate it. Because the LAP is equivalent to ALLD-
IFFERENT and its objective function is linear, we can move
costs from the linear objective of cS back to the correspond-
ing unary cost functions. After these cost moves, cS is again
a hard constraint, i.e., all its tuples have either cost 0 or ⊤.
Therefore, the algorithm for enforcing F∅IC on permuta-
tion constraints is as shown in Algorithm 2.

This algorithm moves maximal cost from the unary cost
functions to the permutation constraint. With these costs,
minimizing cS means solving the corresponding LAP. It
projects the optimum of the LAP to c∅, then it uses re-
duced costs from the dual solution to compute new unary
costs and projects those back to the unary cost functions.
We combine the EXTEND and PROJECT operations into a
single operation in line 3 that extends only the necessary
ci(j) − rcy

∗
(xij). Note that because of Theorem 1 and the

Algorithm 2: PERMUTATION-F∅IC(S): Enforcing F∅IC
on a permutation constraint, i.e., an ALLDIFFERENT con-
straint with as many values as variables.

1: (opt, x∗, y∗) = SOLVE-LAP(S, {ci | i ∈ S})
2: for all i ∈ S, j ∈ Di do
3: EXTEND({i}, S, j, ci(j)− rcy

∗
(xij))

4: end for
5: PROJECT-C0(S, opt)

discussion after it, the combined EXTEND and PROJECT-C0
operations leave the ALLDIFFERENT constraint unchanged,
so each of these operations is constant time (memoizing
changes in unary costs only, as (Cooper et al. 2010), page
27). Its complexity is dominated by solving the LAP, which
is in O(n3).

Example 1. Consider a CFN with 3 variables with 3 val-
ues each, an ALLDIFFERENT constraint over them, i.e.,
S = {1, 2, 3}, and additionally with unary cost functions
c1(1) = 3, c1(3) = 2, c2(1) = 2, c2(3) = 5, c3(1) = 1,
and binary cost function c1,3(2, 1) = 1, c1,3(2, 3) = 1
(we omit unary and binary tuples that have cost 0). When
we enforce F∅IC in the ALLDIFFERENT constraint, we
get the primal solution {X1 ← 2, X2 ← 1, X3 ←
3} with cost 2, which we project to c∅. The reduced
costs, which we use as the new unary costs, are c1(1) =
1, c1(3) = 1, c2(3) = 4, c3(2) = 1, and the rest are
0. We then perform EXTEND({3}, {1, 3}, 2, 1) followed
by PROJECT({1}, {1, 3}, 2, 1). This leaves all values of
X1 with a unary cost of at least 1, so we can perform
UNARYPROJECT({1}, 1), to further increase c∅ to 3. This
demonstrates the strength of the communication of different
cost functions through marginal costs, as it takes the inter-
action of unary costs, the ALLDIFFERENT constraint, and
the binary cost function to increase the lower bound.

Consider now the case where cS is not a permutation con-
straint. Let U = ∪i∈SD

i. One possible approach to propa-
gating it is to add |U |−|S| dummy variables with domain U ,
and propagate it as a permutation constraint. However, there
exist applications where ALLDIFFERENT constraints have
many more values than variables. Adding dummy variables
makes for a larger graph, and also exposes these extra vari-
ables to the WCSP solver, making for a greater overhead.

We show next that it is possible to avoid adding extra vari-
ables. Minimizing Cf

S in this case requires solving an RLAP,
the variant of RLAP where the partitions of the graph have
different sizes. Similarly to LAP, this LP can be solved effi-
ciently, using variants of LAP algorithms. However, it does
not satisfy the conditions of Theorem 1, so Algorithm 2 is
not correct for this case, as the following example shows.

