

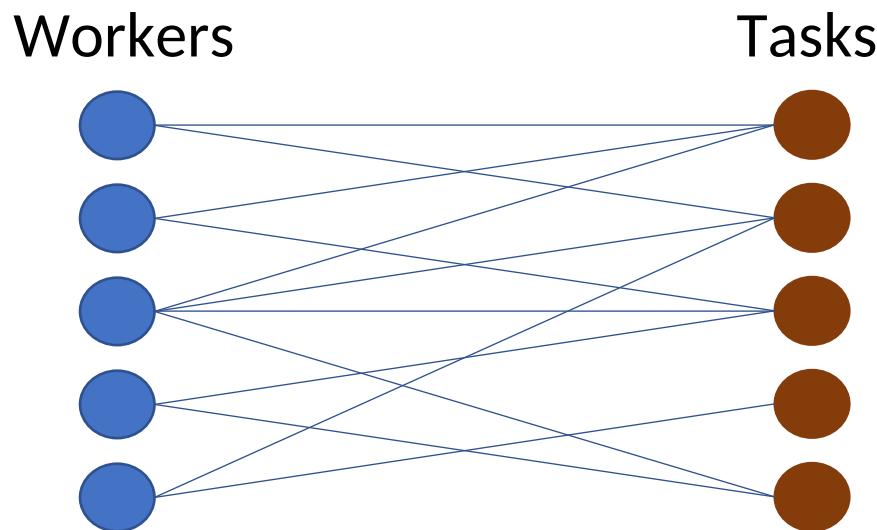
> Assignment Problems in Cost Function Networks

Guidio Sewa, David Allouche, **Simon de Givry**, George Katsirelos, Pierre Montalbano, Thomas Schiex

Département
MathNum

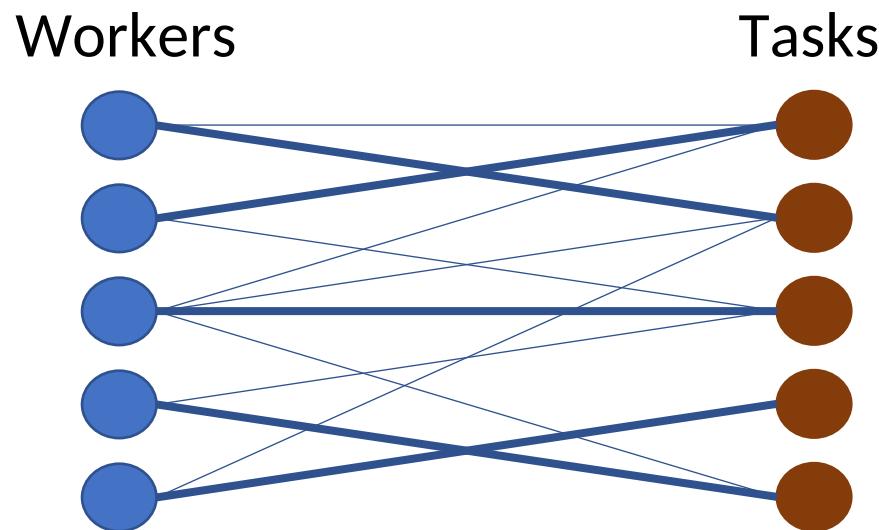
Assignment Problems

(Burkard, Dell'Amico, Martello 2012)



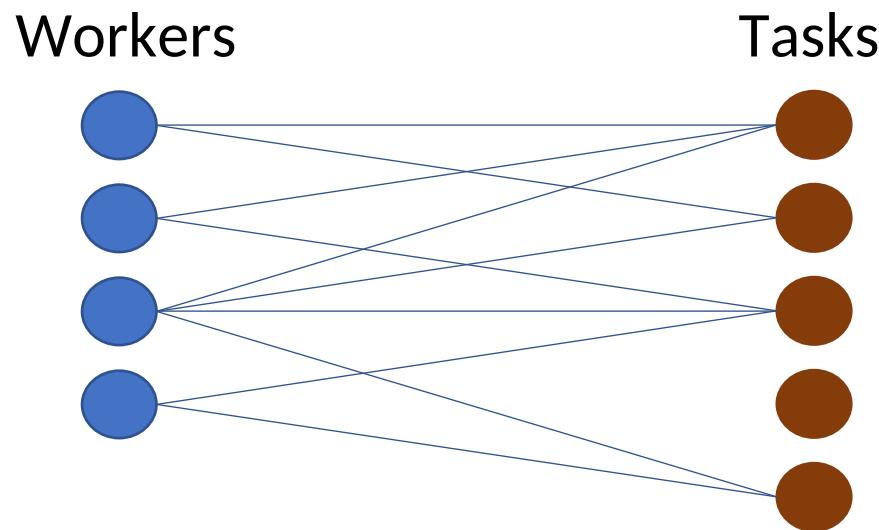
permutation case : $| \text{Workers} | = | \text{Tasks} |$

