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Preface

When we started working on MrBayes in 1999-2000, we knew that there was a

need for a Bayesian MCMC package for phylogenetics, which was more flexible

and easier to use than the software available then. Nevertheless, we were aston-

ished by how quickly users took MrBayes to their hearts. The original release pa-

per (Huelsenbeck and Ronquist, 2001), which appeared in Bioinformatics in 2001,

quickly became a fast-track paper in Computer Science, as did the release note for

version 3 (Ronquist and Huelsenbeck, 2003), published in Bioinformatics in 2003.

To date, these two papers have accumulated more than 13,000 citations.

With the release of version 3.2 (Ronquist et al., 2011), MrBayes has come of

age. Through the years, we have added to, extended, and rewritten the program

to cover most of the models used in standard statistical phylogenetic analyses

today. We have also implemented a number of techniques to speed up calculations,

improve convergence, and facilitate Bayesian model averaging and model choice.

Version 3.2 has also undergone considerably more testing than previous versions

of MrBayes. This is not to say that MrBayes 3.2 is bug free but it should be

considerably more stable than previous versions. As in previous versions, we have

done our best to document all of the available models and tools in the online help

and in this manual.

Version 3.2 of MrBayes also marks the end of the road for us in terms of major

development. Extending the original code has become increasingly di�cult, and

with version 3.2 we are at a point where we feel we need to explore new approaches

to Bayesian phylogenetics. Perhaps most importantly, model specifications in Mr-

Bayes are strongly limited by the constraints of the Nexus language. In a separate

project, RevBayes, we hope to provide a generic computing environment that al-
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lows users to build complex phylogenetic models interactively, from small building

blocks. However, such flexibility requires more of the user, and it may not be

popular with everyone. For standard analyses, MrBayes will remain adequate for

years to come and it is our intention to maintain the code base as long as the

program remains heavily used and we have the resources to do so.

The MrBayes project would not have been possible without the help from many

people. First and foremost, we would like to thank Maxim Teslenko, who has

played an important role in fixing bugs and adding functionality to MrBayes during

the last couple of years. Among other things, Maxim is responsible for a large part

of the work involved in supporting BEAGLE, and in implementing the stepping-

stone method for estimating marginal likelihoods. Maxim has also contributed

several sections to this manual.

We are grateful for the financial support of the project provided by the Swedish

Research Council, the National Institutes of Health, and the National Science

Foundation. We are also deeply indebted to students, colleagues and numerous

users of MrBayes, who have helped the project along in important ways. We are

not going to try to enumerate them here, as any attempt to do so is likely to result

in major omissions. However, we do want to express the overwhelming feeling of

gratitude we feel for the generosity with which people have shared ideas, bug fixes

and other valuable tips through the years. This feedback alone makes all the hours

we have put into developing MrBayes worthwhile. Thank you, all of you!

Last but not least, we would like to thank our families for the unwavering support

they have provided throughout the project. During intense programming periods,

or when we have taught MrBayes workshops around the world, they have had to

cope with absent-minded fathers, aloof visitors, and absent husbands. We realize

that the childish enthusiasm we have shown when a new model resulted in some

incomprehensible numbers scrolling by on the screen has been poor compensation.

Thank you so much for all of your support and your sacrifices; we love you!

November, 2011

Fredrik Ronquist

John Huelsenbeck



Chapter 1

Introduction

MrBayes 3 is a program for Bayesian inference and model choice across a large

space of phylogenetic and evolutionary models. The program has a

command-line interface and should run on a variety of computer platforms,

including large computer clusters and multicore machines. Depending on the

settings, MrBayes analyses may demand a lot of your machine, both in terms of

memory and processor speed. Many users therefore run more challenging

analyses on dedicated computing machines or clusters. Several computing centers

around the globe provide web access to such services. This said, many standard

analyses run fine on common desktop machines.

This manual explains how to use the program. After introducing you to the

program in this chapter, we first walk you through a simple analysis (chapter 2),

which will get you started, and a more complex partitioned analysis, which uses

more of the program’s capabilities (chapter 3). This is followed by a set of

shorter tutorials covering a range of common types of analyses (chapter 4).

We then cover the capabilities of the program in more detail (chapter 5), followed

by some details on the evolutionary models that are implemented (chapter 6).

The manual ends with a series of diagrams giving a graphical overview of the

models and some proposal mechanisms implemented in the program (Appendix

A). For more detailed information about commands and options in MrBayes, see

the command reference that can either be downloaded from the program web site

1



2 CHAPTER 1. INTRODUCTION

or generated from the program itself (see section 1.5 below). All the information

in the command reference is also available on-line when using the program.

The manual assumes that you are familiar with the basic concepts of Bayesian

phylogenetics. If you are new to the subject, we recommend one of several recent

reviews (Lewis, 2001; Holder and Lewis, 2003; Ronquist and Deans, 2010). The

early papers introducing Bayesian phylogenetic methods (Li, 1996; Mau, 1996;

Rannala and Yang, 1996; Mau and Newton, 1997; Larget and Simon, 1999; Mau

et al., 1999; Newton et al., 1999) are also worthwhile reading. The basic MCMC

techniques are described in Metropolis et al. (1953) and Hastings (1970), and the

Metropolis-coupled MCMC used by MrBayes was introduced by Geyer (1991).

Some recent general textbooks on Bayesian inference and MCMC methods

include Gilks et al. (1996), Carlin and Louis (2000), Gelman et al. (2003), and

Gamerman and Lopes (2006).

1.1 Conventions Used in this Manual

Throughout the document, we use typewriter font for things you see on screen

or in a data file, and bold font for things you should type in. Alternative

commands, options, file names, etc are also given in typewriter font.

1.2 Acquiring and Installing MrBayes

MrBayes 3 is distributed without charge by download from the MrBayes web

site, http://mrbayes.net. If someone has given you a copy of MrBayes 3, we

strongly suggest that you download the most recent version from the o�cial

MrBayes site. The site also gives information about the MrBayes users email list

and describes how you can report bugs or contribute to the project.

MrBayes 3 is a plain-vanilla program that uses a command line interface and

therefore behaves virtually the same on all platforms — Macintosh, Windows

and Unix. There is a separate download for each platform. The Windows and

Macintosh downloads contain an installer that will install the program for you.
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The Macintosh installer will put an executable in a default location that should

be in your path. After installation, you run MrBayes by opening a terminal

window (for instance using the Terminal application, which you will find in the

Utilities folder in your Applications folder), and then simply typing mb on the

command line. The example data files and the documentation are installed in a

MrBayes folder in your Applications directory.

The Macintosh installer will also install the BEAGLE library, which you can use

to speed up likelihood calculations. The BEAGLE option is particularly useful if

you have an NVIDIA graphics card and the relevant CUDA drivers installed, in

which case MCMC sampling from amino acid and codon models should be much

faster. The installer will provide you with a link that you can use to download

and install the relevant drivers given that you have an NVIDIA graphics card. If

the CUDA drivers are not installed (or if you do not have an NVIDIA graphics

card), then BEAGLE will run on the CPU instead of on the GPU. In this case,

the BEAGLE performance will be similar to that of the default likelihood

calculators used by MrBayes.

The Windows installer behaves similarly to the Macintosh installer except that it

places a double-clickable executable in the MrBayes folder inside your Program

directory, together with the example files and the documentation. To start the

program, simply double-click on the executable. The Windows installer will also

install the BEAGLE library, and it will give you a link to the relevant CUDA

drivers.

If you decide to run the program under Unix/Linux, then you need to compile

the program from source code. You can find detailed compilation instructions in

chapter 5. Once you have compiled MrBayes, you will get an executable called

mb. To execute the program, simply type ./mb in the directory where you

compiled the program. If you execute make install after compilation, the

binary is installed in your path and you can then invoke MrBayes by typing mb

from any directory on your system.

The Macintosh and Windows installers will install the serial version of the

program. The serial version does not support multithreading, which means that

you will not be able to utilize more than one core on a multi-core machine for a
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single MrBayes analysis. If you want to utilize all cores, you need to run the

MPI-version of MrBayes. The MPI-version must be compiled from source and

will only run under Unix/Linux. Most Windows machines allow you to install a

parallel Linux partition, and all modern Macintosh computers come with a Unix

system under the hood, which will support MPI. Refer to chapter 5 for more

detailed instructions on how to compile and run the MPI version of MrBayes.

All three packages of MrBayes come with example data files. These are intended

to show various types of analyses you can perform with the program, and you

can use them as templates for your own analyses. In the tutorials given in

chapters 2 to 4, you can learn more about how to set up various types of analyses

based on these example data files.

1.3 Getting Started

Start MrBayes by double-clicking the application icon (or typing ./mb or simply

mb depending on your system) and you will see the information below:

MrBayes v3.2

(Bayesian Analysis of Phylogeny)

Distributed under the GNU General Public License

Type "help" or "help <command>" for information
on the commands that are available.

Type "about" for authorship and general
information about the program.

MrBayes >

Note the MrBayes > prompt at the bottom, which tells you that MrBayes is

ready for your commands.
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1.4 Changing the Size of the MrBayes Window

Some MrBayes commands will output a lot of information and write fairly long

lines, so you may want to change the size of the MrBayes window to make it

easier to read the output. On Macintosh and Unix machines, you should be able

to increase the window size simply by dragging the margins. On a Windows

machine, you cannot increase the size of the window beyond the preset value by

simply dragging the margins but you can change both the size of the screen

bu↵er and the console window by right-clicking on the blue title bar of the

MrBayes window and then selecting “Properties” in the menu that appears.

Make sure the “Layout” tab is selected in the window that appears, and then set

the Screen Bu↵er Size and Window Size to the desired values.

1.5 Getting Help

At the MrBayes > prompt, type help to see a list of the commands available in

MrBayes. Most commands allow you to set values (options) for di↵erent

parameters. If you type help <command> , where <command> is any of the listed

commands, you will see the help information for that command as well as a

description of the available options. For most commands, you will also see a list

of the current settings at the end. Try, for instance, help lset or help mcmc .

The lset settings table at the end should look like this:

Parameter Options Current Setting
------------------------------------------------------------------
Nucmodel 4by4/Doublet/Codon/Protein 4by4
Nst 1/2/6/Mixed 1
Code Universal/Vertmt/Mycoplasma/

Yeast/Ciliates/Metmt Universal
Ploidy Haploid/Diploid/Zlinked Diploid
Rates Equal/Gamma/Propinv/Invgamma/Adgamma Equal
Ngammacat <number> 4
Nbetacat <number> 5
Omegavar Equal/Ny98/M3 Equal
Covarion No/Yes No
Coding All/Variable/Noabsencesites/
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Nopresencesites All
Parsmodel No/Yes No
------------------------------------------------------------------

Note that MrBayes 3 supports abbreviations of commands and options, so in

many cases it is su�cient to type the first few letters of a command or option

instead of the full name.

A complete list of commands and options is given in the command reference,

which can be downloaded from the program web site (www.mrbayes.net). You

can also produce an ASCII text version of the command reference at any time by

giving the command manual to MrBayes. Finally, you can get in touch with

other MrBayes users and developers through the mrbayes-users email list

(subscription information at www.mrbayes.net).

1.6 Reporting and Fixing Bugs

If you find a bug in MrBayes, we are grateful if you tell us about it using the bug

reporting functions of SourceForge, as explained on the MrBayes web site

(www.mrbayes.net). When you submit a bug report, make sure that you upload

a data file with the data set and sequence of commands that produced the error.

If the bug occurs during an MCMC analysis (after issuing the mcmc command),

you can help us greatly by making sure the bug can be reproduced reliably using

a fixed seed and swapseed . These seeds need to be set by invoking the set

command before any other commands are executed, including the reading in of

data. When data are read in, a default model is automatically set up, with initial

values drawn randomly using the current seeds, so resetting the seeds after the

data are read in is not guaranteed to result in the same MCMC output. Ideally,

it should also be possible to reproduce the bug with a small data set and using as

few MCMC generations as possible. The most common mistake is to report a

bug without including a dataset or an e-mail address, pretty much making it

impossible for us to fix the problem.

Advanced users may be interested in fixing bugs themselves in the source code.

Refer to section 5 of this manual for information on how to contribute bug fixes,
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improved algorithms or expanded functionality to other users of MrBayes.

1.7 License and Warranty

MrBayes is free software; you can redistribute it and/or modify it under the

terms of the GNU General Public License as published by the Free Software

Foundation; either version 3 of the License, or (at your option) any later version.

The program is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details

(http://www.gnu.org/copyleft/gpl.html).

1.8 Citing the Program

If you wish to cite the program, you can simply refer to the most recent release

note (Ronquist et al., 2011). This manual should be cited as an online

publication. For more tips on citations, you can run the citations command in

the program, which will give you a number of other relevant citations for the

program and its models and algorithms.
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Chapter 2

Tutorial: A Simple Analysis

This section walks you through a simple MrBayes example analysis to get you

started. It is based on the primates.nex data file and will guide you through a

basic Bayesian MCMC analysis of phylogeny, explaining the most important

features of the program. There are two versions of the tutorial. You will first find

a Quick-Start version for impatient users who want to get an analysis started

immediately. The rest of the section contains a much more detailed description

of the same analysis.

2.1 Quick Start Version

There are four steps to a typical Bayesian phylogenetic analysis using MrBayes:

1. Read the Nexus data file

2. Set the evolutionary model

3. Run the analysis

4. Summarize the samples

In more detail, each of these steps is performed as described in the following

paragraphs:

9
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1. At the MrBayes > prompt, type execute primates.nex. This will bring the

data into the program. When you only give the data file name (primates.nex),

MrBayes assumes that the file is in the current directory. If this is not the case,

you have to use the full or relative path to your data file, for example execute

../taxa/primates.nex. If you are running your own data file for this tutorial,

beware that it may contain some MrBayes commands that can change the

behavior of the program; delete those commands or put them in square brackets

to follow this tutorial.

2. At the MrBayes > prompt, type lset nst=6 rates=invgamma. This sets

the evolutionary model to the GTR substitution model with gamma-distributed

rate variation across sites and a proportion of invariable sites. If your data are

not DNA or RNA, if you want to invoke a di↵erent model, or if you want to use

non-default priors, refer to the rest of this manual and the Appendix for more

help.

3.1. At the MrBayes > prompt, type mcmc ngen=20000 samplefreq=100

printfreq=100 diagnfreq=1000. This will ensure that you get at least 200

samples from the posterior probability distribution, and that diagnostics are

calculated every 1,000 generations. For larger data sets you probably want to run

the analysis longer and sample less frequently. The default sample and print

frequency is 500, the default diagnostic frequency is 5,000, and the default run

length is 1,000,000. You can find the predicted remaining time to completion of

the analysis in the last column printed to screen.

3.2. If the standard deviation of split frequencies is below 0.01 after 20,000

generations, stop the run by answering no when the program asks Continue the

analysis? (yes/no). Otherwise, keep adding generations until the value falls

below 0.01. If you are interested mainly in the well-supported parts of the tree, a

standard deviation below 0.05 may be adequate.

4.1. Type sump to summarize the parameter values using the same burn-in as

the diagnostics in the mcmc command. The program will output a table with

summaries of the samples of the substitution model parameters, including the

mean, mode, and 95 % credibility interval (region of Highest Posterior Density,

HPD) of each parameter. Make sure that the potential scale reduction factor
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(PSRF) is reasonably close to 1.0 for all parameters; if not, you need to run the

analysis longer.

4.2. Summarize the trees using the same burn-in as the mcmc command by

typing sumt . The program will output a cladogram with the posterior

probabilities for each split and a phylogram with mean branch lengths. Both

trees will also be printed to a file that can be read by FigTree and other

tree-drawing programs, such as TreeView and Mesquite.

It does not have to be more complicated than this; however, as you get more

proficient you will probably want to know more about what is happening behind

the scenes. The rest of this section explains each of the steps in more detail and

introduces you to all the implicit assumptions you are making and the machinery

that MrBayes uses in order to perform your analysis.

2.2 Thorough Version

2.2.1 Getting Data into MrBayes

To get data into MrBayes, you need a so-called Nexus file that contains aligned

nucleotide or amino acid sequences, morphological (”standard”) data, restriction

site (binary) data, or any mix of these four data types. The Nexus data file is

often generated by another program, such as Mesquite (Maddison and Maddison,

2006). Note, however, that MrBayes version 3 does not support the full Nexus

standard, so you may have to do a little editing of the file for MrBayes to process

it properly. In particular, MrBayes uses a fixed set of symbols for each data type

and does not support user-defined symbols. The supported symbols are {A, C,

G, T, R, Y, M, K, S, W, H, B, V, D, N} for DNA data, {A, C, G, U, R, Y, M,

K, S, W, H, B, V, D, N} for RNA data, {A, R, N, D, C, Q, E, G, H, I, L, K, M,

F, P, S, T, W, Y, V, X} for protein data, {0, 1} for restriction (binary) data, and

{0, 1, 2, 3, 4, 5, 6, 5, 7, 8, 9} for standard (morphology) data. In addition to the

standard one-letter ambiguity symbols for DNA and RNA listed above, ambiguity

can also be expressed using the Nexus parenthesis or curly braces notation. For

instance, a taxon polymorphic for states 2 and 3 can be coded as (23), (2,3),
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{23}, or {2,3} and a taxon with either amino acid A or F can be coded as (AF),

(A,F), {AF} or {A,F}. Like most other statistical phylogenetics programs,

MrBayes e↵ectively treats polymorphism and uncertainty the same way (as

uncertainty), so it does not matter whether you use parentheses or curly braces.