Example 2. Consider an ALLDIFFERENT constraint with 3
variables {X1, X2, X3} and 4 values {1, 2, 3, 4} and sup-
pose ci(1) = ci(2) = ci(3) = 5, ci(4) = 1 for all
i ∈ [1, 2, 3]. The RLAP has optimum 11, by using the
value 4 for one variable and any of the values 1,2,3 for the
other two variables. All reduced costs are 0, so if we use
them to reformulate the problem, i.e., if we set them as the



Algorithm 3: ALLDIFFERENT-F∅IC(S): Enforcing F∅IC
on a general ALLDIFFERENT constraint, i.e., an ALLDIF-
FERENT constraint with more values than variables.

1: (opt, x∗, y∗) = SOLVE-RLAP(S, {ci | i ∈ S})
2: for all i ∈ S, j ∈ Di do
3: ∆i(j)← ∆i(j) + ci(j)− rcy

∗
(xij)

4: EXTEND({i}, S, j, ci(j)− rcy
∗
(xij))

5: end for
6: PROJECT-C0(S, opt)
7: ∆∅ ← ∆∅ + opt

new unary costs of all variable/value pairs, the assignment
X1 = 1, X2 = 2, X3 = 3 will have cost 11, while its cost in
the original CFN is 15. Therefore, reduced costs do not give
a reformulation in the non-permutation case.

Note, however, that it remains safe to project reduced
costs onto unary cost functions. The reason for this is that
reduced costs are always an underestimation of the true
marginal cost, and are additive, i.e., assigning two variables
with non-zero reduced cost increases the lower bound by at
least the sum of the two reduced costs. The only thing that
we lose by going from LAP to RLAP is that the reduced
costs no longer provide a reformulation.

For correctness, a propagator for a non-permutation
ALLDIFFERENT has to compensate for the costs that have
been moved into the constraint and which correspond to
non-unary assignments. We do this in our algorithm by intro-
ducing delta costs, which give for each unary cost ci(j), i ∈
S, j ∈ Di, the balance of cost that has been moved from ci
to cS and from cS to c∅. Using these costs, it is possible to
reconstruct the correct cost for each assignment.

Specifically, the ALLDIFFERENT constraint has a state
associated with it, which is the vector (∆1, . . . ,∆n,∆∅),
where each ∆i and ∆∅ are themselves cost functions.

The propagator maintains the invariant that

cS(I) =

{ (∑
i∈S ∆i(I[{i}])

)
−∆∅ If I |= ALLDIFFERENT

⊤ otherwise

By updating the ∆i and ∆∅ values as costs are moved
from unary cost functions, the propagator maintains this in-
variant, therefore no cost is lost. In Example 2, the entirety
of c1, c2, c3 will be moved to ∆1,∆2,∆3, so that when an
assignment is evaluated, it reports the correct cost.

Additional Considerations
Pruning Values. We can prune values that appear in no
matching using standard techniques (Régin 1994). Follow-
ing Focacci, Lodi, and Milano (1999), we also perform re-
duced cost-based pruning. Once we project the reduced costs
to unary cost functions, NC automatically performs cost-
based variable fixing. It prunes j from Di if c∅+ci(j) ≥ ub.
This is more powerful than reduced cost-based fixing in a
standalone propagator for weighted ALLDIFFERENT: in that
case, we prune j from Di if opt + rcy

∗

i (xij) ≥ ub, but
c∅ ≥ opt, so this condition prunes less often. In Example 1,

if there exists an incumbent with cost 7, we can prune 3 from
D2, because c∅ + c2(3) = 3 + 4 ≥ ub = 7. We cannot do
the same if we use the optimum of the ALLDIFFERENT con-
straint instead of c∅ because opt+ c2(3) = 2+4 < ub = 7.

Incrementality. In general, incrementality for this con-
straint is difficult, as the LAP we solve at each invoca-
tion does not change monotonically. There is however a
very simple technique that eliminates some calls to the LAP
solver: at each invocation, we store the primal and dual so-
lutions. At the next invocation, if those are still feasible,
there is no need to solve the LAP again. We have empirically
found that this improves performance and use it by default.

