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Summary

Early bacterial colonization and succession within the
gastrointestinal tract has been suggested to be
crucial in the establishment of specific microbiota
composition and the shaping of host phenotype.
Here, the composition and dynamics of faecal
microbiomes were studied for 31 healthy piglets
across five age strata (days 14, 36, 48, 60 and 70 after
birth) together with their mothers. Faecal microbiome
composition was assessed by 16S rRNA gene 454-
pyrosequencing. Bacteroidetes and Firmicutes were
the predominant phyla present at each age. For all
piglets, luminal secretory IgA concentration was
measured at day 70, and body weight was recorded
until day 70. The microbiota of suckling piglets was
mainly represented by Bacteroides, Oscillibacter,
Escherichia/Shigella, Lactobacillus and unclassified
Ruminococcaceae genera. This pattern contrasted
with that of Acetivibrio, Dialister, Oribacterium,
Succinivibrio and Prevotella genera, which appeared
increased after weaning. Lactobacillus fermentum
might be vertically transferred via breast milk or
faeces. The microbiota composition coevolved with
their hosts towards two different clusters after
weaning, primarily distinguished by unclassified

Ruminococcaceae and Prevotella abundances.
Prevotella was positively correlated with luminal
secretory IgA concentrations, and body weight. Our
study opens up new possibilities for health and feed
efficiency manipulation via genetic selection and
nutrition in the agricultural domain.

Introduction

The contribution of gastrointestinal tract microbiota to pig
health and performance, including metabolism of nutrients,
stimulation of immune response, protection from patho-
gens and stimulation of epithelium cell proliferation is
becoming increasingly apparent (Katouli et al., 1997a;
Spreeuwenberg et al., 2001; Konstantinov et al., 2006;
Lalles et al., 2007; Thompson et al., 2008; Mann et al.,
2014). In pigs, the microbial establishment begins at birth
when the neonate is exposed to a wide variety of microor-
ganisms, mainly provided by the mother during and after
the passage through the birth canal and the surrounding
environment (Katouli et al., 1997b). Furthermore, since
newborn piglets are in constant contact with the mother’s
faeces, skin and mucosal surfaces until weaning, it is likely
that the establishment of their microbiota depends on that
of the sow (Katouli et al., 1997b; Thompson et al., 2008).
The age-related successional mechanisms and steps
involved in the colonization and diversification of the
microbiota in pigs are beginning to be understood (Inoue
et al., 2005; Konstantinov et al., 2006; Thompson et al.,
2008; Kim et al., 2011; Schmidt et al., 2011; Buzoianu
et al., 2012; Looft et al., 2012; Bearson et al., 2013; Mann
et al., 2014; Schokker et al., 2014).

However, little is known about how early-life establish-
ment of the swine gut microbiome may contribute to
the individual’s performance, to the response to some
medical and nutritional treatments and to the susceptibility
to diseases. In humans, there is increasing evidence that
perturbations of gut microbiota composition and functions
may play an important role in the development of host
metabolism and diseases (Clavel et al., 2014). Current
perception is that microbiota establishment is regulated
by the metabolic niche (manly diet and antimicrobials),
host genetic background, microbes–microbes interactions
and host–microorganism interplay (Spor et al., 2011;
Schloss et al., 2012; Bearson et al., 2013). At a microbial-
host regulatory level, a tight link between microbes and
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IgA has been first described in axenic mice, in which
colonization by a dense microbiota is mandatory for the
production and secretion of luminal IgA (Benveniste
et al., 1971). Moreover, dynamic secretion of IgA into the
gut lumen might coat the bacteria helping maintain
a tolerant, non-inflammatory host-microbial relationship
(Macpherson, 2006; Levast et al., 2010; Sutherland and
Fagarasan, 2012; Palm et al., 2014).

In this work, we present the first longitudinal study aimed
at assessing how the pre- and post-weaning microbiota
co-evolve with its host. We further investigated whether the
lactation-adapted microbiota in healthy piglets presented
stronger resemblance to their mother than to unrelated
mothers. Lastly, we studied whether the microbiota com-
position and structure in early age can lead to the identifi-
cation of microbial biomarkers associated with variations of
luminal secretory IgA (sIgA) and growth traits.

Results and discussion

Comparative analysis of microbiota composition and
dynamics in piglets as a function of age, gender, pen
and their mothers

Thirty-one large white piglets (15 females and 16 males)
were studied together with their respective mothers
(n = 29). One or two piglets from each litter was weaned at
28 days of age and randomly assigned to seven fully
slatted pens. Faecal samples were obtained at days 14,
36, 48, 60 and 70. A total of 770 238 raw sequences reads
were generated by 454-pyrosequencing of the V3–V4
region of 16S rRNA gene (For additional information on
experiments and methods, see Appendix 1). The
sequences retained after different pre-processing steps
(n = 335 355) were used for the reference-based opera-
tional taxonomic units (OTU) picking process (Table S1).
Altogether, 99.8% of the sequences matched the
GreenGenes reference core alignment set, while 0.2%
were unknown (did not align to any sequence in the data-
base above 75% percent of identity). The number of
OTUs determined was 7857 (Table S2).

The dynamics of richness and diversity in the piglets
and sows microbiota was computed with Chao1 estimator
(Chao, 1984). At the level of 900 sequences per sample,
the diversity was almost saturated for piglets at different
ages, as revealed by the asymptotic shape of the sample
rarefaction curves (Fig. S1). No significant difference in
richness estimates was detected between piglets’ gender
(Fig. S1B) or cohousing animals, e.g. cohabitating piglets
from multiple litters in the same pen (Fig. S1C).