If you have other symbols in your matrix than the ones supported by MrBayes,

you need to replace them before processing the data block in MrBayes. You also

need to remove the ”Equate” and ”Symbols” statements in the ”Format” line if

they are included. Unlike the Nexus standard, MrBayes supports data blocks

that contain mixed data types as described in the tutorial in chapter 3.

To put the data into MrBayes type execute <filename> at the MrBayes >

prompt, where <filename> is the name of the input file. To process our

example file, type execute primates.nex or simply exe primates.nex to save

some typing (MrBayes allows you to use the shortest unambiguous version of a

command). Note that the input file must be located in the same folder

(directory) where you started the MrBayes application (or else you will have to

give the path to the file) and the name of the input file should not have blank

spaces, or it will have to be quoted. If everything proceeds normally, MrBayes

will acknowledge that it has read the data in the DATA block of the Nexus file

by outputting some information about the file read in.

2.2.2 Specifying a Model

All of the commands are entered at the MrBayes > prompt. At a minimum two

commands, lset and prset, are required to specify the evolutionary model that

will be used in the analysis. Usually, it is also a good idea to check the model

settings prior to the analysis using the showmodel command. In general, lset is

used to define the structure of the model and prset is used to define the prior

probability distributions on the parameters of the model. In the following, we

will specify a GTR + I + � model (a General Time Reversible model with a

proportion of invariable sites and a gamma-shaped distribution of rates across

sites) for the evolution of the mitochondrial sequences and we will check all of

the relevant priors. We assume that you are familiar with the common stochastic

models of molecular evolution.
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In general, a good start is to type help lset. Ignore the help information for now

and concentrate on the table at the bottom of the output, which specifies the

current settings. It should look like this:

Model settings for partition 1:

Parameter Options Current Setting
------------------------------------------------------------------
Nucmodel 4by4/Doublet/Codon/Protein 4by4
Nst 1/2/6/Mixed 1
Code Universal/Vertmt/Mycoplasma/

Yeast/Ciliates/Metmt Universal
Ploidy Haploid/Diploid/Zlinked Diploid
Rates Equal/Gamma/Propinv/Invgamma/Adgamma Equal
Ngammacat <number> 4
Nbetacat <number> 5
Omegavar Equal/Ny98/M3 Equal
Covarion No/Yes No
Coding All/Variable/Noabsencesites/

Nopresencesites All
Parsmodel No/Yes No
------------------------------------------------------------------

First, note that the table is headed by Model settings for partition 1. By

default, MrBayes divides the data into one partition for each type of data you

have in your DATA block. If you have only one type of data, all data will be in a

single partition by default. How to change the partitioning of the data will be

explained in the tutorial in chapter 3.

The Nucmodel setting allows you to specify the general type of DNA model. The

Doublet option is for the analysis of paired stem regions of ribosomal DNA and

the Codon option is for analyzing the DNA sequence in terms of its codons. We

will analyze the data using a standard nucleotide substitution model, in which

case the default 4by4 option is appropriate, so we will leave Nucmodel at its

default setting.

The general structure of the substitution model is determined by the Nst setting.

By default, all substitutions have the same rate (Nst=1), corresponding to the

F81 model (or the JC model if the stationary state frequencies are forced to be

equal using the prset command, see below). We want the GTR model (Nst=6)
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instead of the F81 model so we type lset nst=6. MrBayes should acknowledge

that it has changed the model settings.

The Code setting is only relevant if the Nucmodel is set to Codon. The Ploidy

setting is also irrelevant for us. However, we need to change the Rates setting

from the default Equal (no rate variation across sites) to Invgamma

(gamma-shaped rate variation with a proportion of invariable sites). Do this by

typing lset rates=invgamma. Again, MrBayes will acknowledge that it has

changed the settings. We could have changed both lset settings at once if we

had typed lset nst=6 rates=invgamma in a single line.

We will leave the Ngammacat setting (the number of discrete categories used to

approximate the gamma distribution) at the default of 4. In most cases, four rate

categories are su�cient. It is possible to increase the accuracy of the likelihood

calculations by increasing the number of rate categories. However, the time it

will take to complete the analysis will increase in direct proportion to the

number of rate categories you use, and the e↵ects on the results will be negligible

in most cases.

Of the remaining settings, it is only Covarion and Parsmodel that are relevant

for single nucleotide models. We will use neither the parsimony model nor the

covariotide model for our data, so we will leave these settings at their default

values. If you type help lset now to verify that the model is correctly set, the

table should look like this:

Model settings for partition 1:

Parameter Options Current Setting
------------------------------------------------------------------
Nucmodel 4by4/Doublet/Codon/Protein 4by4
Nst 1/2/6/Mixed 6
Code Universal/Vertmt/Mycoplasma/

Yeast/Ciliates/Metmt Universal
Ploidy Haploid/Diploid/Zlinked Diploid
Rates Equal/Gamma/Propinv/Invgamma/Adgamma Invgamma
Ngammacat <number> 4
Nbetacat <number> 5
Omegavar Equal/Ny98/M3 Equal
Covarion No/Yes No
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Coding All/Variable/Noabsencesites/
Nopresencesites All

Parsmodel No/Yes No
------------------------------------------------------------------

2.2.3 Setting the Priors

We now need to set the priors for our model. There are six types of parameters

in the model: the topology, the branch lengths, the four stationary frequencies of

the nucleotides, the six di↵erent nucleotide substitution rates, the proportion of

invariable sites, and the shape parameter of the gamma distribution of rate

variation. The default priors in MrBayes work well for most analyses, and we will

not change any of them for now. By typing help prset you can obtain a list of

the default settings for the parameters in your model. The table at the end of

the help information reads:

Model settings for partition 1:

Parameter Options Current Setting
------------------------------------------------------------------
Tratiopr Beta/Fixed Beta(1.0,1.0)
Revmatpr Dirichlet/Fixed Dirichlet(1.0,1.0,...
Aamodelpr Fixed/Mixed Fixed(Poisson)
Aarevmatpr Dirichlet/Fixed Dirichlet(1.0,1.0,...)
Omegapr Dirichlet/Fixed Dirichlet(1.0,1.0)
Ny98omega1pr Beta/Fixed Beta(1.0,1.0)
Ny98omega3pr Uniform/Exponential/Fixed Exponential(1.0)
M3omegapr Exponential/Fixed Exponential
Codoncatfreqs Dirichlet/Fixed Dirichlet(1.0,1.0,1.0)
Statefreqpr Dirichlet/Fixed Dirichlet(1.0,1.0,...
Shapepr Uniform/Exponential/Fixed Uniform(0.0,200.0)
Ratecorrpr Uniform/Fixed Uniform(-1.0,1.0)
Pinvarpr Uniform/Fixed Uniform(0.0,1.0)
Covswitchpr Uniform/Exponential/Fixed Uniform(0.0,100.0)
Symdirihyperpr Uniform/Exponential/Fixed Fixed(Infinity)
Topologypr Uniform/Constraints/Fixed Uniform
Brlenspr Unconstrained/Clock/Fixed Unconstrained:Exp(10.0)
Treeagepr Exponential/Gamma/Fixed Exponential(1.0)
Speciationpr Uniform/Exponential/Fixed Exponential(1.0)
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Extinctionpr Beta/Fixed Beta(1.0,1.0)
SampleStrat Random/Diversity/Cluster Random
Sampleprob <number> 1.00
Popsizepr Lognormal/Gamma/Uniform/ Lognormal(4.6,2.3)

Normal/Fixed
Popvarpr Equal/Variable Equal
Nodeagepr Unconstrained/Calibrated Unconstrained
Clockratepr Fixed/Normal/Lognormal/

Exponential/Gamma Fixed
Clockvarpr Strict/Cpp/TK02/Igr Strict
Cppratepr Fixed/Exponential Exponential(0.10)
Cppmultdevpr Fixed Fixed(0.40)
TK02varpr Fixed/Exponential/Uniform Exponential(10.00)
Ratepr Fixed/Variable=Dirichlet Fixed
------------------------------------------------------------------

We need to focus on Revmatpr (for the six substitution rates of the GTR rate

matrix), Statefreqpr (for the stationary nucleotide frequencies of the GTR rate

matrix), Shapepr (for the shape parameter of the gamma distribution of rate

variation), Pinvarpr (for the proportion of invariable sites), Topologypr (for the

topology), and Brlenspr (for the branch lengths).

The default prior probability density is a flat Dirichlet (all values are 1.0) for

both Revmatpr and Statefreqpr. This is appropriate if we want estimate these

parameters from the data assuming no prior knowledge about their values. It is

possible to fix the rates and nucleotide frequencies but this is generally not

recommended. However, it is occasionally necessary to fix the nucleotide

frequencies to be equal, for instance in specifying the JC and SYM models. This

would be achieved by typing prset statefreqpr=fixed(equal).

If we wanted to specify a prior that put more emphasis on equal nucleotide

frequencies than the default flat Dirichlet prior, we could for instance use prset

statefreqpr = Dirichlet(10,10,10,10) or, for even more emphasis on equal

frequencies, prset statefreqpr=Dirichlet(100,100,100,100). The sum of

the numbers in the Dirichlet distribution determines how focused the distribution

is, and the balance between the numbers determines the expected proportion of

each nucleotide (in the order A, C, G, and T). Usually, there is a connection

between the parameters in the Dirichlet distribution and the observations. For

example, you can think of a Dirichlet (150,100,90,140) distribution as one arising



2.2. THOROUGH VERSION 17

from observing (roughly) 150 A’s, 100 C’s, 90 G’s and 140 T’s in some set of

reference sequences. If the reference sequences are independent but clearly

relevant to the analysis of your sequences, it might be reasonable to use those

numbers as a prior in your analysis.

In our analysis, we will be cautious and leave the prior on state frequencies at its

default setting. If you have changed the setting according to the suggestions

above, you need to change it back by typing prset statefreqpr =

Dirichlet(1,1,1,1) or prs st = Dir(1,1,1,1) if you want to save some typing.

Similarly, we will leave the prior on the substitution rates at the default flat

Dirichlet(1,1,1,1,1,1) distribution.

The Shapepr parameter determines the prior for the ↵ (shape) parameter of the

gamma distribution of rate variation. We will leave it at its default setting, a

uniform distribution spanning a wide range of ↵ values. The prior for the

proportion of invariable sites is set with Pinvarpr. The default setting is a

uniform distribution between 0 and 1, an appropriate setting if we don’t want to

assume any prior knowledge about the proportion of invariable sites.

For topology, the default Uniform setting for the Topologypr parameter puts

equal probability on all distinct, fully resolved topologies. The alternative is to

introduce some constraints on the tree topology, but we will not attempt that in

this analysis.

The Brlenspr parameter can either be set to unconstrained or clock-constrained.

For trees without a molecular clock (unconstrained) the branch length prior can

be set either to exponential or uniform. The default exponential prior with

parameter 10.0 should work well for most analyses. It has an expectation of

1/10 = 0.1 but allows a wide range of branch length values (theoretically from 0

to infinity). Because the likelihood values vary much more rapidly for short

branches than for long branches, an exponential prior on branch lengths usually

works better than a uniform prior.
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2.2.4 Checking the Model

To check the model before we start the analysis, type showmodel. This will

give an overview of the model settings. In our case, the output will be as follows:

Model settings:

Data not partitioned --
Datatype = DNA
Nucmodel = 4by4
Nst = 6

Substitution rates, expressed as proportions
of the rate sum, have a Dirichlet prior
(1.00,1.00,1.00,1.00,1.00,1.00)

Covarion = No
# States = 4

State frequencies have a Dirichlet prior
(1.00,1.00,1.00,1.00)

Rates = Invgamma
Gamma shape parameter is uniformly dist-
ributed on the interval (0.00,200.00).
Proportion of invariable sites is uniformly dist-
ributed on the interval (0.00,1.00).
Gamma distribution is approximated using 4 categ...
Likelihood summarized over all rate categories ...

Active parameters:

Parameters
------------------
Revmat 1
Statefreq 2
Shape 3
Pinvar 4
Ratemultiplier 5
Topology 6
Brlens 7
------------------

1 -- Parameter = Revmat
Type = Rates of reversible rate matrix
Prior = Dirichlet(1.00,1.00,1.00,1.00,1.00,1.00)
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2 -- Parameter = Pi
Type = Stationary state frequencies
Prior = Dirichlet

3 -- Parameter = Alpha
Type = Shape of scaled gamma distribution of site rates
Prior = Uniform(0.00,200.00)

4 -- Parameter = Pinvar
Type = Proportion of invariable sites
Prior = Uniform(0.00,1.00)

5 -- Parameter = Ratemultiplier
Type = Partition-specific rate multiplier
Prior = Fixed(1.0)

6 -- Parameter = Tau
Type = Topology
Prior = All topologies equally probable a priori
Subparam. = V

7 -- Parameter = V
Type = Branch lengths
Prior = Unconstrained:Exponential(10.0)

Note that we have seven types of parameters in our model. All of these

parameters, except the rate multiplier, will be estimated during the analysis (to

fix them to some predetermined values, use the prset command and specify a

fixed prior). To see more information about each parameter, including its

starting value, use the showparams command. The startvals command allows

one to set the starting values, separately for each chain if desired.

2.2.5 Setting up the Analysis

The analysis is started by issuing the mcmc command. However, before doing

this, we recommend that you review the run settings by typing help mcmc. In

our case, we will get the following table at the bottom of the output:

Parameter Options Current Setting
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-----------------------------------------------------
Ngen <number> 1000000
Nruns <number> 2
Nchains <number> 4
Temp <number> 0.100000
Reweight <number>,<number> 0.00 v 0.00 ^
Swapfreq <number> 1
Nswaps <number> 1
Samplefreq <number> 500
Printfreq <number> 500
Printall Yes/No Yes
Printmax <number> 8
Mcmcdiagn Yes/No Yes
Diagnfreq <number> 5000
Diagnstat Avgstddev/Maxstddev Avgstddev
Minpartfreq <number> 0.10
Allchains Yes/No No
Allcomps Yes/No No
Relburnin Yes/No Yes
Burnin <number> 0
Burninfrac <number> 0.25
Stoprule Yes/No No
Stopval <number> 0.05
Savetrees Yes/No No
Checkpoint Yes/No Yes
Checkfreq <number> 100000
Filename <name> primates.nex.<p/t>
Startparams Current/Reset Current
Starttree Current/Random/ Current

Parsimony
Nperts <number> 0
Data Yes/No Yes
Ordertaxa Yes/No No
Append Yes/No No
Autotune Yes/No Yes
Tunefreq <number> 100
---------------------------------------------------------------------------

The Ngen setting is the number of generations for which the analysis will be run.

It is useful to run a small number of generations first to make sure the analysis is

correctly set up and to get an idea of how long it will take to complete a longer

analysis. We will start with 20,000 generations but you may want to start with

an even smaller number for a larger data set. To change the Ngen setting without

starting the analysis we use the mcmcp command, which is equivalent to mcmc

except that it does not start the analysis. Type mcmcp ngen=20000 to set the

number of generations to 20,000. You can type help mcmc to confirm that the



2.2. THOROUGH VERSION 21

setting was changed appropriately.

By default, MrBayes will run two simultaneous, completely independent analyses

starting from di↵erent random trees (Nruns = 2). Running more than one

analysis simultaneously allows MrBayes to calculate convergence diagnostics on

the fly, which is helpful in determining when you have a good sample from the

posterior probability distribution. The idea is to start each run from a di↵erent,

randomly chosen tree. In the early phases of the run, the two runs will sample

very di↵erent trees but when they have reached convergence (when they produce

a good sample from the posterior probability distribution), the two tree samples

should be very similar.

To make sure that MrBayes compares tree samples from the di↵erent runs, check

that Mcmcdiagn is set to yes and that Diagnfreq is set to some reasonable value.

The default value of 5000 is more appropriate for a larger analysis, so change the

setting so that we compute diagnostics every 1000th generation instead by typing

mcmcp diagnfreq=1000.

MrBayes will now calculate various run diagnostics every Diagnfreq generation

and print them to a file with the name <Filename>.mcmc. The most important

diagnostic, a measure of the similarity of the tree samples in the di↵erent runs,

will also be printed to screen every Diagnfreq generation. Every time the

diagnostics are calculated, either a fixed number of samples (burnin) or a

percentage of samples (burninfrac) from the beginning of the chain is discarded.

The relburnin setting determines whether a fixed burnin (relburnin=no) or a

burnin percentage (relburnin=yes) is used. By default, MrBayes will discard the

first 25 % samples from the cold chain (relburnin=yes and burninfrac=0.25).

By default, MrBayes uses Metropolis coupling to improve the MCMC sampling

of the target distribution. The Swapfreq, Nswaps, Nchains, and Temp settings

together control the Metropolis coupling behavior. When Nchains is set to 1, no

heating is used. When Nchains is set to a value n larger than 1, then n� 1

heated chains are used. By default, Nchains is set to 4, meaning that MrBayes

will use 3 heated chains and one “cold” chain. In our experience, heating is

essential for some data sets but it is not needed for others. Adding more than

three heated chains may be helpful in analyzing large and di�cult data sets. The
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time complexity of the analysis is directly proportional to the number of chains

used (unless MrBayes runs out of physical RAM memory, in which case the

analysis will suddenly become much slower), but the cold and heated chains can

be distributed among processors in a cluster of computers and among cores in

multicore processors using the MPI version of the program, greatly speeding up

the calculations.