Assignment Problems



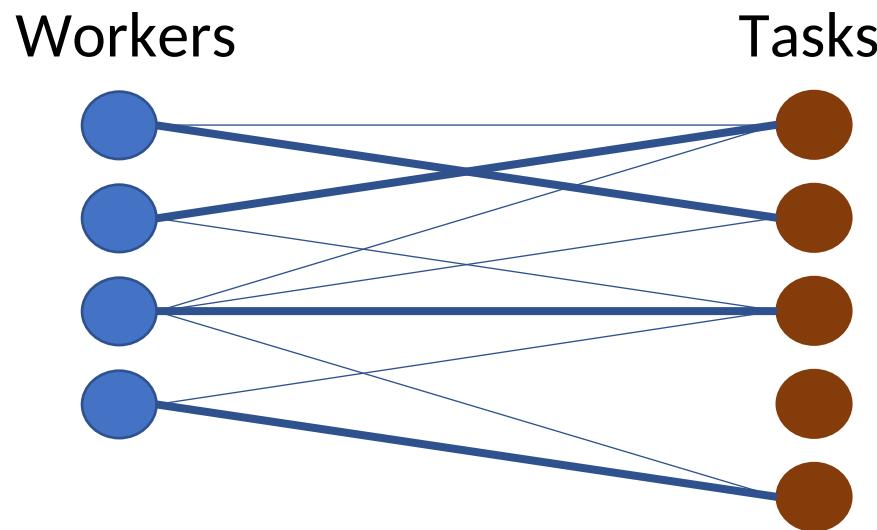
permutation case : $| \text{Workers} | = | \text{Tasks} |$

➤ Assignment Problems



non-permutation case : $| \text{Workers} | < | \text{Tasks} |$

➤ Assignment Problems



non-permutation case : $| \text{Workers} | < | \text{Tasks} |$

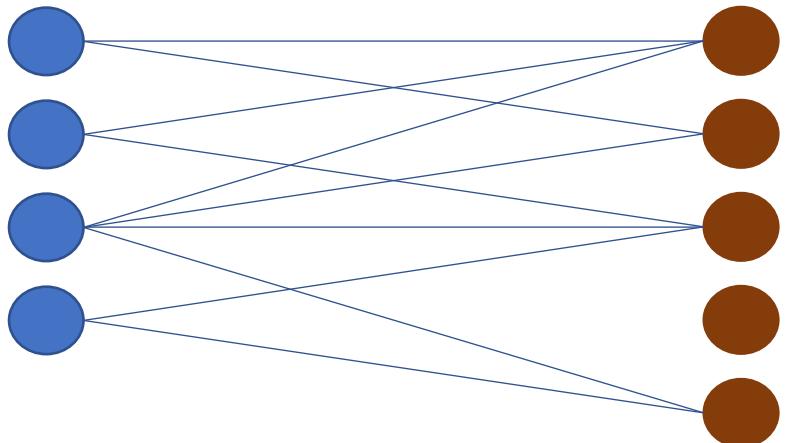
➤ Assignment Problems .. using Constraint Programming

Variables Values

Google
Or-tools
CP-SAT
solver

Workers

Tasks



global constraint

AllDifferent(Workers)

domain filtering in $O(n^2 \sqrt{n})$

(Régin 1994)

➤ Assignment Problems with unary costs in CP

Variables

Workers

i
j
k
l

Values

Tasks

r
s
t
u
v

$$f_i(r) = 2$$

1

3

5

1

2

2

7

4

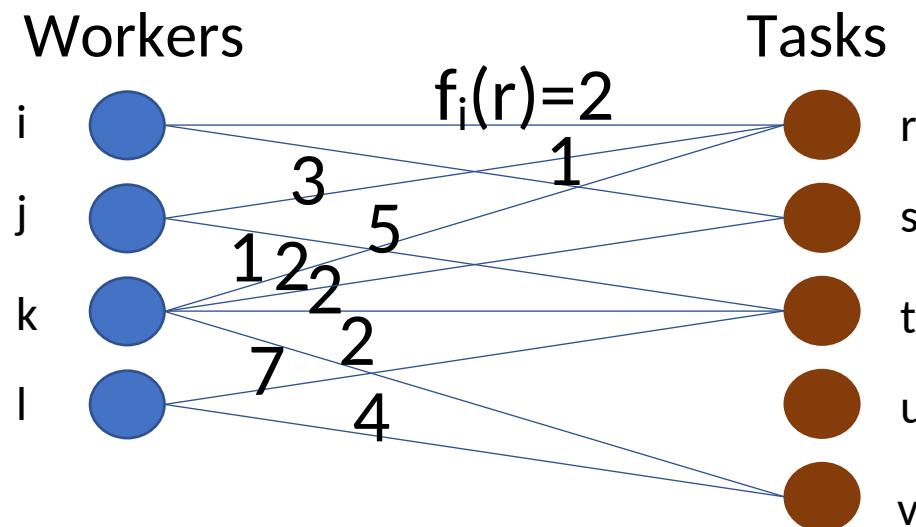
MinWeightAllDifferent(Workers, f, ub)