The Firmicutes and Bacteroidetes phyla accounted for
more than 90% of total sequences, similarly to previous
findings in the ileal, caecal and faecal microbiota of
weaning and finishing pigs (Poroyko et al., 2010; Kim
et al., 2011; Schmidt et al., 2011; Buzoianu et al., 2012;

Schokker et al., 2014). Other phyla were also present but
at lower percentages (e.g. 5.14% Proteobacteria, 1.49%
Spirochaetes, 0.76% Fusobacteria; Fig. S2). As shown in
Fig. 1, piglet microbiota diversifies over the first weeks of
life to create a homogeneous, rich and stable anaerobe-
dominated microbial community after weaning (Katouli
et al., 1997b; Jensen-Waern et al., 1998; Inoue et al.,
2005; Thompson et al., 2008). These significant differ-
ences between suckling and weaned piglets were further
confirmed by multivariate redundancy analysis of the
Bray–Curtis distance (Fig. S3A), non-parametric multidi-
mensional scaling (NMDS; Fig. S3B), network linked within
a specified Jaccard distance (Fig. S3C and D; analysis of
similarities (ANOSIM; Table S3)) and Random Forest, a
supervised machine-learning technique (Table S4). Inter-
estingly, Bacteroides, Butyricimonas, genera from the
Clostridiales (e.g. Oscillibacter, Clostridium sensu stricto,
Clostridium IV, Clostridium XIVa) and Escherichia/Shigella
exhibited significant decline with increasing age [Fig. 1C;
false discovery rate (FDR) < 0.05, Kruskal–Wallis test,
Table S5]. The enrichment of Bacteroides and Oscillibacter
genus in suckling pigs was in agreement with trends seen
in humans (Palmer et al., 2007; Marcobal et al., 2011). It
has been suggested that species from these genera are
abundant in the neonate gastrointestinal microbiota
because they are adapted to use wide range of both
milk oligosaccharides and host-derived glycans (e.g.
sulfomucin) as a unique carbon source (Palmer et al.,
2007; Poroyko et al., 2010; Marcobal et al., 2011).
Increased abundance of Escherichia/Shigella genus
during lactation was also found in the faeces of humans
(Maltby et al., 2013) and pigs (Konstantinov et al., 2006;
Kim et al., 2011). Similar observations were recently
observed in the pig gastrointestinal mucosa (Mann et al.,
2014), indicating that pathobiont species are commonly
present in the pig gastrointestinal tract, thus awaiting
potential stressors to become pathogenic. At weaning, the
sow’s milk is totally replaced by cereal-based diets that
have complex chemical composition (Spreeuwenberg
et al., 2001), and piglets are separated from the sow and
littermates. The introduction of a solid cereal-based diet,
which in turn may modify the substrate availability and the
physiological conditions of the gastrointestinal tract [e.g.
fermentation products, luminal pH and bile acid concentra-
tion; (Opapeju et al., 2009; Kim et al., 2011; 2012)] was
probably the main cause associated with the increased
abundances of Prevotella, Acetivibrio, Oribacterium,
Paraprevotella, Roseburia and Succinivibrio genera after
weaning (Fig. 1C; FDR < 0.05; Kruskal–Wallis test; Table
S5). A higher relative abundance of Prevotella (which
represented > 30% of all 16S rRNA sequences after
weaning) observed at weaning might have been due to the
capacity of this genus to produce enzymes such as
xylanases, mannanases, β-glucanases (Flint and Bayer,
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2008) that can degrade the polysaccharides in the cereal
cell wall [e.g. arabinoxylan and cellulose; (Shah and
Collins, 1990; Ivarsson et al., 2012)]. Yet, various con-
founding factors can hamper the interpretation and com-
parison of community shifts in pigs after weaning. Among
these are gender effects, co-housing effect, genetic back-
ground and maternal effects. Here, we demonstrate that no
significant association between microbiota composition
and gender (FDR < 0.05; Mann–Whitney test; Table S6) or
pen (FDR < 0.05; Kruskal–Wallis test; Table S7) was found
throughout the experiment. Furthermore, in agreement
with Buzoianu and colleagues (2012), who investigated
transgenerational effects of feeding genetically modified
maize to sows and their offspring on maternal and offspring
intestinal microbiota from weaning to 115 days after birth,
we did not find evidence that maternal microbiota is
reflected in the offspring microbiota at weaning, or at later
ages (Fig. 1A). Therefore, we suggest that stochastic
factors might have a significant role in shaping the struc-
ture of the microbial communities within the first days of life
(Schloss et al., 2012). However, a set of 315 OTUs (> 60%
of the sequences) was shared between piglets and sows
regardless of their age and gender, and identified as core
(Table S8). Additionally, we found a total of 182 OTUs
shared between mother and piglet pairs. Yet, out of 182
OTUs, only one was found in more than 90% of the
mother–piglet pairs, being assigned to the sulfate-reducing
bacteria Desulfovibrio piger (Fig. S4). Desulfovibrio piger is
able to use the short chain fatty acids and sulfate released
by other bacteria into the lumen during the initial stage of
colonization (Fite et al., 2004; Rey et al., 2013). Other
species identified that could be transferred from mothers to
their piglet’s intestines via faeces or breastfeeding were
Lactobacillus fermentum, Eubacterium coprostanoligenes
and Clostridium ruminatum. In humans, DNA of
L. fermentum was previously identified in maternal faeces,
breast milk and corresponding neonatal faeces within the
same mother–neonate pair, which supports vertical trans-
fer via breast milk (Jost et al., 2014). Interestingly,
L. fermentum has been used as a growth-promoting feed
supplement preventing and treating diarrhoea of weaned
piglets and maximizing the average daily gain, crude
protein apparent digestibility and serum specific IgG level
(Yu et al., 2008). Thus, it is likely that in some cases, the

lactobacilli from the mother’s intestines or milk may colo-
nize and adhere on the gastrointestinal tract epithelium of
piglets, reinforcing their symbiotic relationship with the host
and promoting their growth.