MrBayes uses an incremental heating scheme, in which chain i is heated by

raising its posterior probability to the power 1/(1 + i�), where � is the heating

coe�cient controlled by the Temp parameter. Every Swapfreq generation, two

chains are picked at random and an attempt is made to swap their states. For

many analyses, the default settings should work nicely. If you are running many

more than three heated chains, however, you may want to increase the number of

swaps (Nswaps) that are tried each time the chain stops for swapping. If the

frequency of swapping between chains that are adjacent in temperature is low,

you may want to decrease the Temp parameter.

The Samplefreq setting determines how often the chain is sampled; the default

is every 500 generations. This works well for moderate-sized analyses but our

analysis is so small and is likely to converge so rapidly that it makes sense to

sample more often. Let us sample the chain every 100th generation instead by

typing mcmcp samplefreq=100. For really large data sets that take a long

time to converge, you may even want to sample less frequently than the default,

or you will end up with very large files containing tree and parameter samples.

When the chain is sampled, the current values of the model parameters are

printed to file. The substitution model parameters are printed to a .p file (in our

case, there will be one file for each independent analysis, and they will be called

primates.nex.run1.p and primates.nex.run2.p). The .p files are tab

delimited text files that can be imported into most statistics and graphing

programs. The topology and branch lengths are printed to a .t file (in our case,

there will be two files called primates.nex.run1.t and primates.nex.run2.t).

The .t files are Nexus tree files that can be imported into programs like PAUP*

and TreeView. The root of the .p and .t file names can be altered using the

Filename setting.
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The Printfreq parameter controls the frequency with which brief info about the

analysis is printed to screen. The default value is 500. Let us change it to match

the sample frequency by typing mcmcp printfreq=100.

When you set up your model and analysis (the number of runs and heated

chains), MrBayes creates starting values for the model parameters. A di↵erent

random tree with predefined branch lengths is generated for each chain and most

substitution model parameters are set to predefined values. For instance,

stationary state frequencies start out being equal and unrooted trees have all

branch lengths set to 0.1. The starting values can be changed by using the

Startvals command. For instance, user-defined trees can be read into MrBayes

by executing a Nexus file with a ”trees” block. The available user trees can then

be assigned to di↵erent chains using the Startvals command. After a completed

analysis, MrBayes keeps the parameter values of the last generation and will use

those as the starting values for the next analysis unless the values are reset using

mcmc starttrees=random startvals=reset.

Since version 3.2, MrBayes prints all parameter values of all chains (cold and

heated) to a checkpoint file every Checkfreq generations, by default every

100, 000 generations. The checkpoint file has the su�x .ckp. If you run an

analysis and it is stopped prematurely, you can restart it from the last

checkpoint by using mcmc append=yes. MrBayes will start the new analysis from

the checkpoint; it will even read in all the old trees and include them in the

convergence diagnostics. At the end of the new run, you will have parameter and

tree files that are indistinguishable from those you would have obtained from an

uninterrupted analysis. Our data set is so small, however, that we are likely to

get an adequate sample from the posterior before the first checkpoint is reached.

2.2.6 Running the Analysis

Finally, we are ready to start the analysis. Type mcmc. MrBayes will first print

information about the model and then list the proposal mechanisms that will be

used in sampling from the posterior distribution. In our case, the proposals are

the following:
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The MCMC sampler will use the following moves:
With prob. Chain will use move

1.79 % Dirichlet(Revmat)
1.79 % Slider(Revmat)
1.79 % Dirichlet(Pi)
1.79 % Slider(Pi)
3.57 % Multiplier(Alpha)

17.86 % eSS(Tau,V)
17.86 % eTBR(Tau,V)
35.71 % pSPR(Tau,V)
17.86 % Multiplier(V)

The exact set of proposals and their relative probabilities may di↵er depending

on the exact version of the program that you are using. Note that MrBayes will

spend most of its e↵ort changing the topology (Tau) and branch length (V)

parameters. In our experience, topology and branch lengths are the most di�cult

parameters to integrate over and we therefore let MrBayes spend a large

proportion of its time proposing new values for those parameters. The proposal

probabilities and tuning parameters can be changed with the Propset command,

but be warned that inappropriate changes of these settings may destroy any

hopes of achieving convergence.

After the initial log likelihoods, MrBayes will print the state of the chains every

100th generation, like this:

Chain results:

0 -- (-7515.474) (-7815.502) (-7571.894) [-7511.216] * (-7912.443) (-7430.324) (-7722.968) [-7559.768]

100 -- (-6457.486) (-6443.204) (-6362.653) [-6380.948] * (-6452.131) (-6412.384) (-6460.409) [-6335.541] -- 0:00:00

200 -- (-6372.894) (-6284.653) [-6212.481] (-6320.671) * (-6326.804) [-6206.832] (-6368.248) (-6274.370) -- 0:01:39

300 -- (-6215.251) (-6238.351) [-6173.761] (-6215.648) * [-6175.548] (-6162.354) (-6295.342) (-6170.237) -- 0:01:05

400 -- (-6169.260) [-6106.352] (-6157.140) (-6134.522) * [-6044.984] (-6105.105) (-6239.651) (-6126.382) -- 0:01:38

500 -- (-6132.093) [-6045.345] (-6071.921) (-6105.350) * [-6027.764] (-6052.897) (-6122.643) (-6054.535) -- 0:01:18

600 -- (-6086.736) [-5966.605] (-6022.943) (-6048.775) * (-6005.907) (-6050.838) (-6052.809) [-5987.512] -- 0:01:04

700 -- (-6071.156) [-5949.411] (-6001.893) (-6028.975) * (-5969.434) (-6034.590) (-5985.207) [-5962.131] -- 0:01:22

800 -- (-6043.289) [-5919.917] (-5955.320) (-5990.842) * (-5934.204) (-5998.712) [-5917.514] (-5957.886) -- 0:01:12

900 -- (-6036.192) [-5915.292] (-5940.829) (-5928.622) * (-5916.117) (-5974.419) [-5885.179] (-5947.285) -- 0:01:03

1000 -- (-6033.926) [-5879.274] (-5930.137) (-5912.750) * (-5919.677) (-5979.409) [-5849.042] (-5893.568) -- 0:01:16

Average standard deviation of split frequencies: 0.000000

1100 -- (-6015.382) (-5879.918) (-5932.478) [-5850.292] * (-5845.497) (-5970.688) [-5835.631] (-5882.916) -- 0:01:08

...

19000 -- (-5725.208) (-5728.059) (-5723.771) [-5720.516] * (-5725.163) (-5733.313) (-5731.771) [-5733.018] -- 0:00:03

Average standard deviation of split frequencies: 0.000000

19100 -- (-5721.777) (-5731.432) [-5724.683] (-5719.899) * (-5724.676) [-5725.091] (-5728.996) (-5742.658) -- 0:00:03

19200 -- (-5725.644) [-5723.736] (-5730.977) (-5718.788) * [-5732.428] (-5725.226) (-5733.051) (-5741.748) -- 0:00:02

19300 -- (-5722.932) (-5727.877) (-5729.790) [-5719.233] * [-5728.970] (-5732.444) (-5730.074) (-5731.851) -- 0:00:02

19400 -- (-5722.253) (-5732.094) (-5733.256) [-5721.040] * (-5731.382) [-5726.897] (-5734.551) (-5733.469) -- 0:00:02

19500 -- [-5723.923] (-5732.401) (-5726.903) (-5722.455) * (-5727.740) (-5722.413) (-5736.126) [-5727.055] -- 0:00:01

19600 -- (-5731.034) (-5729.754) (-5732.244) [-5725.747] * (-5725.214) (-5722.015) (-5733.053) [-5723.926] -- 0:00:01

19700 -- (-5738.424) (-5731.187) (-5728.800) [-5728.881] * (-5725.340) [-5720.537] (-5734.678) (-5725.685) -- 0:00:01

19800 -- (-5732.570) (-5732.026) (-5729.572) [-5727.604] * [-5721.525] (-5718.952) (-5741.802) (-5722.740) -- 0:00:00

19900 -- (-5724.326) (-5728.367) [-5725.441] (-5726.584) * (-5723.621) (-5730.548) (-5746.447) [-5716.807] -- 0:00:00
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20000 -- (-5723.983) (-5727.877) [-5724.582] (-5720.923) * (-5730.172) (-5728.091) (-5748.344) [-5716.947] -- 0:00:00

Average standard deviation of split frequencies: 0.000520

Continue with analysis? (yes/no): no

If you have the terminal window wide enough, each generation of the chain will

print on a single line.

The first column lists the generation number. The following four columns with

negative numbers each correspond to one chain in the first run. Each column

represents one physical location in computer memory, and the chains shift

positions in the columns as the run proceeds (it is actually only the temperature

that is shifted). The numbers are the log likelihood values of the chains. The

chain that is currently the cold chain has its value surrounded by square brackets,

whereas the heated chains have their values surrounded by parentheses. When

two chains successfully change states, they trade column positions (places in

computer memory). If the Metropolis coupling works well, the cold chain should

move around among the columns; this means that the cold chain successfully

swaps states with the heated chains. If the cold chain gets stuck in one of the

columns, then the heated chains are not successfully contributing states to the

cold chain, and the Metropolis coupling is ine�cient. The analysis may then

have to be run longer. You can also try to reduce the temperature di↵erence

between chains, which may increase the e�ciency of the Metropolis coupling.

The star column separates the two di↵erent runs. The last column gives the time

left to completion of the specified number of generations. This analysis

approximately takes 1 second per 100 generations. Because di↵erent moves are

used in each generation, the exact time varies somewhat for each set of 100

generations, and the predicted time to completion will be unstable in the

beginning of the run. After a while, the predictions will become more accurate

and the estimated remaining time will decrease more evenly between generations.

2.2.7 When to Stop the Analysis

At the end of the run, MrBayes asks whether or not you want to continue with

the analysis. Before answering that question, examine the average standard
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deviation of split frequencies. As the two runs converge onto the stationary

distribution, we expect the average standard deviation of split frequencies to

approach zero, reflecting the fact that the two tree samples become increasingly

similar. In our case, the average standard deviation is down to 0.0 already after

1,000 generations and then stays at very low values throughout the run. Your

values can di↵er slightly because of stochastic e↵ects but should show a similar

trend.

In larger and more di�cult analyses, you will typically see the standard deviation

of split frequencies come down much more slowly towards 0.0; the standard

deviation can even increase temporarily, especially in the early part of the run. A

rough guide is that an average standard deviation below 0.01 is very good

indication of convergence, while values between 0.01 and 0.05 may be adequate

depending on the purpose of your analysis. The sumt command (see below)

allows you to examine the error (standard deviation) associated with each clade

in the tree. Typically, most of the error is associated with clades that are not

very well supported (posterior probabilities well below 0.95), and getting

accurate estimates of those probabilities may not be an important depending on

the purpose of the analysis.

Given the extremely low value of the average standard deviation at the end of

the run, there appears to be no need to continue the analysis beyond 20,000

generations so when MrBayes asks Continue with analysis? (yes/no): stop

the analysis by typing no.

Although we recommend using a convergence diagnostic, such as the standard

deviation of split frequencies, there are also simpler but less powerful methods of

determining when to stop the analysis. The simplest technique is to examine the

log likelihood values (or, more exactly, the log probability of the data given the

parameter values) of the cold chain, that is, the values printed to screen within

square brackets. In the beginning of the run, the values typically increase rapidly

(the absolute values decrease, since these are negative numbers). In our case, the

values increase from below �7500 to around �5725 in the first few thousand

generations. This is the ”burn-in” phase and the corresponding samples are

typically discarded. Once the likelihood of the cold chain stops to increase and

starts to randomly fluctuate within a more or less stable range, the run may have
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reached stationarity, that is, it may be producing a good sample from the

posterior probability distribution. At stationarity, we also expect di↵erent,

independent runs to sample similar likelihood values. Trends in likelihood values

can be deceiving though; you’re more likely to detect problems with convergence

by comparing split frequencies than by looking at likelihood trends.

When you stop the analysis, MrBayes will print several types of information

useful in optimizing the analysis. This is primarily of interest if you have

di�culties in obtaining convergence, which is unlikely to happen with this

analysis. We give a few tips on how to improve convergence at the end of the

following section.

2.2.8 Summarizing Samples of Model Parameters

During the run, samples of the substitution model parameters have been written

to the .p files every samplefreq generation. These files are tab-delimited text

files that look something like this (numbers are actually given in scientific format

by default, so the files do not look quite as nice as the one below although they

are structurally equivalent):

[ID: 9409050143]
Gen LnL TL r(A<->C) ... pi(T) alpha pinvar
1 -7821.374 2.100 0.166667 ... 0.250000 0.500000 0.000000
100 -6328.159 2.091 0.166667 ... 0.307263 0.842091 0.036693
....
19900 -5723.107 2.990 0.048609 ... 0.251888 0.605319 0.152817
20000 -5720.765 2.959 0.048609 ... 0.240826 0.636716 0.180024

The first number, in square brackets, is a randomly generated ID number that

lets you identify the analysis from which the samples come. The next line

contains the column headers, and is followed by the sampled values. From left to

right, the columns contain: (1) the generation number (Gen); (2) the log

likelihood of the cold chain (LnL); (3) the total tree length (the sum of all branch

lengths, TL); (4) the six GTR rate parameters (r(A<->C), r(A<->G) etc); (5) the

four stationary nucleotide frequencies (pi(A), pi(C) etc); (6) the shape

parameter of the gamma distribution of rate variation (alpha); and (7) the
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proportion of invariable sites (pinvar). If you use a di↵erent model for your data

set, the .p files will of course be di↵erent.

MrBayes provides the sump command to summarize the sampled parameter

values. By default, the sump command uses the same burn-in as the convergence

diagnostics in the mcmc command. This should be appropriate if we use these

diagnostics to determine when we have an appropriate sample from the posterior.

Thus, we can summarize the information in the .p file by simply typing sump.

By default, sump will summarize the information in the .p file or files generated

most recently, but the filename can be changed if necessary. The relburnin=yes

option specifies that we want to give the burn-in in terms of a fraction (relative

burn-in) rather than as an absolute value. The burninfrac option specifies the

desired burn-in fraction.

The sump command will first generate a plot of the generation versus the log

probability of the data (the log likelihood values). If we are at stationarity, this

plot should look like ”white noise”, that is, there should be no tendency of

increase or decrease over time. The plot should look something like this:

+------------------------------------------------------------+ -5717.71
| 2 1 1 2|
| 1 1 |
| 2 2 1 1 1 |
|22 2 1 12 1 |
| 22 2 1 1 1 2 1 1 1 2 |
|11 1111 1 1 112 1 2 12 1 |
| 1 * 22 2 1 1* 2 2 |
| 2 1 1 1 1 2* 12 2 12 1 |
| 221 2 12 2 * 2 2 2 1 2 1|
| 2 1 2 * 2 1 1 2 2 2 2 1 |
| 1 1 2 2 11 1 |
| 2 2 2 2 2 12 2 |
| 2 2 |
| 2 |
| 1 1 2 |
+------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ -5731.34
^ ^
5000 20000
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If you see an obvious trend in your plot, either increasing or decreasing, you very

likely need to run the analysis longer to get an adequate sample from the

posterior probability distribution.

At the bottom of the sump output, there is a table summarizing the samples of

the parameter values:

95% HPD Interval

--------------------

Parameter Mean Variance Lower Upper Median PSRF+

------------------------------------------------------------------------------

TL 2.925036 0.067504 2.415013 3.379712 2.928130 0.997

r(A<->C) 0.046638 0.000087 0.025996 0.061754 0.047223 1.033

r(A<->G) 0.472949 0.001944 0.380185 0.538198 0.475733 1.093

r(A<->T) 0.038436 0.000070 0.024704 0.057508 0.037291 1.067

r(C<->G) 0.028027 0.000145 0.005312 0.049157 0.028217 1.023

r(C<->T) 0.394395 0.001729 0.319370 0.473755 0.390730 1.110

r(G<->T) 0.019556 0.000169 0.000078 0.044754 0.017799 1.018

pi(A) 0.355732 0.000173 0.333218 0.383760 0.354468 1.064

pi(C) 0.317528 0.000128 0.299947 0.342945 0.317121 1.031

pi(G) 0.082920 0.000045 0.072361 0.096352 0.082537 1.164

pi(T) 0.243820 0.000085 0.224679 0.260468 0.244298 1.014

alpha 0.693416 0.065342 0.336440 1.174297 0.655553 1.061

pinvar 0.165968 0.009690 0.001575 0.310722 0.178146 1.090

------------------------------------------------------------------------------

For each parameter, the table lists the mean and variance of the sampled values,

the lower and upper boundaries of the 95 % credibility interval, and the median

of the sampled values. The parameters are the same as those listed in the .p files:

the total tree length (TL), the six reversible substitution rates (r(A<->C),

r(A<->G), etc), the four stationary state frequencies (pi(A), pi(C), etc), the

shape of the gamma distribution of rate variation across sites (alpha), and the

proportion of invariable sites (pinvar). Note that the six rate parameters of the

GTR model are given as proportions of the rate sum (the Dirichlet

parameterization). This parameterization has some advantages in the Bayesian

context; in particular, it allows convenient formulation of priors. If you want to

scale the rates relative to the G-T rate, just divide all rate proportions by the

G-T rate proportion.