Assignment Problems with unary costs in CP

aka. Linear Assignment Problem

Variables

Values



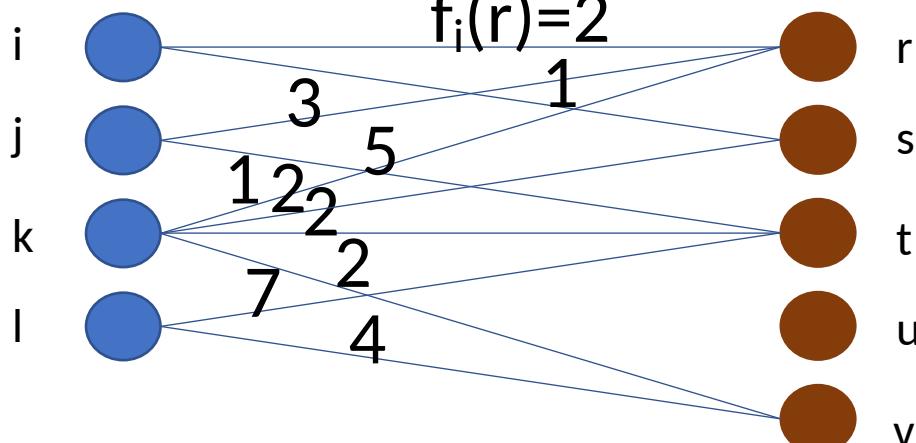
MinWeightAllDifferent(Workers, f, ub)

$$\equiv \text{AllDifferent}(\{X_i, X_j, X_k, X_l\}) \wedge \sum f_i(X_i) < ub$$

Assignment Problems with unary costs in CP

Variables

Workers



Values

Tasks

Main drawbacks

- Communication between constraints only through domains
- Incrementality issue during search (unary costs are always the same)

MinWeightAllDifferent(Workers, f, ub)

\equiv AllDifferent($\{X_i, X_j, X_k, X_l\}$) \wedge $\sum f_i(X_i) < ub$

Assignment Problems in Cost Function Networks

toulbar2
solver

Variables

Workers

i

j

k

l

Values

Tasks

r

s

t

u

v

$$f_i(r) = 2$$

1

3

5

1

2

2

2

7

4

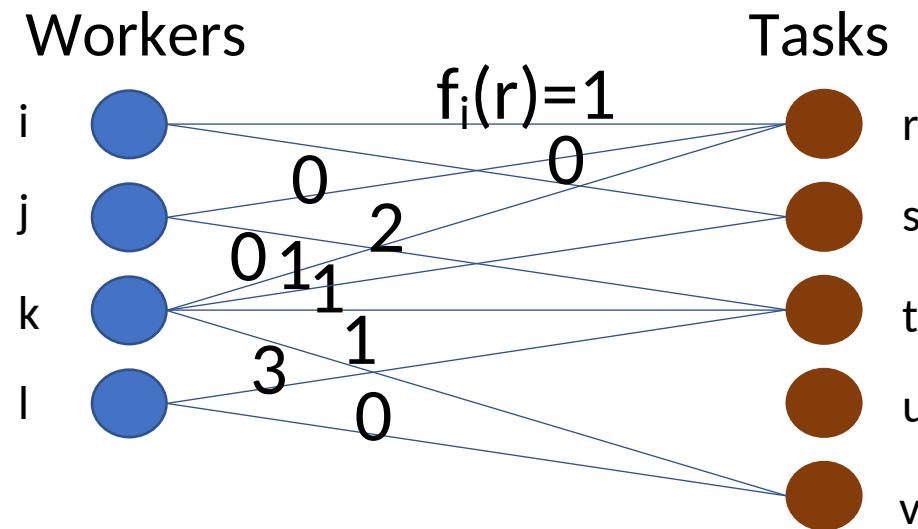
AllDifferent(Workers) + $\sum f_i(X_i) < ub$