Evaluation of enterotype-like clusters in piglets

The temporal trajectory of bacterial communities in piglets
showed that microbiota co-evolves with their hosts
towards two different enterotype-like clusters, primarily
distinguished by unclassified Ruminococcaceae and
Prevotella levels (Fig. 2A). The optimal cluster number
was found to be two by both the Calinski–Harabasz index
as well as silhouette score (Fig. S5). Random Forest
analyses confirmed distinct bacteria community signa-
tures for piglets belonging to Ruminococcaceae or
Prevotella clusters (baseline error = 0.194, cross-
validation error = 0.011), and revealed the importance
of Prevotella as the most discriminatory genus between
the two clusters (Table S9). The relative abundances
of 58 genera were significantly different between
Ruminococcaceae and Prevotella clusters (FDR < 0.05;
Mann–Whitney test; Table S10). The phylogenetic compo-
sition was highly similar to two of the enterotypes recently
described in humans (Arumugam, Raes et al., 2011), and
mice (Hildebrand et al., 2013). However, conversely to a
fixed and discrete clustering of the gastrointestinal
microbiota over time, we observed a dynamic enterotype-
like clustering chiefly shifting by the relative abundance of
the genus Prevotella across ages (Fig. S6). Whereas over
the first 14 days of life, all piglets pertained to
Ruminococcaceae cluster, weaning was associated with a
shift in microbiota composition that moved 14 animals to
Prevotella cluster. After weaning, we observed that 12
piglets were classified in the same cluster across ages,
whereas 11 piglets remained in the same cluster in 80% of
the time points. Lastly, eight piglets crossed the putative
enterotype boundaries on a regular basis across time (Fig.
S6), suggesting that discrete enterotype-like clusters are
not fixed overtime for all animals. Similarly, Knights and
colleagues (2014) projected a dense time series of 1
year’s worth of daily gut microbiome samples and found
that for some healthy subjects, enterotype can vary widely
and continuously over time. In light of our findings, it

Fig. 1. Multidimensional reduction methods for elucidating diversity relationships of faeces microbiota in piglets and their mothers.
A. Genus-level taxonomic representation between piglets at different ages and their mothers linked within a specified Jaccard distance of 0.70.
Two samples were considered ‘connected’ if the distance between them was less than 0.70. The relative position of points was optimized for
the visual display of network properties. The point’s shape indicates the gender; (B) Analysis of similarities (ANOSIM) function to test for
differences in community composition among piglets at five age strata and their respective mothers. The analysis showed an R = 0.44
(P < 0.001), indicating that all samples within groups are more similar to each other than to any other samples from different groups.
C. Relative abundance of bacterial genera between piglets at different ages and their respective mothers. On the y-axis, relative abundance of
16S rRNA genes per sample and genera are shown. Genera names are coloured according to their phyla: Firmicutes (green blue),
Bacteroidetes (orange), Proteobacteria (blue), Spirochaetes (dark blue). In all cases, day 14 (red, n = 31), day 36 (olive, n = 31), day 48
(green, n = 31), day 60 (green blue, n = 31), day 70 (dark blue, n = 31) and sows (pink, n = 29).
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prompted the interest in discovering whether lactation-
associated genera could be responsible for the shift of
enterotype-like cluster after weaning and its stability over
time. Although cause and effect is difficult to decipher, we
identified three candidate biomarkers of community shifts
after weaning. Lower abundance of clostridia such as
Oscillibacter and Clostridium cluster XIVa but higher abun-
dance of Lactobacillus genus in 14-day suckling piglets
appeared to be discriminative (P < 0.05) and predisposed
individuals to shift into Prevotella cluster after weaning.
Interestingly, Lactobacillus fermentum abundance, which
seems to be directly transmitted from mothers, was found
to be two times higher in faeces of piglets belonging to the
Prevotella cluster at any age, although their proportional
representation was < 1% (age × cluster; P < 0.001).

Links between microbial communities, growth and
secretory IgA levels: towards the identification
of biomarkers

The average body weight (BW) of all 31 piglets at birth
was homogeneous (1.65 ± 0.03 kg; 95% confidence inter-

val of the mean was 1.51–1.78 kg; Fig. S7). However, the
BW difference between the lightest and the heaviest
piglets increased after birth (Fig. S7). In humans, numer-
ous studies have revealed specific relationships between
intestinal microbiota composition and abundance, and the
host metabolism (Nicholson et al., 2012; Le Chatelier
et al., 2013). Therefore, we first investigated whether the
enterotype-like clustering might be related to performance
and sIgA variation across ages. The enterotype-like
clustering analysis showed that: (i) animals pertaining to
Ruminococcaceae cluster presented better growth rates
during lactation (Fig. 3) and (ii) animals belonging to
Prevotella cluster presented lower growth rates during
lactation but higher BW, and average daily gain (ADG)
after weaning (Fig. 3). Similarly, analysis of luminal sIgA
concentration at day 70 suggested a bimodal distribution,
with piglets from Prevotella cluster having higher concen-
tration of sIgA than the Ruminococcaceae cluster piglets
(Fig. 4). We hypothesized that animals belonging to
Ruminococcaceae cluster were more competitive during
lactation because they presented higher abundance of
Bacteroides and clostridia genera such as Oscillibacter