The last column in the table contains a convergence diagnostic, the Potential

Scale Reduction Factor (PSRF). If we have a good sample from the posterior

probability distribution, these values should be close to 1.0. A reasonable goal

might be to aim for values between 1.00 and 1.02 but it can be di�cult to

achieve this for all parameters in the model in larger and more complicated



30 CHAPTER 2. TUTORIAL: A SIMPLE ANALYSIS

analyses. In our case, we can probably easily obtain more accurate estimates by

running the analysis slightly longer.

2.2.9 Summarizing Tree Samples

Trees and branch lengths are printed to the .t files. These files are

Nexus-formatted tree files with a structure like this (the real files have branch

lengths printed in scientific format so they look slightly more messy but the

structure is the same):

#NEXUS
[ID: 9409050143]
[Param: tree]
begin trees;
translate

1 Tarsius_syrichta,
2 Lemur_catta,
3 Homo_sapiens,
4 Pan,
5 Gorilla,
6 Pongo,
7 Hylobates,
8 Macaca_fuscata,
9 M_mulatta,
10 M_fascicularis,
11 M_sylvanus,
12 Saimiri_sciureus;

tree gen.1 = [&U] ((12:0.100000,(((((3:0.100000,4:0.100000):0.100000...
...
tree gen.20000 = [&U] (((((10:0.087647,(8:0.013447,9:0.021186):0.030...

end;

To summarize the tree and branch length information, type sumt relburnin =

yes burninfrac = 0.25. The sumt and sump commands each have separate

burn-in settings so it is necessary to give the burn-in here again. Most MrBayes

settings are persistent and need not be repeated every time a command is

executed but the settings are typically not shared across commands. To make

sure the settings for a particular command are correct, you can always use help

<command> before issuing the command.
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The sumt command will output, among other things, summary statistics for the

taxon bipartitions, a tree with clade credibility (posterior probability) values,

and a phylogram (if branch lengths have been saved). The output first gives a

key to each partition in the tree sample using dots for the taxa that are on one

side of the partition and stars for the taxa on the other side. For instance, the

14th partition (ID 14) in the output below represents the clade Homo (taxon 3)

and Pan (taxon 4), since there are stars in the third and fourth positions and a

dot in all other positions.

List of taxa in bipartitions:

1 -- Tarsius_syrichta
2 -- Lemur_catta
3 -- Homo_sapiens
4 -- Pan
5 -- Gorilla
6 -- Pongo
7 -- Hylobates
8 -- Macaca_fuscata
9 -- M_mulatta
10 -- M_fascicularis
11 -- M_sylvanus
12 -- Saimiri_sciureus

Key to taxon bipartitions (saved to file "primates.nex.parts"):

ID -- Partition
------------------
1 -- .***********
2 -- .*..........
3 -- ..*.........
4 -- ...*........
5 -- ....*.......
6 -- .....*......
7 -- ......*.....
8 -- .......*....
9 -- ........*...

10 -- .........*..
11 -- ..........*.
12 -- ...........*
13 -- .......****.
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14 -- ..**........
15 -- ..**********
16 -- .......**...
17 -- ..*********.
18 -- ..*****.....
19 -- ..****......
20 -- ..***.......
21 -- .......***..
------------------

Then it gives a table over the informative bipartitions (the ones with more than

one taxon included), specifying the number of times the partition was sampled

(#obs), the probability of the partition (Probab.), the standard deviation of the

partition frequency (Sd(s)) across runs, the min and max of the standard

deviation across runs (Min(s) and Max(s)) and finally the number of runs in

which the partition was encountered. In our analysis, there is overwhelming

support for a single tree, so all partitions in this tree have a posterior probability

of 1.0.

Summary statistics for informative taxon bipartitions
(saved to file "primates.nex.tstat"):

ID #obs Probab. Sd(s)+ Min(s) Max(s) Nruns
----------------------------------------------------------------
13 302 1.000000 0.000000 1.000000 1.000000 2
14 302 1.000000 0.000000 1.000000 1.000000 2
15 302 1.000000 0.000000 1.000000 1.000000 2
16 302 1.000000 0.000000 1.000000 1.000000 2
17 302 1.000000 0.000000 1.000000 1.000000 2
18 302 1.000000 0.000000 1.000000 1.000000 2
19 302 1.000000 0.000000 1.000000 1.000000 2
20 302 1.000000 0.000000 1.000000 1.000000 2
21 302 1.000000 0.000000 1.000000 1.000000 2
----------------------------------------------------------------

We then get a table summarizing branch and node parameters, in our case the

branch lengths. The indices in this table refer to the key to partitions. For

instance, length[14] is the length of the branch corresponding to partition ID

14. As we noted above, this is the branch grouping humans and chimps. The

meaning of most of the values in this table is obvious. The last two columns give
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a convergence diagnostic, the Potential Scale Reduction Factor (PSRF), and the

numnber of runs in which the partition was encountered. The PSRF diagnostic is

the same used for the regular parameter samples, and it should approach 1.0 as

runs converge.

Summary statistics for branch and node parameters

(saved to file "primates.nex.vstat"):

95% HPD Interval

--------------------

Parameter Mean Variance Lower Upper Median PSRF+ Nruns

--------------------------------------------------------------------------------------

length[1] 0.486115 0.007159 0.349117 0.660632 0.477699 0.997 2

length[2] 0.335038 0.003829 0.222216 0.448005 0.331021 1.008 2

length[3] 0.050689 0.000114 0.033718 0.072349 0.049417 1.001 2

length[4] 0.060501 0.000144 0.039651 0.082690 0.060417 0.997 2

length[5] 0.057754 0.000183 0.031723 0.081064 0.056059 1.001 2

length[6] 0.143419 0.000537 0.100539 0.189667 0.140537 1.000 2

length[7] 0.172066 0.001072 0.112808 0.233264 0.172907 1.007 2

length[8] 0.016107 0.000031 0.005941 0.026377 0.015679 1.001 2

length[9] 0.023164 0.000045 0.011955 0.037226 0.022580 0.999 2

length[10] 0.056704 0.000147 0.033104 0.079370 0.056479 0.999 2

length[11] 0.069330 0.000366 0.029295 0.103081 0.070148 1.012 2

length[12] 0.433951 0.005270 0.305526 0.572054 0.426316 0.998 2

length[13] 0.248133 0.002680 0.148162 0.338245 0.243948 0.997 2

length[14] 0.029261 0.000142 0.008043 0.052766 0.028329 0.997 2

length[15] 0.273555 0.003600 0.163707 0.403779 0.268913 1.011 2

length[16] 0.035972 0.000125 0.016521 0.059122 0.035263 0.998 2

length[17] 0.118515 0.001761 0.044026 0.199364 0.119746 0.998 2

length[18] 0.124953 0.001162 0.052839 0.178939 0.122538 0.997 2

length[19] 0.057618 0.000424 0.017331 0.091541 0.057151 1.000 2

length[20] 0.082425 0.000486 0.051259 0.137057 0.080014 0.997 2

length[21] 0.049766 0.000398 0.018269 0.094330 0.047661 0.997 2

--------------------------------------------------------------------------------------

This table is followed by two trees. The clade credibility tree (upper tree) gives

the probability of each partition or clade in the tree, and the phylogram (lower

tree) gives the branch lengths measured in expected substitutions per site:

Clade credibility values:

/--------------------------------------------------------- Tarsius_syrichta (1)
|
|--------------------------------------------------------- Lemur_catta (2)
|
| /-------- Homo_sapiens (3)
| /--100--+
| | \-------- Pan (4)
| /--100--+
| | \---------------- Gorilla (5)
| /---100--+
+ | \------------------------ Pongo (6)
| /--100--+
| | \--------------------------------- Hylobates (7)
| |
| | /-------- Macaca_fuscata (8)
| /--100--+ /--100--+
| | | | \-------- M_mulatta (9)
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| | | /--100--+
| | | | \---------------- M_fascicularis (10)
\--100--+ \-------100------+

| \------------------------ M_sylvanus (11)
|
\------------------------------------------------- Saimiri_sciureus (12)

Phylogram (based on average branch lengths):

/--------------------------------------- Tarsius_syrichta (1)
|
|--------------------------- Lemur_catta (2)
|
| /---- Homo_sapiens (3)
| /-+
| | \----- Pan (4)
| /------+
| | \---- Gorilla (5)
| /---+
+ | \------------ Pongo (6)
| /--------+
| | \------------- Hylobates (7)
| |
| | /-- Macaca_fuscata (8)
| /---------+ /-+
| | | | \-- M_mulatta (9)
| | | /---+
| | | | \---- M_fascicularis (10)
\--------------------+ \-------------------+

| \------ M_sylvanus (11)
|
\---------------------------------- Saimiri_sciureus (12)

|--------------| 0.200 expected changes per site

In the background, the sumt command creates five additional files. The first is a

.parts file, which contains the key to taxon bipartitions. The second and third

are the .tstat and .vstat files, which contain the summaries of partition

statistics and branch length statistics, respectively.

The next is the .con file, which includes the consensus trees. By default, the

consensus tree with all the relevant clade support values and branch length

information is printed in a format suitable for FigTree. Once the .con file is

opened in FigTree, you can display statistics such as the posterior probability

and its associated standard deviation on each clade in the tree.
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Alternatively, you can specify conformat=simple to get the consenus trees in a

simpler format that can be opened in most tree drawing programs. The simple

format contains two di↵erent trees, one with both branch lengths and support

values, and one with only branch lengths. Be sure to select the appropriate one if

you wish to display both branch lengths and support values.

The last file generated by the sumt command is the .trprobs file, which contains

the trees that were found during the MCMC search, sorted by posterior

probability. This allows you to examine the trees contained in various credible

sets of trees. For instance, the 95 % credible set contains the most probable trees

up to an accumulated posterior probability of 95 %. In our case, this file will

only contain one tree, but data sets with more topological uncertainty can

produce long lists of trees in the .trprobs files.
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Chapter 3

Tutorial: A Partitioned Analysis

MrBayes handles a wide variety of data types and models, as well as any mix of

these models. In this example we will look at how to set up a simple analysis of a

combined data set, consisting of data from four genes and morphology for 30

taxa of gall wasps and outgroups. A similar approach can be used, e.g., to set up

a partitioned analysis of molecular data coming from di↵erent genes. The data

set for this tutorial is found in the file cynmix.nex.

3.1 Getting Mixed Data into MrBayes

First, open up the Nexus data file in a text editor. The DATA block of the

Nexus file should look familiar but there are some di↵erences compared to the

primates.nex file in the format statement:

Format datatype=mixed(Standard:1-166,DNA:167-3246)
interleave=yes gap=- missing=?;

First, the datatype is given as mixed followed by a specification of the content of

the matrix: it contains standard (morphology) characters in columns 1-166 and

DNA characters in the remaining columns. The mixed datatype is an extension

to the Nexus standard, which originated in MrBayes 3. It may not be compatible

with other phylogenetics programs.

37
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Second, the matrix is specified to be interleaved. It is often convenient to specify

mixed data in interleaved format, with each block consisting of a natural subset

of the matrix, such as the morphological data or one of the gene regions.

3.2 Dividing the Data into Partitions

By default, MrBayes partitions the data according to data type. There are only

two data types in the matrix, so the default model will include only a

morphology (standard) and a DNA partition. To divide the DNA partition into

gene regions or other appropriate subsets, it is convenient to first specify

character sets. In principle, this can be done from the command line but it is

easier to do it in a MrBayes block in the data file. With the MrBayes

distribution, we added a file cynmix-run.nex with a complete MrBayes block.

For this section, we are going to create a command block from scratch, but you

can consult the cynmix-run.nex for reference.

In your favorite text editor, create a new file called cynmix-command.nex in the

same directory as the cynmix.nex file and add the following new MrBayes block

(note that each line must be terminated by a semicolon):

#NEXUS

begin mrbayes;
execute cynmix.nex;
charset morphology = 1-166;
charset COI = 167-1244;
charset EF1a = 1245-1611;
charset LWRh = 1612-2092;
charset 28S = 2093-3246;

The first line is required to comply with the nexus standard. With the execute

command, we load the data from the cynmix.nex file and the charset command

simply associates a name with a set of characters. For instance, the character set

COI is defined above to include characters 167 to 1244. The next step is to define

a partition of the data according to genes and morphology. This is accomplished

with the line (add it after the lines above):
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partition favored = 5: morphology, COI, EF1a, LWRh, 28S;

The elements of the partition command are: (1) the name of the partitioning

scheme (favored); (2) an equal sign (=); (3) the number of character divisions in

the scheme (5); (4) a colon (:); and (5) a list of the characters in each division,

separated by commas. The list of characters can simply be an enumeration of the

character numbers (the above line is equivalent to partition favored = 5:

1-166, 167-1244, 1245-1611, 1612-2092, 2093-3246;) but it is often more

convenient to use predefined character sets like we did above. The final step is to

tell MrBayes that we want to work with this partitioning of the data instead of

the default partitioning. We do this using the set command:

set partition = favored;

Finally, we need to add an end statement to close the MrBayes block. The entire

file should now look like this:

#NEXUS

begin mrbayes;
execute cynmix.nex;
charset morphology = 1-166;
charset COI = 167-1244;
charset EF1a = 1245-1611;
charset LWRh = 1612-2092;
charset 28S = 2093-3246;
partition favored = 5: morphology, COI, EF1a, LWRh, 28S;
set partition = favored;

end;

When we read this block into MrBayes, we will get a partitioned model with the

first character division being morphology, the second division being the COI

gene, etc. Save the data file, exit your text editor, and finally launch MrBayes

and type execute cynmix-command.nex to read in your data and set up the

partitioning scheme. Note that this command causes MrBayes to read in the

data file because it contains the command execute cynmix.nex.
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3.3 Specifying a Partitioned Model

Before starting to specify the partitioned model, it is useful to examine the

default model. Type showmodel and you should get this table as part of the

output:

Active parameters:

Partition(s)
Parameters 1 2 3 4 5
------------------------------
Statefreq 1 2 2 2 2
Ratemultiplier 3 3 3 3 3
Topology 4 4 4 4 4
Brlens 5 5 5 5 5
------------------------------

There is a lot of other useful information in the output of showmodel but this

table is the key to the partitioned model. We can see that there are five

partitions in the model and five active (free) parameters. There are two

stationary state frequency parameters, one for the morphological data

(parameter 1) and one for the DNA data (parameter 2). Then there is also a

ratemultiplier (3), a topology parameter (4) and a set of branch length

parameters (5). All three are the same for all partitions.

Now, assume we want a separate GTR + � + I model for each gene partition.

All the parameters should be estimated separately for the individual genes.

Assume further that we want the overall evolutionary rate to be (potentially)

di↵erent across partitions, and that we want to assume gamma-shaped rate

variation for the morphological data. We can obtain this model by using lset

and prset with the applyto mechanism, which allows us to apply the settings to

specific partitions. For instance, to apply a GTR + � + I model to the molecular

partitions, we type lset applyto=(2,3,4,5) nst=6 rates=invgamma. This

will produce the following table when showmodel is invoked:

Active parameters:

Partition(s)
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Parameters 1 2 3 4 5
------------------------------
Revmat . 1 1 1 1
Statefreq 2 3 3 3 3
Shape . 4 4 4 4
Pinvar . 5 5 5 5
Ratemultiplier 6 6 6 6 6
Topology 7 7 7 7 7
Brlens 8 8 8 8 8
------------------------------

As you can see, all molecular partitions now evolve under the correct model but

all parameters (statefreq, revmat, shape, pinvar) are shared across partitions.

To unlink them such that each partition has its own set of parameters, type:

unlink statefreq=(all) revmat=(all) shape=(all) pinvar=(all). Gamma-shaped

rate variation for the morphological data is enforced with lset applyto=(1)

rates=gamma. The trickiest part is to allow the overall rate to be di↵erent

across partitions. This is achieved using the ratepr parameter of the prset

command. By default, ratepr is set to fixed, meaning that all partitions have

the same overall rate. By changing this to variable, the rates are allowed to vary

under a flat Dirichlet prior. To allow all our partitions to evolve under di↵erent

rates, type prset applyto=(all) ratepr=variable.

The model is now essentially complete but there is one final thing to consider.

Typically morphological data matrices do not include all types of characters.

Specifically, morphological data matrices do not usually include any constant

(invariable) characters. Sometimes, autapomorphies are not included either, and

the matrix is restricted to parsimony-informative characters. For MrBayes to

calculate the probability of the data correctly, we need to inform it of this

ascertainment (coding) bias. By default, MrBayes assumes that standard data

sets include all variable characters but no constant characters. If necessary, one

can change this setting using lset coding. We will leave the coding setting at

the default, though, which is variable for standard (morphology) data. Now,

showmodel should produce this table:

Active parameters:

Partition(s)
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Parameters 1 2 3 4 5
------------------------------
Revmat . 1 2 3 4
Statefreq 5 6 7 8 9
Shape 10 11 12 13 14
Pinvar . 15 16 17 18
Ratemultiplier 19 19 19 19 19
Topology 20 20 20 20 20
Brlens 21 21 21 21 21
------------------------------

3.4 Running the Analysis

When the model has been completely specified, we can proceed with the analysis

essentially as described above in the tutorial for the primates.nex data set.

However, in the case of the cynmix.nex dataset, the analysis will have to be run

longer before it converges.