global cost function

Assignment Problems in Cost Function Networks

toulbar2
solver

Variables $f_0 = 9$ Values



AllDifferent(Workers) + $\sum f_i(X_i) + f_0 < ub$

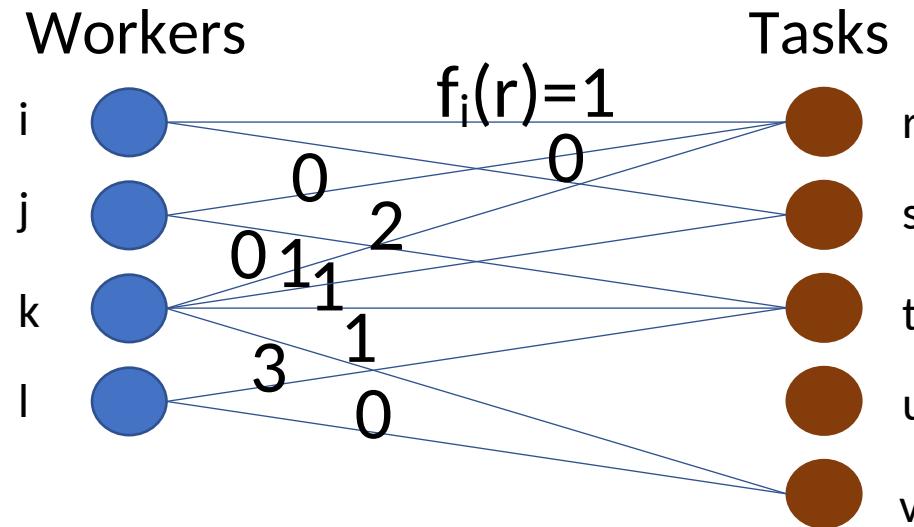
global cost function

problem reformulation by Node Consistency in $O(n*d)$

Assignment Problems in Cost Function Networks

toulbar2
solver

Variables $f_0 = 9$ Values



Better domain filtering rule :
 $\forall i, r, f_i(r) + f_0 < ub$

AllDifferent(Workers) + $\sum f_i(X_i) + f_0 < ub$

global cost function

problem reformulation by Node Consistency in $O(n*d)$

➤ Assignment Problems in Cost Function Networks

Our proposal for AllDifferent

- Permutation case ($|X|=|D|$)
 - We propose a reformulation with an explicit lower bound f_0 and modified unary costs (based on *reduced costs*)
- Non-permutation case ($|X|<|D|$)
 - We propose a reformulation with an explicit lower bound f_0 , modified unary costs, and a modified AllDifferent (*delta costs*)

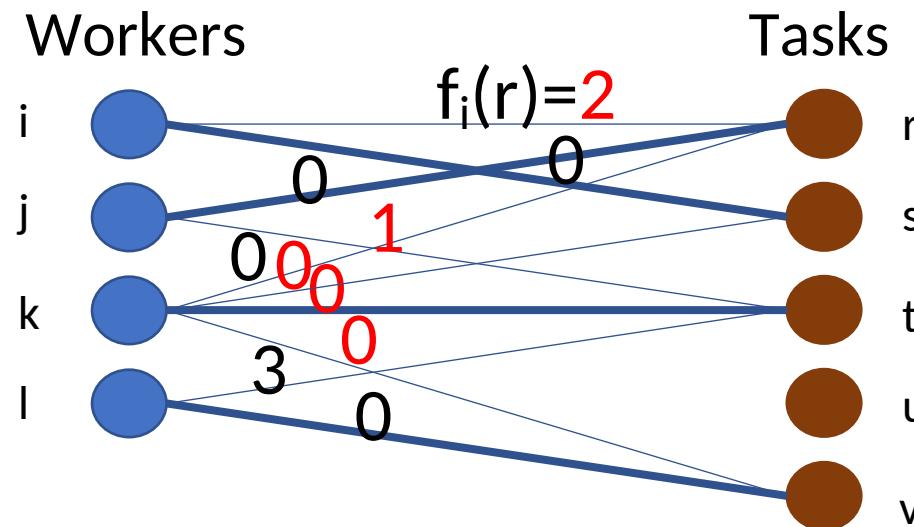
Main advantages

- **Communication between cost functions through domains and unary costs**
- **Better incrementality during search (unary costs are modified if needed)**

Assignment Problems in Cost Function Networks

toulbar2
solver

Variables $f_0 = 10$ Values



Better lower bound f_0

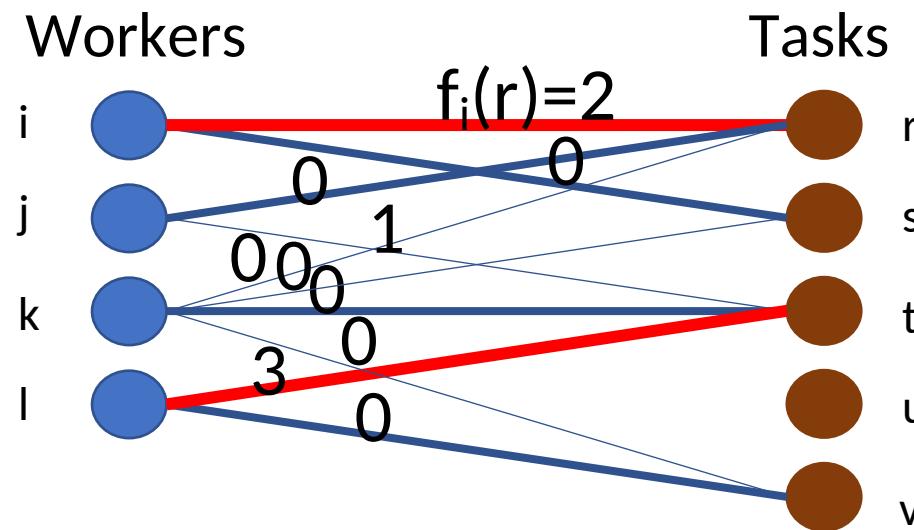
AllDifferent(Workers) + $\sum f_i(X_i) + f_0 < ub$
+ delta costs

problem reformulation using LAPJV algorithm in $O(n^3)$

(Jonker, Volgenant 1987)