Fig. 2. Evaluation of enterotype-like clusters in piglets across five age strata.
A. Principal components analysis on a relative genus abundance matrix was performed from piglets’ faeces. We used a probability distribution
distance metric related to Jensen–Shannon divergence and PAM, as described by Arumugam, Raes and colleagues (2011). Individuals are
represented by violet dots (Ruminococcaceae cluster) and orange dots (Prevotella cluster). Confidence ellipses around the centroids of the
resulting clusters were used. The first axis extracted 62.43% of the variation, and the two axes kept 72.80% of the total inertia. Interclass PCA
of genera profiles with enterotype-like clusters as instrumental variables was also assessed. Based on a Monte Carlo test with 999 replicates,
a significant difference was found between the two clusters (P < 0.001); (B) Relative abundance of genera between the two enterotype-like
clusters. Several genera were significantly different between clusters, with a cut-off of FDR < 0.05; Mann–Whitney test. On the y-axis relative
abundance of 16S rRNA gene reads per sample and main genera are shown. Violet boxes: Ruminococcaceae cluster, and orange boxes:
Prevotella cluster.
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and Clostridium XIVa, which are able to digest the free
milk oligosaccharides (Li et al., 2012), a major component
of porcine milk (Tao et al., 2010) and favour the coloniza-
tion by symbiotic anaerobes that have a positive effect on
host performance. By contrast, animals belonging to
Prevotella cluster presented better growth rates after
weaning, suggesting that Prevotella, which plays an

essential role in the process of complex dietary
polysaccharides (Ellekilde et al., 2014), may promote
increased uptake of monosaccharides in the host and
confer performance advantage (McBurney and Sauer,
1993; Anguita et al., 2006). Additionally, the higher capac-
ity of animals pertaining to Prevotella cluster to synthesize
luminal sIgA may suggest that these individuals might

Fig. 3. Evaluation of growth performance distribution according to the two enterotype-like clusters in piglets at day 36.
A. The box plot graph represents the BW distribution across ages between the two enterotye-like clusters found at day 36; (B) The box plot
graph represents the ADG distribution across ages between the two enterotye-like clusters at day 36. In all plots, individuals are represented
by violet (Ruminococcaceae cluster) and orange (Prevotella cluster). *, **denote statistical significance at the 10%, 5% level respectively.

Fig. 4. sIgA concentration (ng/ml) in colon of 70 day piglets.
A. Kernel probability density function of sIgA secretion in the colon; (B) Probability density function of sIgA secretion in the colon using a
mixture model. The black dotted curve represents the fitted mixture model, whereas coloured curves are scaled normal mixture components
with means of 9.65 and 28.97 ng ml−1 respectively.
C. Distribution of sIgA concentration (ng/ml) in the colon according to the enterotype-like clusters in piglets at day 36. *denotes statistical
significance at the 10% level.
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have a decreased host’s cost of responding to the intes-
tinal microorganisms, and an additional performance effi-
ciency. Because the individual’s enterotype was variable
after weaning for some animals and putative discrete
clusters might be less effective to discover biomarkers
than a predictive model constructed from the relative
genera abundances (Knights et al., 2014), we tested
whether the BW and ADG of piglets across ages, as well
as sIgA concentration at day 70, could be influenced by
the microbiota defined after weaning throughout Spear-
man correlation and sparse partial least squares analysis

(sPLS) approaches (Le Cao et al., 2008a; 2011). This
analysis identified a myriad of minor taxa, whose role in
the pig intestine is not fully established. Some of them
were highly associated with at least one phenotypic trait
and could be considered as potential biomarkers (Fig. 5;
Table S11). Increased abundance of Fusobacterium and
clostridia (e.g. Oxobacter, Oscillibacter) at day 36 was
negatively correlated with body weight and sIgA at day 70.
The proportion of Bacteroides genus was also negatively
correlated with the body weight, as seen elsewhere (Guo
et al., 2008; Pedersen et al., 2013). Contrarily, higher

Fig. 5. Determination of potential key genera for body weight and sIgA production in piglets. Covariations between the relative abundances of
bacterial general in the faecal microbiota at day 36 and different phenotypes at day 70 using sparse partial least squares regression. The
most abundant genera were included in the analysis. The network is displayed graphically as nodes (genera and phenotypes) and edges (the
biological relationship between nodes). The edge colour intensity indicates the level of the association: red = positive and blue = negative.
Node shape indicates whether it is a phenotype (round) or genera (square). The score of the association was indicated under each edge.
Pairwise associations with scores greater than 0.20 were projected.
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abundance of Prevotella and Mitsuokella were associated
with increased BW. At the level of phyla, similar to
Pedersen and colleagues (2013), a positive correlation
between the weight gain and the relative abundance of
Firmicutes was observed (Fig. S8). In mice, Hildebrandt
and colleagues (2009) pointed to an association between
alterations in energy intake and changes in gut microbiota
such as increase in abundance of Firmicutes. Jumpertz
and colleagues (2011) found that a 20% increase in abun-
dance of Firmicutes resulted in higher energy harvest
corresponding to approximately 150 kcal. Although the
association between Bacteroidetes to Firmicutes ratio and
performance phenotypes was not statistically significant
(Fig. S8), we identified several bacterial genera belonging
to both phyla Firmicutes and Bacteroidetes that may regu-
late weight gain and sIgA in pigs. As reported by Knights
and colleagues (2014), the discovery of biomarkers in a
supervised way, linking it directly to performance variables
besides of relying uniquely on unsupervised clusters, pro-
vides promising information for understanding biological
questions in the gastrointestinal tract for nutritional pur-
poses and for genetic research. Taken together, our data
suggest that gut microbiota might contribute to influence
piglet growth performance in numerous ways, that could,
consequently, be modulated.
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Appendix 1. Experimental Procedures