When looking at the parameter samples from a partitioned analysis, it is useful

to know that the names of the parameters are followed by the character division

(partition) number in curly braces. For instance, pi(A){3} is the stationary

frequency of nucleotide A in character division 3, which is the EF1a division in

the above analysis.

In this section we have used a separate Nexus file for the MrBayes block.

Although one can add this command block to the data file itself, there are

several advantages to keeping the commands and the data blocks separate. For

example, one can create a set of di↵erent analyses with di↵erent parameters in

separate command files and submit all those files to a job scheduling system on a

computer cluster. It is important to remember, though, that MrBayes uses the

name of the file containing the character matrix as the default for all output files.

Thus, if you run all your analyses in the same directory, results from di↵erent

analyses will overwrite each other.

To change this behavior, include the command mcmcp

filename=<filename>; in each of your run files, just before issuing the mcmc

command, using a di↵erent file name for each run file. For instance, if you wish
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to name the output files from one analysis using the root analysis1, you use the

line mcmcp filename=analysis;. The files will then be named

analysis1.run1.t, analysis1.run2.t, etc. An alternative approach is to run

each analysis in a separate directory, in which case the naming of the output files

will not be an issue.
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Chapter 4

More Tutorials

In this chapter, we provide a number of brief tutorials that cover a wide range of

common models and analyses in MrBayes. We use a slightly di↵erent format for

these tutorials. First, we assume that you are familiar with the basic working of

the program, so we skip uninteresting details when they should be obvious. Also,

in addition to the conventions used previously, we will often simply give the

command line, including the MrBayes > prompt. What you need to type in is

simply the text after the prompt.

You may wish to start each tutorial by switching o↵ warnings and asking

MrBayes to quietly finish each analysis after the requested number of

generations, without asking you if you want to extend the analysis. You can

accomplish this with the command line:

MrBayes > set autoclose=yes nowarn=yes

The tutorials are largely independent of each other, so it should be possible to

skip directly to a tutorial that is of particular interest. However, some tutorials

form a natural sequence of successively more advanced analyses of the same data

set, so following all of the tutorials in order should give some added insight.

The tutorials by no means cover the entire range of models or analytical options

supported by MrBayes. In chapters 5 and 6 we describe all component models

and algorithms that are available, so refer to these for complete coverage. A

45
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graphical overview of the models implemented in MrBayes 3.2 is provided in

Appendix A.

4.1 An Amino Acid Analysis

In this tutorial, we will explore a couple of di↵erent approaches to amino acid

analyses. First, we will ask MrBayes to integrate over a predetermined set of

fixed rate matrices, and then we will repeat the analysis using a fixed rate

matrix. To start the tutorial, first read in the amino acid data:

MrBayes > execute avian_ovomucoids.nex

To ask MrBayes to sample across fixed amino acid rate matrices, we use the

prset command:

MrBayes > prset aamodelpr = mixed

Now we run the analysis as usual. The analysis is much slower than a normal

nucleotide analysis, so let us try first and see if we can get convergence without

using Metropolis coupling (heated chains). We do this by asking for a single

chain per analysis using nchains = 1 in the mcmc command. Although

convergence might be slightly slower if measured in terms of the number of

generations, the analysis will run much faster without the overhead of the heated

chains. We are still using the default of two parallel runs, so we can monitor

topological convergence on the fly. For the dataset in this tutorial, our results

indicate that about 300,000 generations are su�cient for decent topological

convergence. Run 300,000 generations without heating using the command:

MrBayes > mcmc nchains = 1 ngen = 300000

Now we can summarize the parameter and tree samples as usual using the sumt

and sump commands. The output of the sumt command will include a table

giving the posterior probabilities of the amino acid models:

Model probabilities above 0.050

Estimates saved to file "avian_ovomucoids.nex.mstat".

Posterior Standard Min. Max.

Model Probability Deviation Probability Probability



4.1. AN AMINO ACID ANALYSIS 47

-------------------------------------------------------------------------------

aamodel[Jones] 1.000 0.000 1.000 1.000

-------------------------------------------------------------------------------

This particular dataset overwhelmingly supports the Jones model, so this may be

the only model sampled after the burn-in phase. This means that the move

mechanism trying to change the amino acid model will rarely or ever have its

proposals accepted after the burn-in phase. However, the sample from the

posterior may nevertheless be accurate. To determine whether we have an

appropriate sample from the posterior, we simply compare the model

probabilities across independent runs. The range of probabilities, from minimum

to maximum, across independent analyses is given in the table. In our case, we

have two independent analyses, both of which are putting all of the probability

on the Jones model (both minimum and maximum probabilities are 1.000). This

is good evidence that we have an adequate sample from the posterior, since each

run started with a randomly selected amino acid rate matrix.

If desired, it is possible to run the same data set under another amino acid

model, for instance the Dayho↵ model, by fixing the rate matrix. Do this by

running the analysis with the following commands:

MrBayes > prset aamodelpr=fixed(dayhoff)
MrBayes > mcmc nchains = 1 ngen = 300000

Note that the likelihoods printed to screen during the run are much worse (about

100 log likelihood units lower) than those obtained when we sampled over rate

matrices according to their posterior probabilities. As you will discover, the

analysis will not be much faster per generation if we fix the rate matrix, which

may be somewhat counter-intuitive. The reason is that only a single rate matrix

is used in any one generation of the chain, even if we change the rate matrix

between generations. The e↵ect of sampling across rate matrices on the speed of

convergence is data-dependent. Convergence may be slower or faster when you

mix over rate matrices, depending on the e↵ects of the rate matrices on the

complexity of the posterior.

We end this tutorial by pointing out that protein-coding nucleotide sequences

can also be analyzed using amino acid models in MrBayes. MrBayes simply uses

the specified genetic code to translate the codons to amino acids, generating
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relevant ambiguous amino acid state sets when appropriate, before running the

analysis. For instance, we would run a mixed amino acid model analysis on the

protein-coding viral sequences in the replicase.nex data set using:

MrBayes > execute replicase.nex
MrBayes > lset nucmodel = aa
MrBayes > prset aamodelpr = mixed
MrBayes > mcmc nchains = 1 ngen = 300000

4.2 Identifying Positively Selected Sites

The purpose of this analysis is to identify positively selected sites in a

protein-coding viral sequence. We will use the data in the file replicase.nex.

First, we read in the data:

MrBayes > execute replicase.nex

Then we specify that we want to use a codon model with omega variation across

sites, and that we want MrBayes to report positive selection probabilities and

site omega values (dN/dS ratios).

MrBayes > lset nucmodel = codon omegavar = ny98
MrBayes > report possel = yes siteomega = yes

This is going to be a slow analysis, so we will run relatively short analyses and

will therefore reset the sampling frequency and the frequency with which we

print to screen to once every 20 generations, so that we can monitor the run

adequately and get more samples than we would otherwise. In the same vein, we

will increase the frequency with which we calculate convergence diagnostics to

once every 500 generations. Even though it is possible to speed up the analysis

by running it without Metropolis coupling, our results indicate that the mixing

across model parameters benefits considerably from the heated chains in this

case, so we will not attempt that. Our results indicate that it is possible to get

decent if not perfect convergence within about 10,000 generations, so let us try

that:
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MrBayes > mcmcp printfreq = 20 samplefreq = 20 diagnfreq=500
MrBayes > mcmc ngen = 10000

Now we examine the parameter samples by using the sump command. The

output will dominated by a long table summarizing the estimates of the posterior

distributions of the model parameters, including the probabilities of sites being in

the positively selected class, and the weighted site omega values (dN/dS ratios):

95% HPD Interval

--------------------

Parameter Mean Variance Lower Upper Median min ESS* avg ESS PSRF+

-----------------------------------------------------------------------------------------------------------

TL 4.563947 0.098902 3.852775 5.086475 4.558925 24.35 28.69 1.011

omega(-) 0.086415 0.000079 0.071653 0.099446 0.085985 25.65 33.41 1.002

omega(N) 1.000000 0.000000 1.000000 1.000000 1.000000 NA NA NA

omega(+) 1.212074 0.078799 1.000334 1.803710 1.089336 13.25 26.08 1.020

pi(-) 0.848886 0.001521 0.768849 0.908021 0.855780 18.59 21.49 1.000

pi(N) 0.108926 0.001967 0.002585 0.165223 0.117114 4.85 13.43 1.194

pi(+) 0.042188 0.002153 0.000444 0.152103 0.023432 4.00 44.72 1.131

pi(AAA) 0.012023 0.000007 0.006097 0.014923 0.012476 13.35 22.25 1.005

pi(AAC) 0.015588 0.000011 0.011123 0.021896 0.014725 4.48 16.95 1.006

pi(AAG) 0.018310 0.000023 0.010587 0.028169 0.018029 20.57 167.06 1.087

...

pr+(1,2,3) 0.031105 0.001769 0.000193 0.128472 0.012165 3.84 40.87 1.161

pr+(4,5,6) 0.007634 0.000092 0.000042 0.027822 0.003308 4.67 24.37 1.078

pr+(7,8,9) 0.206222 0.060969 0.001249 0.798449 0.090067 3.24 47.63 1.184

...

omega(1,2,3) 0.593781 0.021720 0.256204 0.844889 0.603819 17.99 30.35 1.198

omega(4,5,6) 0.094908 0.000141 0.072752 0.116642 0.094196 4.39 23.04 1.031

omega(7,8,9) 0.953129 0.002358 0.851367 1.023135 0.964322 30.66 45.53 1.045

...

-----------------------------------------------------------------------------------------------------------

First, note that the e↵ective sample size (ESS) is still somewhat low for many

parameters. The total ESS across the two runs is the double of the average ESS

(avg ESS). The total in this analysis is typically below the recommended

minimum of 100 to 200, so we need to run the analysis longer to get a

publication-quality sample from the posterior. The potential scale reduction

factor (PSRF) also indicates that there is some heterogeneity between the two

independent runs. Nevertheless, the analysis is clearly approaching convergence.

We should not have to run it much longer to get an accurate sample from the

posterior, and we might expect the sample obtained so far to be reasonably close

to the correct values.

Now focus on the summaries of the parameter samples. From the top, the

parameters are total tree length (TL ), the omega values (dN/dS ratios) for the

negatively selected, neutral, and positively selected sites (omega(-) , omega(N) ,

and omega(+) ), the frequencies of the site categories (pi(-) , pi(N) , and pi(+)

), and the stationary state frequencies of the codons (pi(AAA) , pi(AAC) , etc).

The table ends with the probabilities of individual sites being in the positively
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selected class, with pr+(1,2,3) being the probability of the codon corresponding

to nucleotide sites 1–3 being positively selected, pr+(4,5,6) being the

probability for the codon corresponding to sites 4–6 being positively selected, etc.

The positive selection probabilities are followed by the site omega values, which

represent a weighted average for each site across all categories of omega values,

with omega(1,2,3) being the value for the codon corresponding to nucleotide

sites 1–3, omega(4,5,6) the value for the codon corresponding to sites 4–6, etc.

Looking at the values, we note that about 85% (pi(-) ) of the sites are under

strong constraining selection (omega(-) = 0.086 ). Only a small fraction of

sites, around 4%, are under positive selection (pi(+) ). Examination of the

positive selection probabilities and codon site omega values reveals which sites

are most likely to be experiencing positive selection. For instance, the evidence is

strong that site (292,293,294) is under positive selection (pr+(292,293,294) =

0.998 , omega(292,293,294) = 1.21 ).

4.3 Sampling Across the GTR Model Space

A standard approach to Bayesian phylogenetics is to first select an appropriate

substitution model using a model testing approach, such as those implemented in

ModelTest or jModelTest (Posada, 1998, 2008). An alternative, more elegant

approach, is to sample across the substitution model space in the Bayesian

MCMC analysis itself (Huelsenbeck et al., 2004), removing the need for a priori

model testing. The purpose of this tutorial is to demonstrate how to set up an

analysis that integrates out the uncertainty about the correct substitution model

by sampling across the entire general time reversible (GTR) model space. We

will use the data in the file primates.nex .

First, we read in the data:

MrBayes > execute primates.nex

Then we specify that we want to use a gamma model of rate variation across

sites, and that we want to sample across the GTR model space:
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MrBayes > lset nst=mixed rates=gamma

We can now run the analysis as usual. The sump command will give relevant

summaries of the parameter samples, including the probabilities of the sampled

substitution models. We assess convergence by making sure that these

probabilities are the same across independent runs. This is a sample table from

an analysis using two independent runs on the tutorial data set:

Model probabilities above 0.050

Estimates saved to file "primates.nex.mstat".

Posterior Standard Min. Max.

Model Probability Deviation Probability Probability

----------------------------------------------------------------------------------

gtrsubmodel[121123] 0.195 0.033 0.172 0.219

gtrsubmodel[121324] 0.089 0.005 0.086 0.093

gtrsubmodel[121323] 0.079 0.009 0.073 0.086

gtrsubmodel[121321] 0.060 0.037 0.033 0.086

gtrsubmodel[123324] 0.060 0.000 0.060 0.060

gtrsubmodel[121121] 0.053 0.009 0.046 0.060

----------------------------------------------------------------------------------

The models are labeled using a so-called restricted growth function. The six

di↵erent substitution rates are given in the order {r
AC

, r

AG

, r

AT

, r

CG

, r

CT

, r

GT

}.
The first rate is labeled “1”. The next rate is labeled with the next higher,

unused integer if it is di↵erent, and otherwise with the same integer as the

partition it belongs to. For instance, gtrsubmodel[111111] refers to the

Jukes–Cantor or F81 model, gtrsubmodel[123456] to the GTR model, and

gtrsubmodel[121121] to the HKY model.

For this particular data set, we observe that there is considerable uncertainty

concerning the correct substitution model. The model with the highest posterior

probability is gtrsubmodel[121123], which di↵ers from the HKY model only in

that the G–T substitution rate is di↵erent from the other transversion rates,

presumably lower. The HKY model has the smallest posterior probability of all

the models reaching above the reporting threshold of 0.050. All other estimates

of model parameters derived from this analysis, the topology estimate for

instance, will be based on an average across the sampled substitution models,

each one weighted according to its posterior probability.

To assess convergence when you sample across the GTR substitution model

space, focus on the variation across runs in estimated model probabilities. The
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table gives the standard deviation as well as the range of estimated values across

runs. Here, we see some heterogeneity across runs in model probabilities, but

most models receive similar probabilities in the two independent runs.

4.4 Testing a Topological Hypothesis

In this tutorial, we will use Bayes factor comparisons to test a topological

hypothesis, namely that humans are more closely related to chimps than to other

primates. Specifically, we will contrast the hypothesis that humans and chimps

form a monophyletic group (M1), with the hypothesis that humans and chimps

do not form a monophyletic group (M2). In order to do this, we need to compute

the ratio of the marginal likelihoods of the two models, M1 and M2. This ratio is

known as the Bayes factor. We will use the data in the file primates.nex for the

analysis.

First, read in the data using:

MrBayes > execute primates.nex

Now let us specify a GTR + I + � model:

> lset nst=6 rates=invgamma

Before we can test the hypothesis, we need to specify a hard constraint and a

negative constraint. The hard constraint will allow us to force a partition to

always be present in the sampled trees. The negative constraint will allow us to

sample across all trees that do not contain the specified partition. Specify the

constraints using the following commands:

MrBayes > constraint humanchimp = Homo_sapiens Pan

MrBayes > constraint nohumanchimp negative = Homo_sapiens Pan

MrBayes provides two methods for estimating marginal model likelihoods. The

first is based on the harmonic mean of the likelihood values of the MCMC

samples. It is simple to compute but it is a pretty rough estimate of the model

likelihood. To obtain a more accurate model likelihood, MrBayes provides the

stepping-stone method First, let us use the harmonic mean estimate of the model
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likelihoods of the two models we want to compare. First we enforce the positive

constraint, run an mcmc analysis with 100,000 generations, and use sump to get

the harmonic mean estimate:

MrBayes > prset topologypr=constraints(humanchimp)
MrBayes > mcmc ngen=100000
MrBayes > sump

In the output from the sum command, focus on the table summarizing the

likelihoods of the MCMC samples:

Estimated marginal likelihoods for runs sampled in files
"primates.nex.run1.p" and "primates.nex.run2.p":
(Use the harmonic mean for Bayes factor comparisons of models)

(Values are saved to the file primates.nex.lstat)

Run Arithmetic mean Harmonic mean
--------------------------------------

1 -5720.59 -5729.69
2 -5720.75 -5735.25

--------------------------------------
TOTAL -5720.67 -5734.56
--------------------------------------

It is the harmonic mean that we will use as the initial estimate of the model

likelihood. The estimate of the logarithm of the model likelihood is �5734.56,

with a little bit of heterogeneity between the runs.

Now we enforce the negative constraint, and repeat the procedure using the

commands:

MrBayes > prset topologypr=constraints(nohumanchimp)
MrBayes > mcmc ngen=100000
MrBayes > sump

Our run produced the following estimates of the log of the model likelihoods:

Run Arithmetic mean Harmonic mean
--------------------------------------
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1 -5727.08 -5738.92
2 -5725.67 -5737.63

--------------------------------------
TOTAL -5726.15 -5738.47
--------------------------------------

The harmonic mean estimate for this model is �5738.47 in log units, which is

about 4 log units worse than the previous model. A log di↵erence in the range of

3–5 is typically considered strong evidence in favor of the better model, while a

log di↵erence above 5 is considered very strong evidence (Kass and Raftery,

1995). Thus, the harmonic mean estimator indicates that we have strong

evidence in favor of human and chimp being each others closest relatives, with

Gorilla and other primates being more distant.