➤ Assignment Problems in Cost Function Networks

Variables $f_0 = 10$ Values



NC domain filtering rule :
 $\forall i, r, f_i(r) + f_0 < ub$

AllDifferent(Workers) + $\sum f_i(X_i) + f_0 < 12$
+ *delta costs*

problem reformulation using LAPJV algorithm in $O(n^3)$

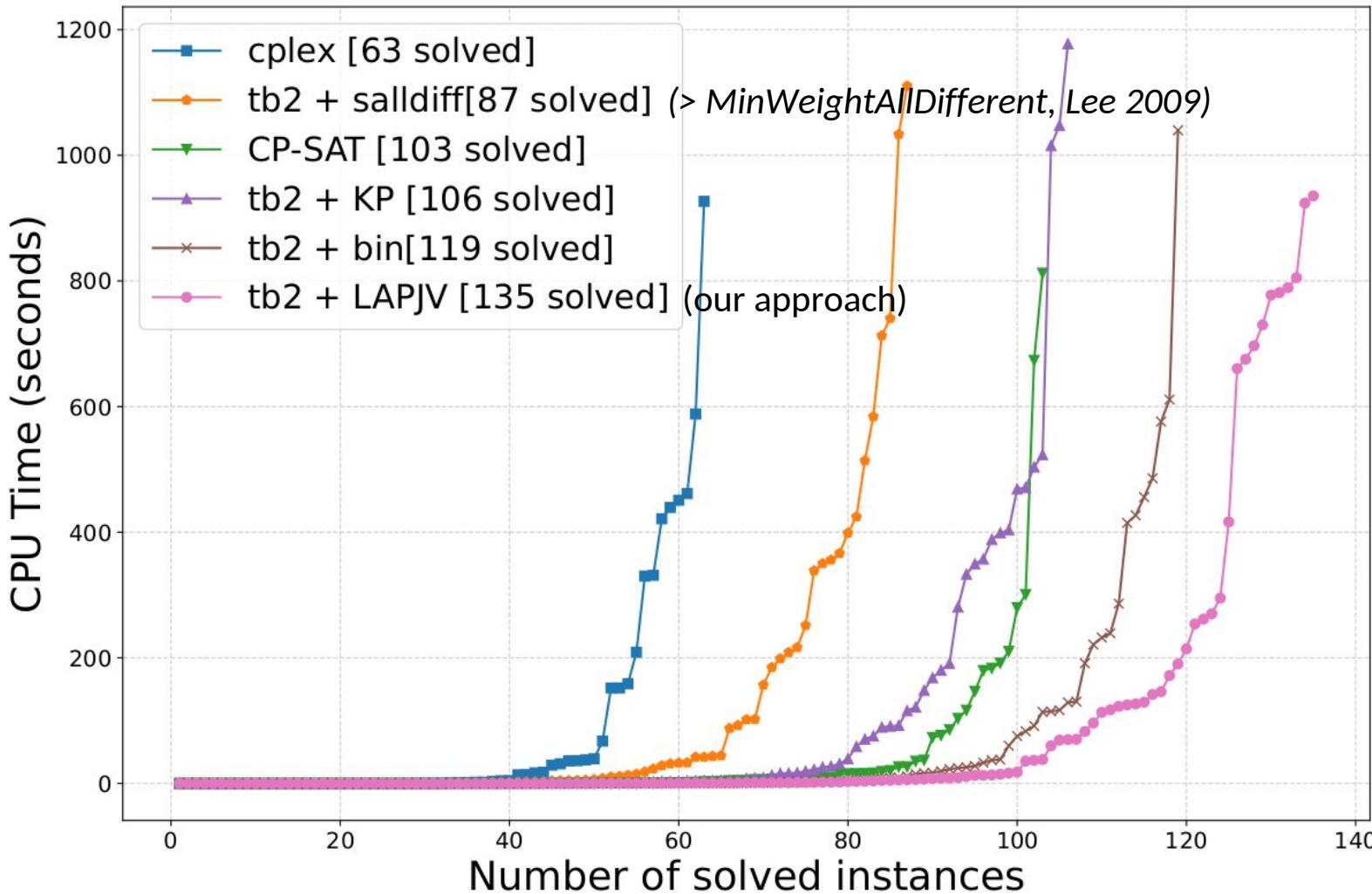
Weighted n-Queen Problem

as a Cost Function Network

	X_1	X_2	X_3	X_4
1	0	4	3	0
2	3	0	1	0
3	2	1	0	1
4	5	2	2	0

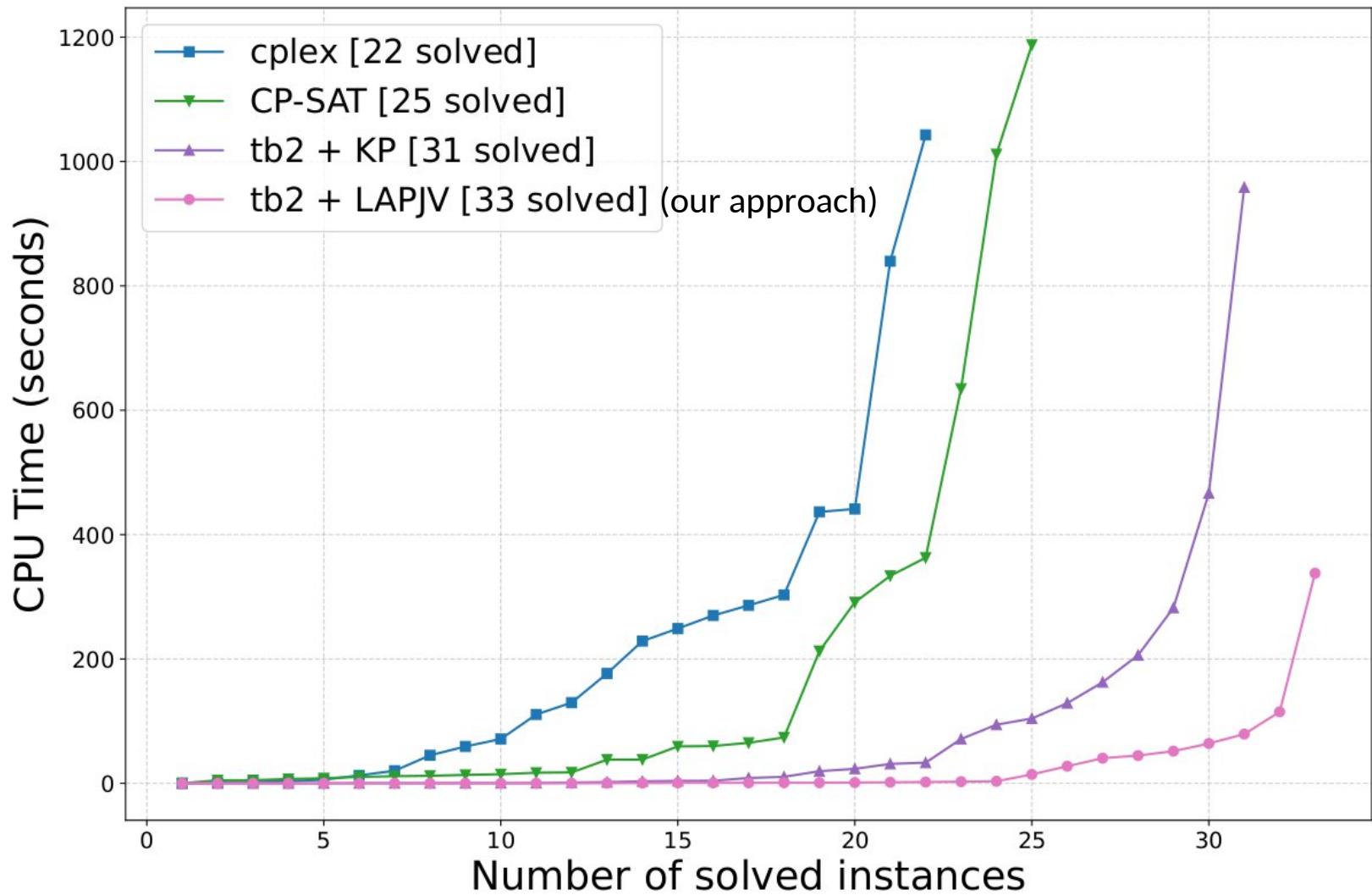
- Variables
 - Queens = $\{X_1, \dots, X_i, \dots, X_n\}$ with domains of size n
 - Diagonal = $\{X_1-1, \dots, X_i-i, \dots, X_n-n\}$ with domains of size $2*n$
 - AntiDiagonal = $\{X_1+1, \dots, X_i+i, \dots, X_n+n\}$ with domains of size $2*n$
- Min AllDifferent(Queens) +
AllDifferent(Diagonal) +
AllDifferent(AntiDiagonal) +
 $\sum f_i(X_i) + f_0$
 - permutation case
 - non-permutation case
 - non-permutation case

➤ Results on Weighted n-Queen Problem (140 instances of size n=4 to n=30)