Animals and sampling

Thirty-one large white piglets (15 females and 16 males)
were studied from 29 commercial unrelated litters at
French National Institute for Agronomical Research
(INRA)’s experimental farm (Le Magneraud, France),
together with their respective mothers (n = 29). The 31
piglets were selected carefully accounting for population–
genetic structure, and covariates such as gender, and
environmental influences (e.g. disease state, antimicrobi-
als). One or two healthy piglets per mother were selected
to avoid close genetic relationship between piglets within
pens, which may cause difficulties to understand the
individual variance underlying microbiota composition
and would require the use of statistical models including
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random effects with a variance–covariance matrix
dependent on the family structure of the piglets. Addition-
ally, only one animal per litter was selected to prevent the
maternal effects within the cohort of 31 piglets, which may
hamper the interpretation and comparison of community
shifts in pigs around weaning. All animal procedures were
conducted according to the guidelines for the care and
use of experimental animals established by INRA (ability
for animal experimentation: A78-172, agreement for
experimentation at le Magneraud: A-17661; protocol
approved by a local ethics committee COMETHA Poitou-
Charentes with the permit number: CE2013-2).

Piglets were weaned at 28 ± 0.2 days of age (±SEM)
and weighted 9.1 ± 0.27 kg. After weaning, they were
randomly assigned in seven different pens (fully
slatted, temperature-controlled flat deck accommodation).
Animals were kept in the same pen during the entire
post-weaning period without the introduction of any new
pigs. The management, environmental and housing
factors have been controlled for all animals throughout the
whole study. Creep feeding was provided during the last
week of lactation. Post-weaning diets were formulated to
exceed the INRA (1989) nutrient recommendations for

monogastrics (Table 1). Cereals were used in the pig diet
as the main sources of energy. Fresh, clean drinking
water and diets were offered ad libitum. Piglets were
individually weighed on day 0 (birth), day 21, day 28
(weaning) and day 70. Fresh faecal samples were
obtained from the 31 piglets at days 14, 36, 48, 60 and 70.
Piglets aged between 14 and 28 were individually placed
on a sterile plastic tray, and faecal samples were collected
while monitoring the piglets. At days 36, 48, 60 and 70,
faecal samples were directly collected from the piglets’
rectum. For sows, rectal samples were also onsite col-
lected at day 14 following delivery. All faecal samples
were directly frozen in liquid nitrogen and further stored at
−80°C until use. On day 70, the animals were slaughtered
and colonic luminal contents were sampled and stored at
−80°C to assess the intestinal sIgA. None of the indivi-
duals (piglets or sows) received antibiotic therapy during
the sampling period. Pigs were free of the principal swine
infectious agents at the beginning and end of the study.
Diarrhoea was not detected in pigs.

Luminal secretory IgA determination from luminal
sample extracts

Colonic luminal contents were lyophilized overnight, and
the dried faecal material was ground into fine powder. Two
hundred milligrams of the resulting powder were dis-
solved in 2 ml of a cold extraction solution containing
100 mM phenylmethanesulfonyl fluoride, 5% bovine
serum albumin and 0.1% sodium azide. The samples
were thoroughly homogenized by a combination of
manual shaking and mechanical homogenization on a
vortex mixer during 30 s. The suspensions were then
clarified by centrifugation at 2000 × g for 10 min at 4°C.
The resulting supernatants were centrifuged once more at
10 000 × g for 10 min, and the supernatants obtained
were transferred to 1.5 ml sterile Eppendorf tubes and
stored at −20°C until use.

Luminal secretory IgA level was evaluated using pig
immunoglobulin enzyme-linked immunosorbent assay
(ELISA) quantification kit (Bethyl Laboratories, Montgom-
ery, TX, USA) according to the manufacturers recommen-
dations. Briefly, the Nunc Maxisorp plates (Thermo fisher
Scientific, Roskilde, Denmark) were coated during 1 h at
room temperature (RT) with 100 µlL of goat anti-porcine
IgA antibody (A100-102A, Bethyl) diluted to 1:100 in
0.05 M carbonate-bicarbonate coating buffer, pH 9.6.
Each well was washed four times with Tris-buffered saline
solution (TBS) pH 8.0, containing 0.05% Tween 20
(TBS-Tw), and then blocked at RT for 30 min with TBS
blocking buffer containing 1% BSA. The luminal extract
supernatants and the provided standard pig serum
provided were sequentially diluted with TBS-Tw buffer,
1% BSA and 100 µl were added to each well during

Table 1. Ingredient and chemical composition of the concentrates of
post-weaning pigs from day 28 to day 70 and lactating sows.

Post-weaning
pigs

Lactating
sows

Ingredients % Dry matter feed
Triticale 7.18 –
Wheat 20.51 5.84
Barley 15.38 20.13
Wheat starch 15.28 20.14
Corn 10.26 18.12
Forage peas 13.13 2.01
Soybean meal 48% 1.03 1.51
Palm oil – 2.01
Beet pulp 2.36 5.03
Wheat middling’s – 5.03
Rapeseed meal – 0.50
Sunflower meal 5.13 8.05
Canola oil 0.42 0.54
Dried brewers corn 0.63 0.53
Calcium carbonate – 0.35
Dicalcium phosphate 1.03 1.01
Salt 0.22 0.06
Argyle 0.82 0.48
Liquid methionine – 0.07
Lysine 0.17 0.51
Choline 1.23 –
Starter 7.18 –