It may also be interesting to look at the best estimate of the phylogeny under the

assumption that humans and chimps are not each others sister groups. Do this

by typing sumt. As you will see, this tree groups chimps and gorillas together,

with humans being just outside, as one might have expected.

Let us now repeat the comparison using the more accurate stepping-stone

sampling approach. Instead of using the mcmc command followed by the sump

command, we simply use the ss command instead, which will produce the

estimated model likelihood directly. The stepping-stone analysis moves from the

posterior to the prior through a number of steps in which the sampled

distribution is a mixture of varying proportions of the two.

Ideally, one would like to see evidence of convergence among independent runs in

each of the steps of the stepping-stone sampling algorithm. As the algorithm

moves close to the prior, however, we expect this to be di�cult. This will be

especially true for the topology parameter, as the number of trees with similar

probability will become huge for any reasonably-sized set of taxa.

To help you monitor convergence during stepping-stone sampling, MrBayes will

print the average standard deviation of split frequencies across runs if you use at

least two independent, parallel runs. Each step in the algorithm is treated as an

independent MCMC sampling problem. The only burn-in phase used by the

algorithm occurs before the first step of the algorithm. Once the step sampling
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starts, each step simply serves as the burn-in for the next one. The length of the

initial burn-in can be specified either in terms of the number of samples to be

discarded (positive numbers) or in terms of step lengths (negative numbers). By

default, the initial burn-in phase is as long as one of the subsequent steps in the

algorithm, that is, burninss = -1 .

To obtain an adequate sample from most of the steps in the algorithm, we will

use 50 steps (the default) with 5,000 generations each, for a total of 250,000

generations. If we add the initial burn in of 5,000 generations (one step), the

total run length wil be 255,000. To monitor convergence twice during each step,

we set the diagnostics frequency to once every 2,500 generations. Stepping-stone

analysis under the two models using these settings will be generated by the

following commands:

MrBayes > prset topologypr=constraints(humanchimp)
MrBayes > ss ngen=250000 diagnfreq=2500
MrBayes > prset topologypr=constraints(nohumanchimp)
MrBayes > ss

The output from the ss command will include the following table, which is

given here for the first model:

Marginal likelihood (in natural log units) estimated using stepping-stone sampling based on

50 steps with 5000 generations (10 samples) within each step.

Run Marginal likelihood (ln)

-----------------------------

1 -5788.13

2 -5785.85

-----------------------------

Mean: -5786.45

In our run, the second model produced the following version of the same table:

Marginal likelihood (in natural log units) estimated using stepping-stone sampling based on

50 steps with 5000 generations (10 samples) within each step.

Run Marginal likelihood (ln)

-----------------------------

1 -5797.09

2 -5798.19

-----------------------------

Mean: -5797.50

The model likelihoods are thus �5786.45 for the first model and 5798.19 for the

second (in natural log units). We first note that both likelihoods are considerably
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smaller than the corresponding values based on the harmonic mean estimator.

This is an expected e↵ect due to the reliance of the harmonic mean estimator on

rare samples of very low likelihood. Short runs are unlikely to include such

samples, resulting in the harmonic mean estimator usually being biased upwards

in practice.

We also note that the more accurate model likelihoods suggest a larger di↵erence

between the two models, about 11 log likelihood units. Thus, we conclude that

the better model (humans and chimps do form a monophyletic group) is very

strongly supported by a Bayes factor test.

Finally, let us examine one of the convergence diagnostics plots from one of our

stepping-stone analyses. It will probably look something like this:

Plot of average standard deviation of split frequencies across steps.
Points at -1.0 (y-axis) indicates that there were no splits
above minimum frequency for corresponding step.
+------------------------------------------------------------+ 0.11
| * |
| |
| * * |
| |
| |
| |
| * |
| * * * |
| * |
| * |
| * |
| * * * |
| * * |
| * ** |
|***** **** ***** **** ** * * ** ** * * ** **|
+------+-----+-----+-----+-----+-----+-----+-----+-----+-----+ 0.07
^ ^
1 50

Here, we see the expected pattern of low average standard deviation of split

frequencies in the early steps of the algorithm (to the left in the diagram), and

di�culties of sampling across topology space when we move closer to the prior

(to the right in the diagram). By increasing the length of each step, it should be
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possible to improve convergence also in the steps close to the prior, and therefore

increase the precision of the estimated model likelihoods. However, the similarity

between the two independent estimates of the model likelihood we obtained in

this analysis suggests that the accuracy is already reasonably good.

4.5 Testing the Strict Molecular Clock

In this tutorial, we will use a Bayes factor comparison to test the strict clock

model against the non-clock model for an example data set, primates.nex. The

data set is unusual in that a standard non-clock analysis suggests that the

evolution of these sequences may be fairly well explained by a strict clock. The

analysis is quite similar to the previous one, so you might find it useful to go

through that tutorial first. The basic idea is that we want to compare the

marginal likelihoods of the two models (non-clock and strict clock) against each

other. To do that we need to estimate the marginal likelihoods either using the

rough harmonic mean method or the more accurate stepping-stone method. We

will use both in this tutorial and compare the results.

As usual, we first read in the data:

> execute primates.nex

Then we specify a GTR + I + � model:

MrBayes > lset nst=6 rates=invgamma

To estimate marginal likelihoods of the two models using harmonic means of the

likelihoods of the MCMC samples, we simply run an ordinary MCMC analysis

and obtain the appropriate values using the standard sump command.

Specifically, we first run the standard non-clock model for 100,000 generations

and summarize the obtained samples using sump :

MrBayes > mcmc ngen=100000
MrBayes > sump

In the sump output, we focus on the table summarizing the means of the

likelihoods of the MCMC samples obtained after the burn-in:
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Run Arithmetic mean Harmonic mean
--------------------------------------

1 -5720.67 -5735.68
2 -5719.97 -5730.58

--------------------------------------
TOTAL -5720.26 -5734.99
--------------------------------------

The harmonic mean suggests that the marginal likelihood of the standard

non-clock model is �5734 log units. Notice, however, some heterogeneity

between the runs.

Now we repeat the procedure under the strict clock model. To enforce branch

lengths to conform to a strict clock, we choose one of the clock priors for the

branch lengths. Specifically, we are going to use the uniform prior on clock trees.

The other commands are the same as those used previously:

> prset brlenspr=clock:uniform
> mcmc ngen=100000
> sump

Again, we focus on the table summarizing the means of the likelihoods of the

MCMC samples:

Run Arithmetic mean Harmonic mean
--------------------------------------

1 -5719.69 -5726.23
2 -5719.44 -5733.01

--------------------------------------
TOTAL -5719.55 -5732.32
--------------------------------------

The harmonic mean is lower for the strict-clock mode than for the non-clock

model, the log values being �5732 and �5734, respectively. This is as we

suspected, but the di↵erence is small and there is overlap between the estimates

obtained in individual runs. In this case, we undoubtedly need the increased

accuracy of the stepping- stone sampling method.

Before moving on to the stepping-stone analysis, first compute a summary of the

tree samples using the sumt command. Now focus on the phylogram, the second
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tree, in the output from this command. It should look something like this:

Phylogram (based on median node depths):

/----- Homo_sapiens (3)
/-+
| \----- Pan (4)

/-------+
| \------- Gorilla (5)

/----+
| \--------------- Pongo (6)

/-------------+
| \-------------------- Hylobates (7)
|
| /-- Macaca_fuscata (8)

/----------+ /--+
| | | \-- M_mulatta (9)
| | /---+
| | | \----- M_fascicularis (10)

/------------+ \------------------------+
| | \--------- M_sylvanus (11)
| |
+ \--------------------------------------------- Saimiri_sciure~ (12)
|
| /-------------------------------------------- Tarsius_syrichta (1)
\-------------+

\-------------------------------------------- Lemur_catta (2)

-|---------|--------|---------|--------|---------|--------|
0.60 0.50 0.40 0.30 0.20 0.10 0.00

[Expected changes per site]

We briefly want to point out two things. First, all tips in the tree have the same

distance to the root in the consensus phylogram, the summary tree that is based

on branch lengths. This is because the default assumption in a strict-clock model

is that the tips are of the same age. This assumption can be altered as shown

below in the tutorial on dating. Second, the clock tree is rooted, unlike a tree

resulting from a non-clock analysis. An unrooted tree is drawn by convention

such that it is rooted on the outgroup taxon. This means that it will have a

basal trichotomy, or a basal polytomy of higher degree if outgroup relationships

are unresolved. The specified outgroup taxon (by default the first taxon in the

matrix) will be the first member lineage of the basal trichotomy. A strict-clock

analysis, however, produces a rooted tree, which should have a dichotomy at the
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root unless there is uncertainty concerning the resolution near the base of the

tree. Such a tree does not have to be artificially rooted for drawing purposes

using an outgroup. Thus, the outgroup setting is irrelevant in analyses of clock

tree models. The outgroup setting is only used when drawing unrooted trees.

Now let us continue with a more accurate assessment of the marginal model

likelihoods using the stepping-stone method. It estimates the model likelihood by

sampling a series of distributions that represent di↵erent mixtures of the

posterior distribution and the prior distribution (Xie et al., 2011). The

stepping-stone algorithm is invoked with the ss command, and it uses the same

computational machinery as the mcmc command for each of the steps. Let us run

the algorithm for 50 steps (the default) of 5,000 generations each, which makes a

total of 250,000 generations. We will adjust the default frequency of calculating

convergence diagnostics to once every 2,500 generations to get two reports from

each step in the algorithm. By default, the algorithm uses an initial burn-in

corresponding to one step, which corresponds to setting the burninss option to

�1. The total length of the analysis will therefore be 255,000 generations.

As before, the run needs to be repeated for each of the two models. The

following set of commands will run stepping-stone sampling on the non-clock

model. Note that we first reset the prior on branch lengths to the default, an

independent exponential prior with the rate parameter 10.0. An alternative way

of resetting the model to the default is to execute the data set again. If you

choose that alternative, do not forget to specify the GTR + I + � model before

running the stepping-stone method.

> prset brlenspr=unconstrained:exp(10.0)
> ss ngen=255000 diagnfreq=2500

The estimated marginal likelihoods are found in a table printed by the ss

command after the analysis is completed. Here are the estimates from our run:

Run Marginal likelihood (ln)
---------------------------

1 -5791.38
2 -5792.04

---------------------------
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Mean: -5791.66

We now run the same analysis on the strict clock model:

> prset brlenspr=clock:uniform
> ss ngen=255000 diagnfreq=2500

We got the following estimates of the marginal model likelihoods:

Run Marginal likelihood (ln)
---------------------------

1 -5774.94
2 -5774.75

---------------------------
Mean: -5774.84

First we note that there is good agreement between the two independent

analyses for both models, indicating that we now have accurate estimates of the

marginal model likelihoods. If we compare these estimates with the harmonic

mean estimates, it is striking that they are both much lower. Although the

harmonic mean estimator is unbiased if you let the number of samples go to

infinity, it relies heavily on rarely sampled states with low likelihood. Short runs

tend not to include such samples, so the harmonic mean estimate is often

considerably inflated in practice.

We also see that the strict-clock model is now almost 17 log likelihood units

better than the non-clock model. A di↵erence exceeding 5 log likelihood units is

usually considered very strong evidence in favor of the better model (Kass and

Raftery, 1995). If you are familiar with likelihood ratio tests, it may seem

counter-intuitive that the strict clock model can be so strongly preferred. After

all, the strict clock is just a special case of the non-clock model, so the likelihood

must necessarily be higher, or at least as high, for the latter. How can the

strict-clock model still be preferred in the Bayes factor test?

The answer has to do with the number of parameters. For a data set with n

taxa, a non-clock model has roughly 2n independent branch length parameters,

whereas a strict clock model only has around n independent node times. The

other model parameters, the ones associated with the topology and the
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substitution model, are so few in comparison to the branch lengths or node times

that they can be neglected. Thus, a strict clock model is much more parsimonious

than a non-clock model in the number of parameters, and in Bayesian model

choice, there is a built-in correction for the number of parameters.

One way of explaining the correction is by noting that comparing marginal

model likelihoods is the same thing as comparing the average likelihood across

the joint prior distribution over all model parameters. By including more

parameters, we are almost always going to increase the peak likelihoods, but

whether the average likelihood increases is a complex function of the distribution

of likelihood values with respect to the joint prior distribution. If the simpler

model already captures values close to the peak likelihoods of the more complex

model, then the latter is likely to have a lower average likelihood when the values

are spread out across its larger parameter space. This is what happens here,

resulting in a strong preference for the strict clock model.

For a brief discussion on convergence diagnostics and the plot printed by the ss

command, see the previous tutorial.

4.6 Using a Relaxed Clock Model

In this analysis, we will set up a relaxed clock model for the same data set,

primates.nex, used in the previous two tutorials. A relaxed clock model is

intermediate between a strict clock model and a non-clock model. It has one or a

few more parameters than a strict clock model, but much fewer than a non-clock

model. Unlike a non-clock model, it produces a rooted tree, but the information

about the position of the root is not as strong as in a non-clock analysis. Because

the information about the position of the root might be weak, it is often

beneficial to add a rooting constraint to a relaxed clock analysis. It can help a

relaxed clock analysis correctly infer rate variation close to the base of the tree,

variation that might otherwise cause rooting artifacts. It can also help speed up

convergence, since it may be di�cult for an MCMC analysis to mix adequately

across multiple alternative root positions in a relaxed clock tree; this is going to

be the case for this data set. To speed up convergence, and to show you how to
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set up a rooting constraint, we will choose the rooting option for this tutorial.

Specifically, we will accept the common view that lemurs form the sister group of

other primates.

As usual, we first read in the data:

> execute primates.nex

Then we specify a GTR + I + � model:

MrBayes > lset nst=6 rates=invgamma

To specify a rooting constraint, we first need to know the order of the taxa in the

data matrix, or their names. We can do this by looking into the data file or by

printing the matrix using the showmatrix command. In either case, we will

discover that the only lemur in the matrix, Lemur catta, is taxon number 2. To

specify a hard constraint that includes all taxa but taxon 2, we can use the

following command:

MrBayes > constraint ingroup = 1 3-.

The constraint command first gives the name of the constraint, and then the

constraint is specified after the equal sign using a list of taxa, where the taxa can

be specified using either their index in the matrix (1, 2, etc) or their name. A

period is synonymous with the last taxon in the matrix, and a range is indicated

using a dash. By default, the constraint is assumed to be positive or hard, that

is, we wish to enforce the specified split or clade to always be present in the

sampled trees.

To enforce the constraint, we also need to set the topology prior using the

following command:

MrBayes > prset topologypr = constraints(ingroup)

Inside the parenthesis, it is possible to give one or more previously defined

constraints, separated by a comma. We are now ready to specify the relaxed

clock model, which is done in two steps. First, we select an underlying strict

clock model. Let us use the simple uniform clock model, which would be

specified with the command:
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MrBayes > prset brlenspr = clock:uniform

Other options include the coalescent and the birth – death models. In the next

step, we select a model for the variation of the clock rate across lineages.

MrBayes o↵ers three relaxed clock models: the Thorne–Kishino 2002 (TK02),

the compound poisson process (CPP), and the independent gamma rates (IGR)

models. Let us use the independent gamma rates model, which is a continuous

uncorrelated model of rate variation across lineages. We invoke this model using:

MrBayes > prset clockvarpr=igr

Each relaxed clock model has one or more additional parameters. In the case of

the IGR model, it is the rate at which the variance of the e↵ective branch length

increases over time, Igrvarpr . Because the strict clock model fits this data set

so well (see previous tutorial), we do not expect the variance to increase much

over time. The default prior for this parameter, an exponential distribution with

rate 10.0, should be more than generous enough for our analysis.

To check the model settings, it is wise to first run the showmodel command.

Once you are convinced that the model settings are OK, run the analysis for

100,000 generation using:

MrBayes > mcmc ngen=100000

We can now verify using the sumt command that the tree is rooted correctly

and that it looks reasonable. We focus on the phylogram, the second tree to be

displayed:

Phylogram (based on median node depths):

/---------------------------------------------------------- Lemur_catta (2)
|
| /------------------------------------------------------- Tarsius_syrichta (1)
| |
| | /------- Homo_sapiens (3)
| | /--+
+ | | \------- Pan (4)
| | /-------+
| | | \---------- Gorilla (5)
| | /----+
| | | \------------------ Pongo (6)
\--+ /----------+
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| | \----------------------- Hylobates (7)
| |
| | /---- Macaca_fuscata (8)
| /---------+ /--+
| | | | \---- M_mulatta (9)
| | | /---+
| | | | \------- M_fascicularis (10)
\----------+ \----------------------+

| \----------- M_sylvanus (11)
|
\-------------------------------------------- Saimiri_sciure~ (12)

-----|--------|--------|--------|--------|--------|-------|
0.60 0.50 0.40 0.30 0.20 0.10 0.00

[Expected changes per site]

Note that the strict clock tree that we obtained in the previous analysis was

rooted di↵erently, with Lemur and Tarsius together forming the sister group of

the remaining primates. The reason that the strict clock analysis prefers to put

the root there can be understood by going back to the non-clock tree (see

chapter 2). By placing the root in this position, we minimize the di↵erence

between the non-clock and strict clock branch lengths.