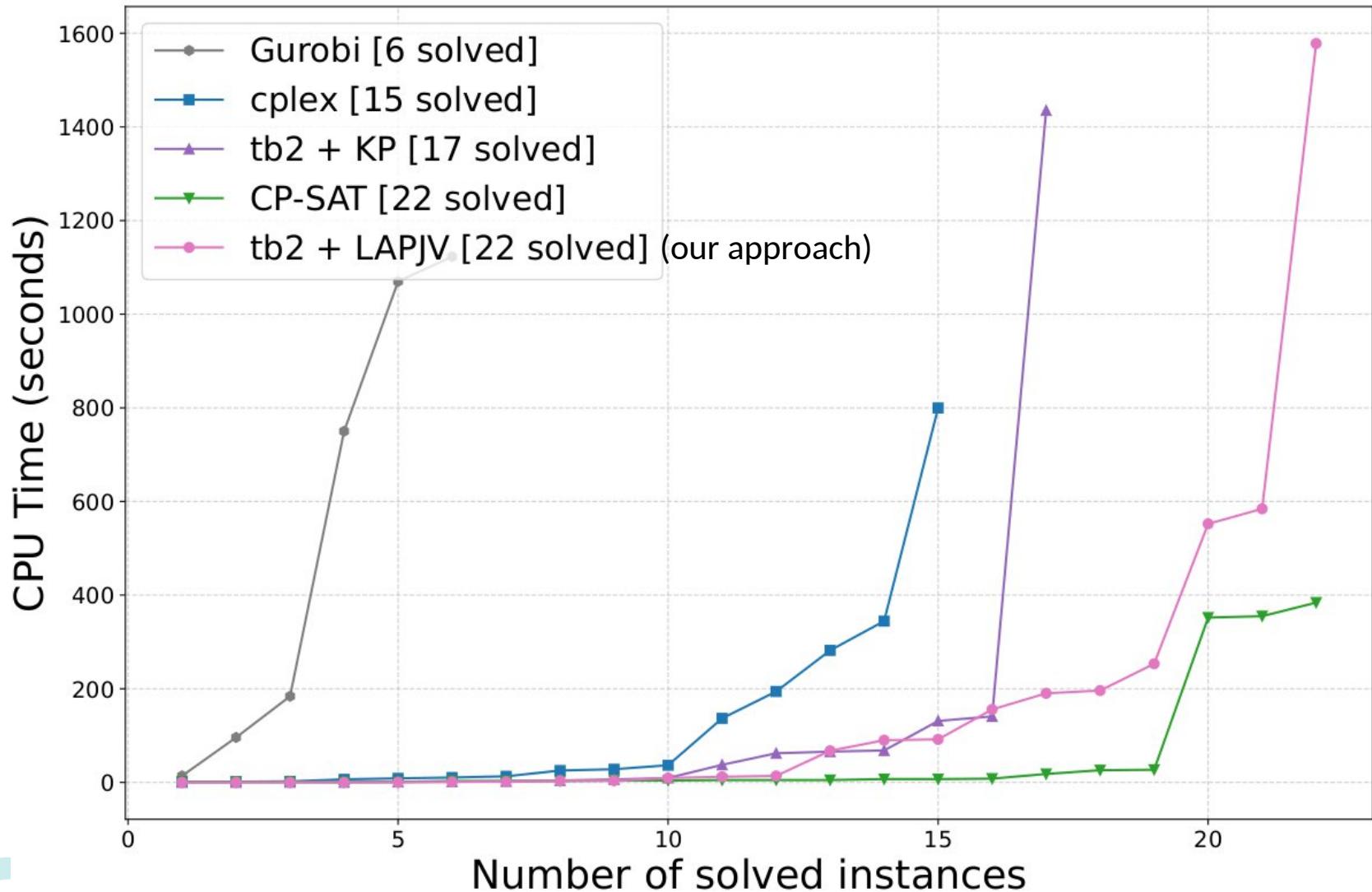
➤ Results on Quadratic Assignment Problem (132 instances from QAPLIB)