Nutrients % Dry matter feed
Ash 5.8 5.92
Crude protein 17.49 16.00
Ether extract 3.80 4.62
NDFa 4.43 6.00
NFCb 68.48 67.46

a. NDF = neutral detergent fiber.
b. Non-fibrous carbohydrates = 100 minus the sum of ash, crude
protein, NDF and fat.
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1 h at RT. The wells were washed and reacted with
100 µl/well of Horseradish Peroxidase-conjugated goat
anti-pig IgA detection antibody (A100-102P, Bethyl)
at RT during 1 h. After three washes, ABTS (2,2’-azino-
bis(3-ethylbenzothiazoline-6-sulphonic acid)) substrate
(Thermo fisher Scientific, Rockford, IL, USA) was added
to the plates, and the colour reaction was developed at
room temperature for 15 min. The reaction was quantified
spectrophotometrically at 414 nm by an Absorbance
Microplate Reader (Labsystems Multiskan RC, Helsinki,
Finland). Concentration of total IgA in intestinal lumen was
calculated by including a pig reference serum with known
IgA concentration, i.e. 650 μg ml−1 (RS10-107, Bethyl) as
a standard that allowed to measure the amount of sIgA
per gram of dried luminal content.

To evaluate the distribution of IgA concentration in the
colon, a mixture model was fit to the IgA concentrations to
provide an estimate of the number of populations or dis-
tributions that a set of data is drawn from (Gibbons et al.,
1984). The mix tools package (Benaglia et al., 2009) in R

was used, yielding a two-component mixture. The log-
likelihood statistic of the bimodal mixture model was com-
pared with the normal null model to test for a significant
improvement in fit.

Composition, richness and diversity of
faecal microbiota

Total DNA was extracted from aliquots of frozen faecal
samples (200 mg; 155 samples at different age strata
from 31 piglets and 29 mothers’ samples), using a
well-established method for the analysis of such ecosys-
tem diversity (Lepage et al., 2005), and microbiota
composition was analysed by pyrosequencing of
the V3–V4 [V3fwd: TACGGRAGGCAGCAG, V4rev:
GGACTACCAGGGTATCTAAT; (Wilson et al., 1990)]
region of 16S rRNA gene. Polymerase chain reaction
amplicons libraries were sequenced using the Roche 454
GS FLX Titanium platform. The resulting sequences
(n = 770 238) were analysed using the open source soft-
ware package Quantitative Insights Into Microbial Ecology
(QIIME) (Caporaso et al., 2010).

Following removal of the primers and barcodes,
sequences were filtered as follows: (i) minimum and
maximum read length of 300 bp and 500 bp respectively,
(ii) no ambiguous base calls, (iii) no homopolymeric runs
longer than 8 bp and (iv) minimum average Phred score
> 27 within a sliding window of 50 bp. Chimeric
sequences were curated using ChimeraSlayer (DeSantis
et al., 2006; Haas et al., 2011). Sequences were
aligned with NAST against the GreenGenes reference
core alignment set (available in QIIME as core_set
_aligned.fasta.imputed) using the ‘align_seqs.py’ script
in QIIME. Sequences that did not cover this region at

a percent identity > 75% were removed. Chimeric
sequences were curated using ChimeraSlayer in QIIME

(DeSantis et al., 2006; Haas et al., 2011). Operational
taxonomic units were picked at a threshold of 97%
similarity using cd-hit (Li and Godzik, 2006) from
‘pick_otus.py’ script in QIIME. Picking workflow in QIIME

with the cd-hit clustering method currently involves col-
lapsing identical reads using the longest sequence-first
list removal algorithm, picking OTU and subsequently
inflating the identical reads to recapture abundance infor-
mation about the initial sequences. Singletons were
removed, as only OTU that were present at the level of at
least two reads in more than one sample were retained.
The most abundant member of each OTU was selected
through the ‘pick_rep_set.py’ script as the representative
sequence. The resulting OTU representative sequences
were assigned to different taxonomic levels (from phylum
to genus) using the GreenGenes database (release
August 2012), with consensus annotation from the Ribo-
somal Database Project naïve Bayesian classifier [RDP
10 database, version 6 (Cole et al., 2009)]. To confirm the
annotation, the resulting OTU representative sequences
were then searched against the RDP database, using
the online program SEQMATCH (http://rdp.cme.msu.edu/
seqmatch/seqmatch_intro.jsp) and a threshold setting of
90% to assign a genus to each sequence.

Phylogenetic trees in the Newick format were produced
in QIIME pipeline employing the FASTTREE program (Price
et al., 2010). To estimate a putative core OTU between
different groups, we select the resulting OTU representa-
tive sequence at each group and their normalized abun-
dance. To explore OTU that were ubiquitously present
among groups, Venny, an interactive tool for the compari-
son of lists (http://bioinfogp.cnb.csic.es/tools/venny/
index.html) was used.

The alpha diversity measurements were performed for
n = 100 through 900 at intervals of 100 sequences (we
chose 900 as the highest common subsample because
the smallest sample had 944 sequences). The dynamics
of richness and diversity in the piglets and sows
microbiota was computed with Chao1 estimator (Chao,
1984) and the Shannon index (Shannon, 1997). The
Chao1 estimates the number of taxa or functions present
in a community, whereas the Shannon index of diversity
takes into account both richness and evenness.