If the rooting assumption we are using here is correct, then there must have been

some changes in the evolutionary rate close to the root. Specifically, we should

see a deceleration in the Lemur and Tarsius lineages, or an acceleration in their

sister lineages. We can look for this pattern in the summary statistics for the

branch and node parameters, output by the sumt command before the trees. The

table is preceded by a key to the taxon bipartitions, which is critical to

interpreting where the di↵erent parameters belong:

List of taxa in bipartitions:

1 -- Tarsius_syrichta
2 -- Lemur_catta
3 -- Homo_sapiens
4 -- Pan
5 -- Gorilla
6 -- Pongo
7 -- Hylobates
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8 -- Macaca_fuscata
9 -- M_mulatta

10 -- M_fascicularis
11 -- M_sylvanus
12 -- Saimiri_sciureus

Key to taxon bipartitions (saved to file "primates.nex.parts"):

ID -- Partition
------------------
0 -- ************
1 -- *...........
2 -- .*..........
3 -- ..*.........
4 -- ...*........
5 -- ....*.......
6 -- .....*......
7 -- ......*.....
8 -- .......*....
9 -- ........*...

10 -- .........*..
11 -- ..........*.
12 -- ...........*
13 -- ..**........
14 -- *.**********
15 -- ..**********
16 -- .......**...
17 -- .......****.
18 -- ..*****.....
19 -- ..***.......
20 -- ..****......
21 -- ..*********.
22 -- .......***..
------------------

Now let us find the ID of the partitions corresponding to the Lemur and Tarsius

lineages, and their sister lineages. We first identify the taxon ID of Lemur and

find that it is 2. Now we find the partition ID that has a single star in the second

position; it is the bipartition that separates Lemur catta from all other taxa.

Not surprisingly, the bipartition ID is 2. The sister lineage of Lemur catta
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includes all taxa except Lemur catta. To find the corresponding bipartition ID,

we need to find the ID that has a partition descriptor with a single dot in the

second position; all other positions should be filled with stars. This bipartition

has ID 14. Similarly, we find that the bipartition IDs of Tarsius syrichta and

its sister lineage are 1 and 15, respectively.

Now we examine the posterior distribution of IGR branch rates for these taxon

bipartitions. If the clock is accelerated, the branch rate should be above 1.0; if

the rate is decelerated, the branch rate should be below 1.0. This is the relevant

rows of the table:

95% HPD Interval

--------------------

Parameter Mean Variance Lower Upper Median PSRF+ Nruns

----------------------------------------------------------------------------------------------------

Igrbranchlens_rate[1] 0.916002 0.037357 0.545476 1.196117 0.947514 1.002 2

Igrbranchlens_rate[2] 0.688266 0.033214 0.345016 0.946393 0.703381 0.997 2

Igrbranchlens_rate[14] 0.776625 1.237010 0.000000 2.947193 0.424638 1.001 2

Igrbranchlens_rate[15] 2.635028 8.175572 0.634393 6.162516 1.809020 0.997 2

----------------------------------------------------------------------------------------------------

We see that there is considerable uncertainty about the branch rates but some of

our predictions seem to be supported. In particular, the evolutionary rate is

decelerated in the lineage leading to Lemur catta, with bipartition ID 2; the

entire 95% HPD interval is below 1.0. Although the evidence is less compelling,

there is also an indication that the rate is decelerated in the lineage leading to

Tarsius syrichta, bipartition ID 1, and considerably accelerated in its sister

lineage with bipartition ID 15. However, there is no evidence that the rate is

accelerated in the sister lineage of Lemur catta with bipartition ID 14. On the

contrary, both the mean and median indicate that this rate is more likely to be

below than above 1.0.

To help you visualize parameters such as branch rates inferred by a relaxed clock

model, the sumt command produces a .con.tre file that contains summaries of

all branch and node parameter samples in a format that can be displayed by the

program FigTree. This allows you, for instance, to color branches according to

inferred evolutionary rates.

If you performed the Bayes factor comparison between the strict clock and

non-clock models for this data set in the previous tutorial, you may wonder how

the relaxed clock model stacks up. To make the comparison fair, let us compare
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the strict clock and relaxed clock models using the same rooting constraint that

we enforced above. To get an accurate comparison, we run the stepping-stone

sampling method. We refer to the previous two tutorials for details, but briefly

give the commands here for the two stepping-stone analyses that are required for

this comparison:

MrBayes > ss ngen=250000 diagnfreq=2500

MrBayes > prset clockvarpr=strict

MrBayes > ss

The results are summarized in the tables outout by the ss command. The results

we got are summarized below, with the relaxed clock model first, followed by the

strict clock model:

Run Marginal likelihood (ln)
---------------------------

1 -5785.05
2 -5785.76

---------------------------
Mean: -5785.34

...

Run Marginal likelihood (ln)
---------------------------

1 -5780.04
2 -5781.53

---------------------------
Mean: -5780.53

Note that the models are close, but it is still the strict clock model that carries

the day. The di↵erence is almost five log units, which is considered strong

evidence in favor of the better model ??. Our runs indicate that the result is

going to be similar if we were to repeat the comparison without enforcing a

rooting constraint. We end by pointing out that this is a rather unusual data set;

most other data sets will strongly favor relaxed over strict clock models.
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4.7 Node Dating and Total-Evidence Dating

In this tutorial, we will use three di↵erent approaches to dating. First, we will

show how to calibrate a tree based on information about the clock rate (rate

dating), then we will date the tree based on node calibrations (node dating), and

finally we will use total-evidence dating (or tip dating), in which the tree is dated

based on simultaneous analysis of fossil and recent taxa. Rate dating and node

dating will be demonstrated on a small data set, primates.nex, which has been

analyzed in several previous tutorials, while a much larger data set,

hymfossil.nex will be used to demonstrate total-evidence dating and node

dating in a more typical setting.

We begin by reading in the smaller data set using the command

MrBayes > execute primates.nex

Next, we set the substitution model to GTR + I + �:

MrBayes > lset nst=6 rates=invgamma

We know from previous tutorials (see sections 4.5 and 4.6) that a strict clock

model provides a good fit to the data set. Specifically, we choose a strict clock

model with uniform branch lengths using the command:

MrBayes > prset brlenspr=clock:uniform

By default, the clock rate is going to be fixed to 1.0, which means that the age of

the nodes in the tree will be measured in terms of the number of expected

substitutions per site. If we want a dated tree, it is su�cient to change this

assumption. For instance, let us assume that we know that the rate is

approximately 0.01± 0.005 substitutions per site per million years. To use this

assumption, we could for instance use a normal distribution as the prior for the

clock rate, using 0.02 as the mean and 0.005 as the standard deviation. Since we

give these values using millions of years as the unit, the resulting tree will be

calibrated in millions of years.

Setting the prior on the clock rate is thus achieved with

MrBayes > prset clockratepr = normal(0.01,0.005)
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There is one more thing to consider before we can run the analysis. By default,

the clock rate is fixed to 1.0. This means that the tree age (or height, if you

wish) measured in substitutions per site is the same as tree age measured in time

units. As soon as these two measures are decoupled, it is important to consider

whether the clock tree prior is defined in terms of substitution units or time

units. MrBayes uses clock tree priors that are defined on parameters (speciation

rate, extinction rate etc) measured in time rather than substitution units.

The uniform clock tree prior has only one prior parameter, tree age. The default

prior is an exponential distribution with rate parameter 1.0, which usually works

well as long as the clock rate is fixed to 1.0. When we change the clock prior, we

usually need to reconsider this prior. For instance, we might want to modify the

prior so that it has the same e↵ect on branch lengths measured in substitution

units. In our case, we want to change the default prior, with expected mean 1.0,

to one with expected mean 1.0/0.01 = 100, that is, the original value divided by

the expected clock rate. Since the expectation of the exponential distribution is

the same as the inverse of the rate parameter, we thus need to modify the tree

age prior to an exponential distribution with the rate 0.01. We do this using the

following command line.

MrBayes > prset treeagepr = exponential(0.01)

Now let us run a short MCMC analysis using 100,000 generations and the default

settings. After that, we use the sumt command to examine the calibrated tree:

MrBayes > mcmc ngen=100000
MrBayes > sumt

The resulting dated phylogram should look something like this:

/----- Homo_sapiens (3)
/-+
| \----- Pan (4)

/-------+
| \------- Gorilla (5)

/----+
| \--------------- Pongo (6)

/-------------+
| \-------------------- Hylobates (7)
|
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| /-- Macaca_fuscata (8)
/----------+ /---+
| | | \-- M_mulatta (9)
| | /--+
| | | \------ M_fascicularis (10)

/------------+ \------------------------+
| | \--------- M_sylvanus (11)
| |
+ \--------------------------------------------- Saimiri_sciure~ (12)
|
| /------------------------------------------- Tarsius_syrichta (1)
\--------------+

\------------------------------------------- Lemur_catta (2)

---|----------|----------|----------|----------|----------|
50.0 40.0 30.0 20.0 10.0 0.0

The phylogram gives the median age estimates for all nodes in the tree in user-

defined time units, which is million years in our case. For instance, the analysis

dates the oldest split in the tree at around 53 Ma (million years ago), and the

split between humans and chimps (Pan) at about 5 Ma. If we are interested in a

more detailed summary of the age estimates, we need to go into the parameter

summary table printed above the trees. Before doing that, however, we need to

identify the bipartition IDs that we are interested in. We do that by referring to

the bipartition table:

List of taxa in bipartitions:

1 -- Tarsius_syrichta
2 -- Lemur_catta
3 -- Homo_sapiens
4 -- Pan
5 -- Gorilla
6 -- Pongo
7 -- Hylobates
8 -- Macaca_fuscata
9 -- M_mulatta
10 -- M_fascicularis
11 -- M_sylvanus
12 -- Saimiri_sciureus

Key to taxon bipartitions (saved to file "primates.nex.parts"):

ID -- Partition
------------------
0 -- ************
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1 -- *...........
2 -- .*..........
3 -- ..*.........
4 -- ...*........
5 -- ....*.......
6 -- .....*......
7 -- ......*.....
8 -- .......*....
9 -- ........*...
10 -- .........*..
11 -- ..........*.
12 -- ...........*
13 -- ..***.......
14 -- ..**********
15 -- ..****......
16 -- .......**...
17 -- ..*********.
18 -- ..*****.....
19 -- .......****.
20 -- ..**........
21 -- .......***..
22 -- **..........
------------------

For instance, assume that we are interested in the age of the oldest split in the

tree, and the split between humans and chimps. The oldest split in the tree

corresponds to the partition description with all stars, that is, partition ID 0.

Humans (Homo sapiens) have taxon ID 3 and chimps (Pan) the taxon ID 4. The

partition description corresponding to the human–chimp split thus should have

stars in positions 3 and 4, and dots in all other positions. This is partition ID 20.

In your analysis, the partition IDs may be di↵erent.

Now we go into the table of node and branch parameter estimates, and find the

corresponding age estimates. Here are the relevant rows in this table in our

analysis:

95% HPD Interval
--------------------

Parameter Mean Variance Lower Upper Median PSRF+ Nruns
--------------------------------------------------------------------------------------
age[0] 59.590844 588.972831 26.805076 114.390416 52.435516 0.999 2
age[20] 5.361829 4.555993 2.300513 10.178956 4.955494 1.000 2
--------------------------------------------------------------------------------------

For instance, we see that the posterior distribution of the age of the
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human–chimp split has a mean of 5.4 Ma, a median of 5.0 Ma, and a 95% HPD

ranging from 2.3 to10.2 Ma. By default, the sumt command will print all the

summaries of node and branch parameters to the tree in the file with the ending

.con.tre in a format that can be understood by FigTree. When you open the

file in FigTree, you will have access to a range of options for visualizing the

parameter summaries of your interest.

We now turn our attention to dating of the tree using node calibrations (node

dating). Assume, for instance, that we have independent evidence suggesting

that the human–chimp split occurred at least 5 Ma and not before 7 Ma. We

might then choose to date the tree using a uniform prior from 5 to 7 Ma on the

human–chimp split.

Dating the tree using a calibration node does not free us from setting appropriate

priors on tree age and clock rate. We would like those priors to be set such that

the main dating information comes from the calibrated node. Given how di↵use

the divergence time estimates were under the priors chosen previously, it is clear

that dating the human–chimp node as suggested will add information to the

analysis. Thus, let us stick with the previous priors for tree age and clock rate,

and just add the human–chimp calibration. This is done in four steps. First, we

define a constraint for the node of interest. Second, we associate the node with a

calibration assumption. Third, we enforce the constrained nodes. Fourth, we

enforce node ages to obey calibrations. Specifically, the MrBayes commands are:

MrBayes > constraint humanchimp = Homo_sapiens Pan
MrBayes > calibrate humanchimp = uniform(5,7)
MrBayes > prset topologypr = constraints(humanchimp)
MrBayes > prset nodeagepr = calibrated

After running the analysis and summarizing the tree samples, we can examine

the resulting phylogram. It should look something like this:

/-------------------------------------------- Tarsius_syrichta (1)
/-------------+
| \-------------------------------------------- Lemur_catta (2)
|
| /----- Homo_sapiens (3)
| /-+
| | \----- Pan (4)
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| /-------+
| | \------- Gorilla (5)
| /---+
+ | \--------------- Pongo (6)
| /-------------+
| | \------------------- Hylobates (7)
| |
| | /-- Macaca_fuscata (8)
| /-----------+ /--+
| | | | \-- M_mulatta (9)
| | | /---+
| | | | \----- M_fascicularis (10)
\------------+ \-----------------------+

| \--------- M_sylvanus (11)
|
\--------------------------------------------- Saimiri_sciure~ (12)

-------|--------|-------|--------|-------|--------|-------|
60.0 50.0 40.0 30.0 20.0 10.0 0.0

If we look at the detailed summary of the age estimate of the human–chimp split,

we now see that the distribution has a mean and a median of 6.0, and the HPD

interval ranges from 5.0 to 6.9 (your results may be slightly di↵erent). Thus, the

posterior is virtually the same as the prior for the calibration node, meaning that

the tree age and clock rate priors have little influence on the dating of the tree.

Also note that the tree is now estimated to be slightly older than previously, as

one might have expected given that the previous median age estimate for the

human–chimp split was around 5 Ma.

Regardless of how one approaches dating, it is important to keep in mind that

the posterior distribution will always depend to a considerable extent on the

prior. Therefore, it is important to consider the priors on the clock tree

parameters (such as the tree age for the uniform prior), the node ages and the

clock rate carefully. It is good practice to examine the influence of these priors

on the dating results.

Now we turn our attention to a larger data set, and more complex dating

scenarios. The data set, hymfossil.nex, is from a study of the early radiation of

the Hymenoptera (Ronquist et al., 2012), and includes 68 recent taxa and 45

fossil taxa. The data matrix comprises about 5 kb data from seven molecular

markers for recent taxa, and about 350 morphological characters coded for both
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recent and fossil taxa.

At the end of the data file, in the MrBayes block, you will find two dating

analyses specified. The first is based on the standard node dating approach, in

which the fossil record is used to derive calibration points that can help date the

tree of extant taxa. The second uses total-evidence dating, in which the fossils

are analyzed together with the extant taxa. The advantage of the total-evidence

approach is that it integrates out the uncertainty in the placement of the fossils

in the tree, while simultaneously extracting the dating information they provide.

Thus, it avoids the problem of translating the fossil record into node calibrations,

and it does not su↵er from the possible artifacts resulting from locking the clades

corresponding to calibration nodes in the phylogenetic analysis.

Specifically, both analyses specified in the hymfossil.nex data file use two

standard calibration nodes for the outgroups, one corresponding to the root of

the tree and the other to the ancestor of Holometabola. In addition, the node

dating analysis relies on seven hymenopteran calibration points derived from the

45 hymenopteran fossils. The fossils themselves, however, are not included in the

analysis. In the total-evidence analysis, no node calibrations are used for the

Hymenoptera. Instead, dating is based on simultaneous analysis of the fossil and

recent taxa, taking the age of the fossils into account.

To run any of these two analyses, simply uncomment one of the two analysis

blocks by removing the pair of square brackets enclosing it. Then you execute

the data file from MrBayes and use the standard mcmc command to run the

analysis. We will not comment the results here but will simply walk you through

the MrBayes block in the data file to help explain all the steps needed in setting

up the node dating and total-evidence dating analyses.

The block starts out by defining a number of character sets. Then there is a set

of lines that define the model for the morphological partition. It first defines a

set of morphological characters to be ordered (morphOrdered), and then a set of

morphological characters to be excluded (morphExcluded). Then these

characters are ordered and excluded with the following two lines:

ctype ordered : morphOrdered;
exclude morphExcluded;
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The next set of lines define the partitioning of the data:

partition without_CO1_3 = 7: MV MS, 12S 16S, 18S, 28S,
CO1_12 CO1_3, Ef1aF1_12 Ef1aF2_12, Ef1aF1_3 Ef1aF2_3;

exclude CO1_3;
set partition = without_CO1_3;

Note that the morphological data (sets MV and MS ) are lumped into one

partition, as are the 12S and 16S sequences (because these are very short

sequences). The protein-coding CO1, Ef1aF1, and Ef1aF2 sequences are each

divided into two character sets: one for the first and second codon positions and

one for the third codon positions. Then the first and second codon positions of

Ef1aF1 and Ef1aF2, both nuclear protein-coding genes, are lumped into one

partition, while the third codon positions of these sequences are modeled in a

separate partition. Finally, only the the first and second codon positions of CO1

are included in the analysis, in a separate partition; the third codon positions of

CO1 are excluded. MrBayes does not accept a partition definition that does not

include all characters, so we need to include the third codon position sites of

CO1 in one partition, it does not matter which, before excluding them from the

analysis. Here, they are included in the same partition as the first and second

codon position sites of CO1 before being excluded. Finally, we tell MrBayes that

the partition we just defined is the one we want to use with the set command.