Experimental Evaluation
We implemented our approach in toulbar2, an open-source
C++ exact WCSP solver. The enforced soft consistencies
are EDAC (De Givry et al. 2005) for table cost functions,
partial F∅IC for linear (Montalbano, de Givry, and Katsire-
los 2022)) and ALLDIFFERENT constraints, applied at every
search node of a hybrid best/depth-first branch-and-bound
search method (Allouche et al. 2015). We compared differ-
ent encodings of ALLDIFFERENT in toulbar2: decomposed
in n(n−1)

2 binary constraints (denoted tb2+binary), decom-
posed in m at-most-one constraints (denoted tb2+KP), using
the Soft-ALLDIFFERENT flow-based implementation (Lee
and Leung 2009) (denoted tb2+salldiff), and our imple-
mentation with LAPJV (denoted tb2+LAPJV). When the
LAP defines a permutation (n = m), we can add redun-
dant at-least-one constraints. We compared the various toul-
bar2 modeling approaches against Google OR-Tools CP-
SAT, an open-source state-of-the-art constraint program-
ming solver, and IBM cplex, a state-of-the-art integer pro-
gramming solver.3

toulbar2 used the dom/wdeg variable ordering heuristic
(Boussemart et al. 2004) with last conflict (Lecoutre et al.
2009) and EAC support value ordering heuristic (Cooper
et al. 2010; Trösser, De Givry, and Katsirelos 2020), com-
bined with solution phase saving (Demirović, Chu, and
Stuckey 2018). Unless reported otherwise, all tests were run
on a 2.5GHz Intel Xeon E5-2680, using one thread per CPU.
We limit CPU-time to 1200 seconds, except for the XCSP
benchmark with 1800 seconds, to match the XCSP com-
petition. For each benchmark we compute a score with the
system used in the XCSP competition. This scoring system
gives 1 point per instance solved or if no other solver found a
better solution, and 1

2 point if the solver found an optimal so-
lution without proving optimality but another solver proved
its optimality.

Weighted N -Queens Problem
The Weighted N -Queens problem is a variant of the N -
Queens problem (Bezzel 1848) where each queen place-
ment incurs a cost. The objective is to place N queens on

3https://github.com/toulbar2/toulbar2 v1.2.1, binary branching
(option -d:), https://github.com/google/or-tools CP-SAT v9.14 in
free-search mode, cplex version 22.1.1.0 with non-premature stop
parameters EPAGAP=EPGAP=EPINT=0. All single-threaded.
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Figure 1: Weighted N -Queens cactus plot.

an N × N board, minimizing the total cost while ensuring
that no two queens threaten each other. This is an interesting
benchmark in that it isolates the performance of ALLDIF-
FERENT. In contrast to the unweighted version, it is a chal-
lenging problem for the solvers we evaluate. We tested 140
instances, with sizes ranging from N = 4 to N = 30 in
steps of 2, with 10 instances per size, using random costs
uniformly sampled in [1, N ]. We modeled the problem using
three ALLDIFFERENT constraints to enforce column, diago-
nal and anti-diagonal uniqueness. Costs are defined by unary
cost functions. The same model was implemented in toul-
bar2, CP-SAT, and cplex. 4

Figure 1 and Table 1 show that tb2+LAPJV significantly
outperforms the other solvers in terms of execution time
and scalability, finding the best-known solution in 138 out
of 140 instances and proving optimality in 135 cases. Both
tb2+LAPJV and tb2+salldiff handle ALLDIFFERENT with-
out decomposition. The difference in performance between
these two methods shows that enforcing F∅IC achieves a
favorable balance between propagation strength and com-
putational speed. Conversely, tb2+KP and tb2+bin decom-
pose ALLDIFFERENT into multiple cost functions, resulting
in weaker propagation. Still, tb2+bin is the second best ap-
proach, solving 106 instances. While it is competitive on the
smallest instances thanks to a very fast propagation, it fails
on the largest instances N = 28 (see Table 1). cplex reaches
its limits after N = 16 and CP-SAT after N = 24.