To estimate beta diversity measurements, which are
a measure of separation of the phylogenetic structure of
the OTU in one sample compared with all other samples,
we first normalized the data to make taxonomic feature
counts comparable across samples. Three different
methods were separately evaluated to normalize the
counts: (i) relative abundance normalization, (ii) the
‘calcNormFactors’ normalization function of edgeR
package, which scales raw counts through a trimmed
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mean of M-values (TMM) between samples (Robinson and
Oshlack, 2010) and (iii) the cumulative-sum scaling (CSS)
method (Paulson et al., 2013), which divides raw counts by
the cumulative sum of counts up to a percentile determined
using a data-driven approach. The high reproducibility
among normalization methods was validated by linear
regression (‘lm’ function in the R statistical environment),
with coefficient of correlations ≥ 0.78 between methods,
and P values < 0.0001. In addition, we performed hierar-
chical clustering analysis to detect if any particular normali-
zation method contributed largely to variability in the
abundance, that is, whether it retained most of the infor-
mation. The hierarchical clustering showed the remarkably
high aggregation of three different tools, independently of
the animal and time point, suggesting a similar robustness
of different methods to normalize the abundance (Fig. S9).
Since the genera abundance obtained using the three
different methods was similar, we decided to perform beta
diversity estimates measurements on the relative abun-
dance normalized matrix. After normalization, OTU counts
were binned into genus-level taxonomic groups, as well as
family and phylum levels, according to the taxonomic
assignments described previously. For Firmicutes/
Bacteroidetes ratio, calculations were obtained for each
individual using OTU counts.

Taxonomic changes across five age strata in piglets

The normalized OTU table combined with the phenotype
metadata and phylogenetic tree comprised the data
matrix used as input in phyloseq package in the R

environment (http://www.r-project.org; version 3.0.1).
From the otuSamTaxTree object created by phyloseq
package, a sub otuSamTaxTree object that included
only data of piglets was produced. Several distance
metrics were considered in order to calculate the distance
matrix of the different multidimensional reduction methods,
including weighted/unweighted UniFrac distance (Hamady
et al., 2010) and non-phylogenetic distance metrics (Bray–
Curtis, Jensen–Shannon divergence and Euclidian) using
the phyloseq (McMurdie and Holmes, 2013) in R. Centred
on genera taxa level, correspondence analysis was based
on the Bray–Curtis distance measure, double principal
coordinate analysis (DPCoA) and NMDS were based on
different distance matrices. Network plots were calculated
based on the Jaccard distance using the make_network
function of phyloseq package at a 0.70 ecological distance.
Two samples were considered ‘connected’ if the distance
between them was less than 0.70. The relative position of
points was optimized for the visual display of network
properties. Lastly, redundancy analysis was implemented
using the ‘rda’ function of the phyloseq package of R. The
differences shown in redundancy analysis were assessed
using Monte Carlo Permutation Procedure (999 replicates;

‘randtest’ function) of theAde4 package in R.Additionally to
multivariate analysis; we used the ANOSIM to test for
intragroup dispersion. As specified by Poff and colleagues
(2007), ANOSIM is a permutation-based test of the null
hypothesis that within-group distances are not significantly
smaller than between-group distances. The test statistic
(R) can range from 1 to −1, with a value of 1 indicating that
all samples within groups are more similar to each other
than to any other samples from different groups. R is ≈ 0
when the null hypothesis is true, that distances within and
between groups are the same on average. Furthermore,
Kruskal–Wallis test was used to determine differential
abundance of genera between ages. Results were cor-
rected fro multiple testing using the Benjamini–Hochberg
false discovery rate (q-value; Benjamini and colleagues
(2001). Post hoc statistical testing for significant differ-
ences between all combinations of two groups was con-
ducted using the Mann–Whitney test. To delineate the
influence of gender and pen on microbiota composition
across age, we used Mann–Whitney test and Kruskal–
Wallis test, respectively, followed by multiple testing cor-
rection. Moreover, we applied random forest machine-
learning analyses to identify bacterial genera level that
differentiates faecal community composition between
groups. The purpose of a classifier such as random forest
is to learn a function that maps a set of input values or
predictors (here, relative to genera abundances) to a dis-
crete output value (here, relative to all age group combi-
nations) (Yatsunenko et al., 2012). Random forest is a
powerful classifier that can use nonlinear relationships and
complex dependencies between taxa. The degree of the
success of the method is its ability to classify unseen
samples correctly, estimated by training it on a subset of
samples, and using it to categorize the remaining samples
(Cutler et al., 2007). The cross-validation error is com-
pared with the baseline error that would be achieved by
always predicting the most common category. Additionally,
random forest assigns an importance score to each genus
by estimating the increase in error caused by eliminating
that genus from the set of predictors. It also reports the Gini
importance of a variable, which is computed as the sum of
the Gini impurity decrease of every node in the forest
for which that variable was used for splitting (Cutler
et al., 2007). All error estimates and genera importance
scores were averaged over 100 rarefactions at the same
sample size for each community to control for sequencing
effort.

Detection of genera shared by mother–piglet pairs
that might represent vertical inheritance

We obtained faecal samples from 29 mother–piglet pairs
at 14 days after delivery. Sows had an average of
12.35 ± 2.09 pigs born alive per litter, 0.89 ± 0.95 piglets
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that died after birth and 0 mummified foetuses per litter.
Piglets averaged 1.89 ± 0.43 kg body weight at birth. One
mother–infant pair had to be discarded because of sow
health problems.

To characterize whether bacteria transmitted directly
from mothers were able to occupy the piglet gastrointes-
tinal niches and persist as lactation-adapted microbiota,
we characterized the shared OTUs between piglets and
their corresponding maternal faeces. Additionally, the core
microbiome between piglets and mothers was established
using Venny (http://bioinfogp.cnb.csic.es/tools/venny/
index.html). We considered an OTU being a member of
the core microbiome if it was present within all subjects
(100%) sampled.