The next lines define the substitution models for the data partitions based on a

priori model testing. You should already be familiar with the structure of these

commands; if not, refer to the tutorial in chapter 3. The following block first

defines an outgroup, to be used in drawing trees from unrooted non-clock

analyses. This line is irrelevant for the dating analyses, since they produce rooted

trees. The next line defines a set of taxa including the fossils, called fossils :

taxset fossils= Triassoxyela Asioxyela ...

This will be convenient when we want to exclude the fossils from the node dating

analysis. Finally, all the constraints corresponding to the calibration nodes are

defined:

constraint root = 1-.;



4.7. NODE DATING AND TOTAL-EVIDENCE DATING 77

constraint hymenoptera = 10-69;
constraint holometabola = 3-69;
constraint holometabola_withFossils = 3-.;
...

Note that the file uses two versions of the holometabola constraint, one with the

fossils for the total-evidence analysis and one without for the node dating

analysis. Strictly speaking, this is not necessary because MrBayes will remove

excluded taxa from the constraint before using it, so the second version of the

constraint would have been adequate for both analyses.

We now come to the specification of the two dating analyses. The first is the

total-evidence analysis, which starts out by specifying the date of all fossil taxa:

calibrate Triassoxyela=Fixed(235)
Asioxyela=Fixed(235)

...

Here, we assume that the uncertainty concerning the age of each fossil is

negligible compared to other sources of uncertainty, so we simply fix the age of

each fossil instead of associating it with a prior probability distribution.

The next three lines set up an IGR relaxed clock model. You should recognize

the commands from the tutorial in section 4.6.

prset brlenspr=clock:uniform;
prset clockvarpr=igr;
prset igrvarpr=exp(37.12);

An appropriate prior for the igrvarpr parameter, the variance increase

parameter of the IGR model, was found by simulations. Specifically, strict-clock

and non-clock branch lengths were inferred on the same topology, and then

simulations under the IGR model were used to try to match the variation

observed between them (Ronquist et al., 2012). Stepping-stone sampling

indicated that the IGR model matched these data better than the other two

relaxed clock models provided by MrBayes.

The final five lines define a prior on the clock rate and sets the two outgroup

calibration points using the same commands discussed previously in this tutorial:
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prset clockratepr = lognorm(-7.08069,2.458582);
calibrate root=offsetexp(315,0.01234568);
calibrate holometabola_withFossils=offsetexp(302,0.0106383);
prset topologypr=constraints(root, holometabola_withFossils);
prset nodeagepr = calibrated;

Note that a tree age prior is not used here; instead, we define a root calibration

point. MrBayes will use the root calibration as your tree age prior if you provide

one; otherwise, it is the treeagepr setting that will be used to define the

uniform prior on clock trees. The specific parameter values used in defining the

priors on the calibration points and the clock rate are derived from the fossil

record (Ronquist et al., 2012).

This completes the definition of the total-evidence analysis. Let us now turn our

attention to the node-dating analysis. It starts out by deleting the fossils from

the analysis, using the previously defined taxon set called fossils :

delete fossils

It then continues by defining the relaxed clock model in the same way as the

total-evidence analysis. This is followed by a specification of the clock rate prior

and then the specification of the two outgroup and seven ingroup calibration

points. The commands are essentially the same used in the total-evidence

analysis. Note that all nine constraints have to be enforced when specifying the

topology prior:

prset topologypr=constraints(root,holometabola,hymenoptera,...,Vespina);

This completes the description of the analysis specifications. As you will notice,

the file ends by setting up some mcmc parameters using the mcmcp command but

it leaves it up to you to actually start the analysis.

4.8 Inferring Ancestral States

The purpose of the analysis discussed in this tutorial is to infer the ancestral

state probabilities for a given node in a phylogeny, while simultaneously

accommodating uncertainty in all other model parameters, including the topology
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of other parts of the tree. We will use the cynmix.nex dataset for the tutorial.

First, we read in the data using

MrBayes > execute cynmix.nex

This is the same data set we used for the partitioned analysis in chapter 3. It is a

mixed data set consisting of morphological and molecular data. Let us assume

we are interested in inferring the likely ancestral states of one of the

morphological characters, say the first one in the matrix, for a particular

ancestor in the tree, the ancestor of all gall wasps (family Cynipidae). The family

includes taxa 1–29 of the 32 taxa included in the matrix.

To make sure we can infer the states of the morphological character of interest

without inferring the states of all other morphological characters, we will treat it

in a separate data partition. Otherwise, we will use the same partitioned model

as in chapter 3. To set up the model, we need to type in the following lines:

MrBayes > partition ancstates = 6: 1, 2-166, COI, EF1a, LWRh, 28S
MrBayes > set partition = ancstates
MrBayes > lset applyto = (2) rates = gamma
MrBayes > lset applyto = (3,4,5,6) rates = invgamma nst = 6
MrBayes > unlink statefreq = (all) revmat = (all) pinvar = (all) shape = (all)
MrBayes > prset ratepr = variable

Now we need to enforce a topological constraint corresponding to the family

Cynipidae, and then ask MrBayes to report ancestral states for that node and

the relevant partition. We force the node corresponding to the Cynipidae to

always be present in the sampled trees by first defining and then enforcing the

constraint:

MrBayes > constraint cynipidae = 1 - 29
MrBayes > prset topologypr = constraints(cynipidae)

To ask MrBayes to report ancestral states for the first partition, which contains

only the first morphological character, we use:

MrBayes > report applyto = (1) ancstates = yes

We now run the analysis, say for 30,000 generations, which is barely enough to

get adequate convergence. After the analysis is completed, we summarize the
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parameter samples, including those of the ancestral state probabilities, using the

sump command:

MrBayes > mcmc ngen=30000
MrBayes > sump

The output from sump will include the state probabilities of the first character

for the node corresponding to the most recent common ancestor of the Cynipidae.

Here are the relevant lines in the parameter table from our analysis (they are

found at the bottom of the table), based on a run of 100,000 generations:

Parameter Mean Variance min ESS* avg ESS PSRF+
-----------------------------------------------------------------------------
p(0){1@cynipidae} 0.582241 0.028763 ... 28.07 30.99 1.004
p(1){1@cynipidae} 0.417759 0.028763 ... 28.07 30.99 1.004
-----------------------------------------------------------------------------

The first line gives the probability of state 0 for character 1 at the constrained

node labeled “cynipidae”. The second line gives the probability of state 1 for the

same character and the same node. The results indicate that the probability of

the ancestral state being 0 at this node is only slightly higher than the

probability of the state being 1.

4.9 The Multi-Species Coalescent

In this tutorial, we will set up an analysis using the multi-species coalescent.

Unlike standard models, which are based on sequence concatenation, this model

does not assume that gene trees are identical to the species tree. Instead, we

model the evolution of individual gene trees within species trees using the

coalescent model, extended to multiple species (Liu and Pearl, 2007; Edwards

et al., 2007). The multi-species coalescent will take into account that gene trees

and species trees may be di↵erent because of lineage sorting (deep coalescence).

However, it does not model introgression or hybridization.

For this tutorial, we will use the finch.nex data set, which contains data from

30 loci for a set of four individuals belonging to four di↵erent species. As usual,

we first read in the data:
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MrBayes > execute finch.nex

The data file sets up a partition that divides the data into the 30 separate genes.

The next step in specifying the multi-species coalescent is to define what species

to which the di↵erent sequenced individuals belong. This is done using the

speciespartition command. By default, it is assumed that each individual

belongs to a separate species, which is the case we are dealing with, but let us

nevertheless be explicit:

MrBayes > speciespartition species = SpeciesA: 1, SpeciesB: 2,
SpeciesC: 3, SpeciesD: 4

MrBayes > set speciespartition = species

The first line (broken here into two to fit the page, but you need to enter it as a

single line in the console window) simply names each of the species and then lists

the sequences that belong to that species. The list of sequences is a standard

taxon list, as used by the Taxset command. This means that you can use either

the index or the name of a sequence (“taxon”). Ranges are specified using a

dash, and a period can be used as a synonym of the last sequence in the matrix.

Here, each species that we name is represented by a single sequence, specified by

its row index in the data matrix.

We now need to unlink the topology parameter of the 30 gene partitions, which

is done using the unlink command:

MrBayes > unlink topology=(all)

To set the multi-species coalescent as the prior for each of the gene trees, we need

to say both that the branch lengths should come from a coalescent process within

a species tree and that the topology should be constrained by the species tree.

This is achieved using the lines:

MrBayes > prset topologypr = speciestree
MrBayes > prset brlenspr = clock:speciestree

Note that these settings need to go together to invoke the multi-species

coalescent. Once the multi-species coalescent is invoked, the ordinary rate

multiplier is split into a within-gene and an among-gene rate multiplier. The
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within-gene rate multiplier is referred to simply as the rate multiplier, while the

among-gene rate multiplier is called the generate multiplier. Examine the model

parameters by using the showmodel command to verify this.

We now turn our attention to the substitution model. Assume that we would like

to use an HKY model with site rates modeled using a discrete gamma. This

would be accomplished using the line:

MrBayes > lset nst=2 rates=gamma

Finally, we need to consider the prior on the population size. By default, it will

be assumed that the population size is the same for all lineages in the tree. Let

us change that to make the population size variable across lineages. For the prior

on the population size, let us use a lognormal distribution with the mean on the

log scale being equal to a population size of 100, and the standard deviation on

the log scale being equal to 10. Since the natural log of 100 is about 4.6, and the

natural log of 10 is about 2.3, this would be achieved using the lines:

MrBayes > prset popvarpr=variable
MrBayes > prset popsizepr=lognormal(4.6,2.3)

We can now sample from the model to estimate the posterior probability

distribution. This is a large model with many parameters, so we need to run a

fair number of generations to get adequate convergence. To speed up the

analysis, let us try to run it without heating (Metropolis coupling). We do that

by setting the number of chains to one, nchains = 1. Under these settings, our

run seemed to produce an adequate sample within 1 M generations. To run an

analysis of this length without Metropolis coupling, use:

MrBayes > mcmc ngen=1000000 nchains=1

By default, MrBayes runs two analysis in parallel, and computes convergence

diagnostics on all gene trees as well as on the species tree. Ideally, we would like

to see topological convergence on all trees. This is a sample output from our

analysis:

Average standard deviation of split frequencies for topology 1: 0.007974
Average standard deviation of split frequencies for topology 2: 0.016684
Average standard deviation of split frequencies for topology 3: 0.015212
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...
Average standard deviation of split frequencies for topology 31: 0.043427

In this list, the first 30 topologies correspond to the gene trees, and the last one

to the species tree. To summarize the tree samples, simply use the sumt

command, which will process all of the gene trees and then the species tree.

Focus on the last tree, which is the species tree. It should look something like

this:

Clade credibility values:

/------------------------------------------------------------------ SpeciesA (1)
|
|------------------------------------------------------------------ SpeciesB (2)
+
|------------------------------------------------------------------ SpeciesC (3)
|
\------------------------------------------------------------------ SpeciesD (4)

Phylogram (based on median node depths):

/------------------------------------------------------------------ SpeciesA (1)
|
|------------------------------------------------------------------ SpeciesB (2)
+
|------------------------------------------------------------------ SpeciesC (3)
|
\------------------------------------------------------------------ SpeciesD (4)

-----------------|---------------|----------------|---------------|
3.00e-04 2.00e-04 1.00e-04 0.00e-04

[Expected changes per site]

These summaries of the tree samples show that the species tree topology is

unresolved. Note also that the species tree is very shallow, so the sequences are

quite similar to each other. In the partition tables printed above the trees, it is

possible to find the posterior probability for each of the individual clades found

in the tree samples.
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Introduction(
MrBayes version 3.2.2 implements the compound Dirichlet priors for branch lengths described by 
Rannala et al. (2012) and Zhang et al. (2012).  Compared with the exponential and uniform 
priors for branch lengths in previous versions of MrBayes, the Dirichlet priors appear more 
reasonable and may avoid the problem of extremely long trees, as discussed by Brown et al. (2010) 
and Marshall (2010).  This version also implements the two-exponential prior on internal and 
external branch lengths described by Yang & Rannala (2005) and Yang (2007). 
 
I suggest that before analyzing your own data, you run the program without data (mcmcp data=no) 
to confirm that the posterior estimates are consistent with the priors.  Also if you analyze the 
lizards data set (Sceloporus.nex) of Leaché and Mulcahy (2007), you should be able to duplicate 
the results of table 3 in Zhang et al. (2012).  Under GTR+Γ4, the posterior mean and 95% CI of 
the tree length is 1.824 (1.689, 1.958) for gammadir(1,1,1,1), and is 1.821 (1.688, 1.954) for 
invgamdir(3,2,1,1). 

Commands(for(compound(Dirichlet(priors(
Gamma$prior$on$the$tree$length$
  prset brlenspr=unconstrained:gammadir(αT,βT,α,c); 
αT and βT are the shape and rate parameters of the gamma distribution on the tree length.  
We use αT =1 by default, while the prior mean of the tree length is αT / βT.  α and c are the 
parameters of the Dirichlet prior on the proportional branch lengths.  α is inversely related to 
the variance of the branch lengths, while c is the ratio of the prior means for the internal and 
external branch lengths.  α = c = 1 specifies the uniform Dirichlet distribution. 
Inverse$gamma$prior$on$the$tree$length$
  prset brlenspr=unconstrained:invgamdir(αT,βT,α,c); 
This prior is heavier-tailed than gamma.  We use αT = 3 by default, while the prior mean of 
the tree length is βT / (αT − 1).   

Commands(for(two<exponential(prior(
  prset brlenspr=unconstrained:twoexp(rI,rE); 
rI and rE are parameters for internal branchs and external branchs respectively. We use rI = 
100, rE = 10 by default, while rI = rE = 10 is equivalent to the default prior exponential(10). 

 
The three commands above are newly introduced in version 3.2.2.  They all can be used 



together with other commands in prset.  For example,  
prset statefreqpr=fixed(equal) brlenspr=uncon:gamma(1,.5,.8,1); 

References( (
Brown, J. M., S. M. Hedtke, A. R. Lemmon, and E. M. Lemmon. 2010. When trees grow too 
long: investigating the causes of highly inaccurate Bayesian branch-length estimates. Syst. 
Biol. 59:145-161. 
Leaché, A. D., and D. G. Mulcahy. 2007. Phylogeny, divergence times and species limits of 
spiny lizards (Sceloporus magister species group) in western North American deserts and 
Baja California. Mol. Ecol. 16:5216-5233. 
Marshall, D. C. 2010. Cryptic failure of partitioned Bayesian phylogenetic analyses: lost in 
the land of long trees. Syst. Biol. 59:108-117. 
Rannala, B., T. Zhu, and Z. Yang. 2012. Tail paradox, partial identifiability and influential 
priors in Bayesian branch length inference. Mol. Biol. Evol. 29:325-335. 
Yang, Z. 2007. Fair-balance paradox, star-tree paradox and Bayesian phylogenetics. Mol. 
Biol. Evol. 24, 1639-1655.��
Yang, Z and B. Rannala. 2005. Branch-length prior influences Bayesian posterior probability 
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Bayesian inference of branch lengths. Syst. Biol. 61:779-784. 
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166 APPENDIX A. OVERVIEW OF MODELS AND MOVES

New values are picked uniformly from a sliding window
     of size  centered on x.
Tuning parameter: 
Bolder proposals: increase 
More modest proposals: decrease 

Works best when the effect on the probability of the
data is similar throughout the parameter range

Works well when changes in small values of x have
a larger effect on the probability of data than
changes in large values of x. Example: branch lengths.

Works well for proportions, such as revmat and statefreqs.

New values are picked from the equivalent of a
    sliding window on the log-transformed x axis.
Tuning parameter: 2 ln a
Bolder proposals: increase 
More modest proposals: decrease 

Two adjacent branches a and b are chosen at random
The length of a + b is changed using a multiplier with tuning
    paremeter 
The node x is randomly inserted on a + b according to a
    uniform distribution

An internal branch a is chosen at random
The length of a is changed using a multiplier with tuning
    paremeter 
The node x is moved, with one of the adjacent branches, in subtree A,
    one node at a time, each time the probability of moving one more
    branch is p (the extension probability).
The node y is moved similarly in subtree B.

Bolder proposals: increase 
More modest proposals: decrease 

Bolder proposals: increase 
More modest proposals: decrease 
Changing  has little effect on the boldness of the proposal

Bolder proposals: increase p
More modest proposals: decrease p
Changing  has little effect on the boldness of the proposal.

Three internal branches - a, b, and c - are chosen at random.
Their total length is changed using a multiplier with tuning
    paremeter 
One of the subtrees A or B is picked at random.
It is randomly reinserted on a + b + c according to a uni-
    form distribution

The boldness of the proposal depends heavily on the uniform
    reinsertion of x, so changing  may have limited effect

New values are picked from a Dirichlet (or Beta) distribution
     centered on x.
Tuning parameter: 
Bolder proposals: decrease 
More modest proposals: increase 

The most common proposal types used by MrBayes 3
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