Quadratic Assignment Problems
The quadratic assignment problem (QAP) is a generaliza-
tion of the LAP which also places costs on combinations of
edges. It is a very challenging problem and even MIP solvers
struggle to scale beyond the smallest instances. It is naturally
modeled as a WCSP with a single permutation constraint
and unary and binary cost functions to capture the costs of
edges and pairs of edges, respectively.

We took the 132 smallest of the 136 instances from the
QAPLIB.5 For a problem of size N , we expressed the

4Scripts at https://miat.inrae.fr/degivry/aaai2026supp.tgz
5http://coral.ise.lehigh.edu/wp-content/uploads/2014/07/

Solver IBM tb2 OR-tools tb2 tb2 tb2
N cplex salldiff CP-SAT KP binary LAPJV

14 0.0 0.0 0.0 0.0 0.0 0.0
16 5.9 0.0 0.0 0.0 0.0 0.0
18 17.5 0.0 0.0 0.0 0.0 0.0
20 59.8 4.0 0.0 0.0 0.0 0.0
22 103.2 13.7 0.0 0.0 0.0 0.0
24 113.2 10.9 4.0 0.6 0.0 0.0
26 145.3 35.3 8.4 4.6 0.1 0.0
28 173.1 32.2 10.0 6.8 1.9 0.0
30 225.8 39.4 16.3 9.6 1.5 0.7

Score 63.5 90.0 105.5 109.5 126.5 138.0

Table 1: Weighted N -Queens average optimality gaps (%)
and XCSP scores (bottom line).

Solver cplex CP-SAT tb2+at-least-one tb2+LAPJV

Score 25 43.5 57.5 100
gap 16% (107) 5.4%(121) 5.3 % (131) 3.9 %(131)

Table 2: Scores and average gap to best known solution (#
of instances where a solution was returned) for QAP.

quadratic objective function as a binary Weighted CSP with
N variables of domain size N . The permutation constraint
is encoded for toulbar2 and cplex as binary constraints en-
forcing that any pair of two variables cannot take the same
value. To strengthen the propagation we add one ALLDIF-
FERENT constraint of arity N (tb2+LAPJV) or N redundant
(generalized) linear constraints of arity N to ensure that each
value is assigned to at least one variable (tb2+at-least-one).
It is encoded as an ALLDIFFERENT constraint in CP-SAT.

Within the CPU-time limit of 1, 200 seconds, tb2+at-
least-one solved 31 instances and tb2+LAPJV solved 33
(see Figure 2). Although it has a theoretically stronger lower
bound, CPLEX solved only 22 instances, and CP-SAT 25.
For instance, tb2+LAPJV solved scr20 in 337 seconds and
0.9 million search nodes. Other models in CP-SAT, toul-
bar2, and cplex timed out. The best (XYL) 0/1LP approach
reported in (Zhang, Beltran-Royo, and Ma 2013) solved it
in 6,369s and 1.4 million nodes using an Intel Core Duo
2.80 GHz and Cplex 11.2. Considering feasibility only,
tb2+LAPJV and tb2+at-least-one were able to find feasible
solutions for 131 cases, whereas cplex and CP-SAT obtained
solutions for only 107 and 121 instances, respectively (see
Table 2). Among all methods, tb2+LAPJV returns the high-
est quality solutions with a gap of 3.9% to best known solu-
tions, leading to a significantly higher score than those of the
other approaches. The ALLDIFFERENT constraints encoded
in the QAP instances are permutation constraints, allowing
tb2+LAPJV to use the efficient Algorithm 2 without relying
on the ∆ costs. In contrast, the decomposition-based method
tb2+at-least-one depends on ∆ costs and is sensitive to the
propagation order, yielding weaker propagation.

qapdata.tar.gz, sizes less than 100 variables.
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Figure 2: Quadratic Assignment Problems cactus plot.