permutation case

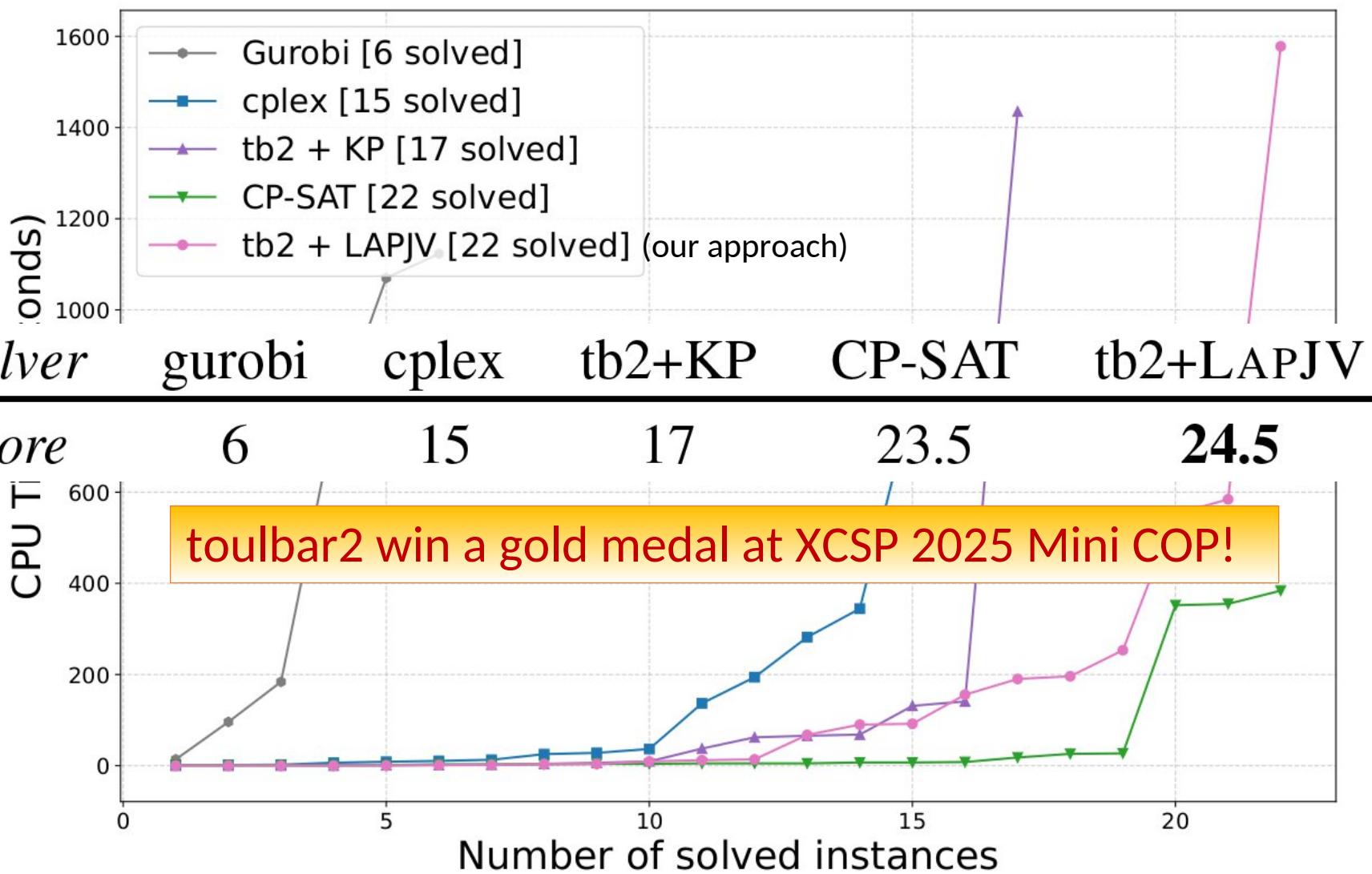


➤ Results on XCSP 2024 Competition MiniCOP (40 instances with AllDifferent)

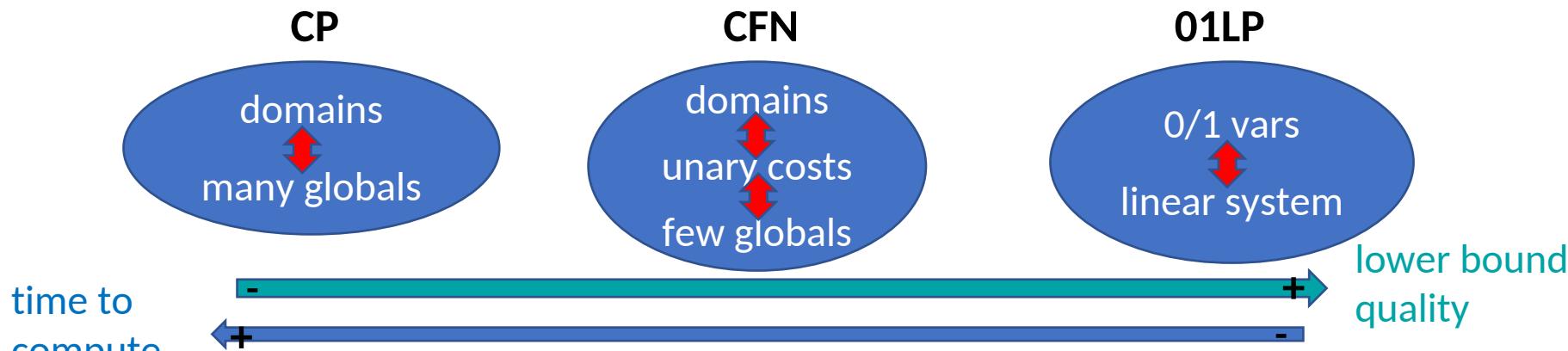
permutation and non-permutation cases



➤ Results on XCSP 2024 Competition Mini COP



➤ Conclusion and perspectives



time to
compute

- **Conclusion**

- Better communication between cost functions thanks to unary cost functions
- Reformulation in the permutation case increases the lower bound without adding costs

- **Future work**

(Sellmann 2002)(Cambazard 2020)

- Enhance domain propagation using exact reduced costs
- Apply the same approach to other globals (GCC,...)
- Explore stronger reformulations (Virtual AC, singleton consistency,...)

(Cooper 2010)

➤ References

- Burkard, Dell'Amico, Martello. Assignment problems: revised reprint. SIAM (2012).
- Caseau, Laburthe. Solving Small TSPs with Constraints. In Proc. of ICLP 1997.
- Claus, Cambazard, Jost. Analysis of Reduced Costs Filtering for Alldifferent and Minimum Weight Alldifferent Global Constraints. In Proc. of ECAI 2020.
- Cooper, de Givry, Sanchez, Schiex, Zytnicki, Werner. Soft arc consistency revisited. Artificial Intelligence Journal (2010)
- Jonker, Volgenant. A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing (1987).
- Larrosa. On Arc and Node Consistency in Weighted CSP. In Proc. of AAAI 2002.
- Lee, Leung. Towards Efficient Consistency Enforcement for Global Constraints in Weighted Constraint Satisfaction. In Proc. of IJCAI 2009.
- Montalbano, de Givry, Katsirelos, Multiple-choice knapsack constraint in graphical models. In Proc. of CPAIOR 2022.
- Régin. A Filtering Algorithm for Constraints of Difference in CSPs. In Proc. of AAAI 1994.
- Sellmann. An Arc-Consistency Algorithm for the Minimum Weight All Different Constraint. In Proc. of CP 2002.

Questions.

Thank you for your attention.

AAAI-2026 paper #8449
simon.de-givry@inrae.fr

Cost function network open source C++ solver

<https://github.com/toulbar2/toulbar2>

Python interface

pip install pytoulbar2

Many problem input formats available :

cfn, cnf, lp, opb, qpbo, uai, wbo, wcnf, wcsp, xcsp