XCSP 2024 Mini COP Competition
We restricted to the Mini COP category of the 2024 XCSP
competition and selected the 40 instances that contain one
or more ALLDIFFERENT constraints.6

ALLDIFFERENT constraints are either decomposed into
binary constraints if the scope size is less than 100, else
translated into at-most-one linear constraints, one for each
domain value (tb2+KP), or kept as a global constraint using
our approach (tb2+LAPJV). Element constraints are decom-
posed into binary and ternary constraints. Sum constraints
are directly converted into knapsack constraints. Constraints
in extension (table) or intention (functional expression) are
expressed using a dual encoding with one extra domain vari-
able representing the allowed tuples of the original con-
straint and binary constraints to link this extra variable with
the variables in the scope of the original constraint (Montal-
bano et al. 2023). The objective variable is transformed into
a unary cost function the cost of which corresponds to the
domain value. An objective given by a sum on n variables is
transformed into n unary cost functions.

In 2024, 11 instances among 40 were unsolved. The
largest solved instance is Charlotte-mini-24-2 with 507 vari-
ables and 1, 240 constraints, including 121 ALLDIFFERENT.
Both CP-SAT and tb2+LAPJV solved the greatest number
of instances, i.e., 22 instances. CP-SAT was the fastest in
general (Fig. 3). However, tb2+LAPJV proved unsatisfia-
bility for two instances that were unsolved by all the 15
competitors of the 2024 XCSP competition, including CP-
SAT (RotationPuzzle-5 and RotationPuzzle-7). It also im-
proved significantly compared to tb2+KP, which solved 17
instances. cplex solved 15 instances and gurobi got the worst
results with 6 solved instances.

Taking into account the best solutions found during this
competition, we re-evaluated the score of every partici-
pant. tb2+LAPJV obtained the highest score for this se-
lection of instances (previous best score was obtained by
CP-SAT). A selection of the scores are presented in Ta-
ble 3. tb2+LAPJV found 4 best solutions without proving

6https://xcsp.org/competitions

Solver gurobi cplex tb2+KP CP-SAT tb2+LAPJV

Score 6 15 17 23.5 24.5

Table 3: Re-evaluation of XCSP 2024 score per solver on a
selection of 40 Mini COP instances with assignment prob-
lems.
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Figure 3: XCSP24 MiniCOP ALLDIFFERENT cactus plot.

optimality (GolombRuler-a3v18-11, GolombRuler-a3v18-
nodv-11 being solved by CP-SAT, Pyramid-09-1300 by the
choco solver and others, and GolombRuler-a3v18-13 was
unsolved), hence its score of 22 + 3× 1

2 + 1 = 24.5.

Conclusion
We have presented algorithms for propagating variants of the
ALLDIFFERENT constraint in weighted CSPs. The addition
of a soft consistency propagator for ALLDIFFERENT in the
state-of-the-art WCSP solver toulbar2 yielded performance
that surpassed that of other CP solvers like OR-Tools and of
the MIP solver CPLEX in several families of instances.

Within the scope of ALLDIFFERENT, we plan to investi-
gate techniques used for generalized arc consistency (GAC)
on weighted ALLDIFFERENT (Sellmann 2002; Claus, Cam-
bazard, and Jost 2020). Additionally, we intend to explore
enforcing VAC (Cooper et al. 2010) on WCSPs with ALLD-
IFFERENT constraints. VAC is more expensive to enforce but
gives stronger bounds and is useful when applied in a limited
manner, such as during preprocessing.

More generally, the technique we used for propagating
ALLDIFFERENT relied only on the reduced costs of a linear
formulation of the problem. This gave a relatively straight-
forward way to capture reformulations. The simplicity of the
use of the LP formulations means that we can apply those
techniques to propagating other global constraints with ideal
linear formulations (German et al. 2017), including general-
izations of ALLDIFFERENT like the global cardinality con-
straint (GCC). It will be more challenging to come up with
reformulation methods for constraints where the reasoning
of propagation algorithms cannot be captured by a compact
linear program, as is the case for the cumulative constraint.
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