Evaluation of enterotype-like clusters in piglets

Principal component analysis (PCA) and clustering analy-
sis were computed on different distance matrix to docu-
ment the presence of enterotype-like clusters in piglets.
The data set that included only data of piglets was con-
sidered. Clustering analysis was performed following the
original criteria reported by Arumugam and colleagues
(2011), who used the maximization of the Calinski–
Harabasz index and the silhouette index (Wu et al., 2011)
to select the optimal number of clusters. The following
clustering algorithms implemented in R packages were
used: via partitioning around k-medoids algorithm (PAM
clustering), k-means and hierarchical clustering using dif-
ferent linkages. Interclass PCA of faeces genera compo-
sition with enterotype-like clusters as instrumental
variable was also assessed, based on a Monte Carlo test
with 999 replicates. Lastly, random forest analysis was
also performed to identify bacterial genera that differenti-
ated faecal community composition between the two iden-
tified enterotype-like clusters. Random forest analysis
was performed for each comparison on 500 rarefied ver-
sions of the data.

Determination of the potential genera biomarkers for
growth and sIgA production in piglets

Two different statistical approaches were applied to find
possible associations between the faeces microbiota
composition in piglets and the sIgA concentrations and
performance, and to detect which of these genera could
be considered as potential genera biomarkers: (i) mixed-
effects ANOVA model to delineate whether there was a
significant difference between the average values of phe-
notype traits for the two different enterotype-like clusters
and (ii) the sPLS and the non-parametric Spearman rank
correlation to link genera relative abundances directly to
phenotype traits. The statistical mixed-effects ANOVA
model included the enterotype-cluster type as fixed effect,

and piglet nested within pen as a random effect to account
for any potential dependencies between animals within
pen. A significance level of P < 0.05 was accepted. The
sPLS maximized the covariance between two data sets
by searching for linear combinations of the variables.
Furthermore, it imposed sparsity within the context of
partial least squares and thereby carried out dimension
reduction and variable selection simultaneously (Le Cao
et al., 2008a; 2011). To evaluate the statistical signifi-
cance of covariation between the genera proportion and
the distinct phenotypes, we performed the M-fold or
leave-one-out cross-validation, estimating the mean
squared error of prediction (MSEP), the R2 and Q2 for
each phenotype in the data set. An X variable contributed
significantly to the prediction if Q2

h ≥ (1−0.952) = 0.0975
(Le Cao et al., 2008b). The mixOmics package in R was
used to carry out sPLS analyses (Le Cao et al., 2009a,b).
We used the ‘network’ functions to generate the images
from sPLS. The ‘network’ function calculated a similarity
measure between X and Y variables in a pairwise manner.
The output was a graph in which each X-and Y-variable
corresponds to a node, and the edges included in the
graph display the associations between the nodes. Lastly,
non-parametric Spearman rank correlation and Pearson
correlation were calculated between performance vari-
ables and sIgA using the corrplot package in R.

Data submission

The 16S rRNA sequences described in the study were
deposited at DDBJ/EMBL/GenBank under accession n°
KP101623 – KP109479. The version described in this
paper belongs to National Center for Biotechnology Infor-
mation (NCBI) BioProject PRJNA266269 and NCBI
BioSample SAMN03160604.

Supporting information

Additional Supporting Information may be found in the online
version of this article at the publisher’s web-site:

Fig. S1. Microbiota richness and diversity in piglets and
sows.
A. Estimation of the abundance of unique OTU in piglets at
different ages and in sows using Chao1 index (Chao, 1984).
Data were based on 900 sequences per sample. The values
are means, and colour bars indicate the 95% confidence
intervals.
B. Estimation of the abundance of OTUs between genders in
piglets; (C) Estimation of the abundance of OTUs between
the seven fully slatted flat deck accommodation where piglets
were accommodated.
Fig. S2. Relative abundance of phyla in faeces of pigs among
five age strata and sows.
The 16S rRNA gene V3–V4 sequences were binned into
OTUs, normalized and summarized by phylum. Phyla were
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colour coded according to the scheme on the right. The
horizontal axis displays sample collection time points.
Fig. S3. Multidimensional reduction methods for elucidating
diversity relationships of faeces microbiota in piglets across
ages.
A. Redundancy analysis (RDA) analysis of Bray–Curtis dis-
tances to compare faecal communities at the level of genera
that differ between ages. Both PC axes 1 and 2 were plotted.
Together they explained 58% of whole variation.
B. Non-parametric multidimensional scaling (NMDS) ordina-
tion graphic generated by weighted unifrac MDS. The NMDS
coordinates are generated with the weighted unifrac distance
matrix as the argument, and two dimensions specified by
default. The fit statistics for observations was 0.15.
C and D. Network diagram of genera between different age
strata (nodes) that were linked within a specified Jaccard
distance. The network was calculated using the
make_network function of phyloseq package at a 0.70 eco-
logical distance. Two samples were considered ‘connected’ if
the distance between them was less than 0.70. The relative
position of points was optimized for the visual display of
network properties. The point’s shape indicates the gender
(C) or pen (D). In all plots, day 14 (red, n = 31), day 36 (olive,
n = 31), day 48 (green, n = 31), day 60 (blue, n = 31) and day
70 (violet, n = 31).
Fig. S4. Operational taxonomic units showing the largest
presence within the mother–piglet pairs.
The cell plot appears with columns indicating the mother–
piglet pair, and rows the absence/presence of the OTUs
found in more than 75% of the mother–piglet pairs. One
mother–infant pair had to be discarded because of sow
health problems. Green colour is assigned to presence,
whereas white to absence.
Fig. S5. Evaluation of enterotype-like clusters in piglets
across five age strata.
A. The number and quality of clusters were validated by
maximizing the silhouette index as described by Wu and
colleagues (2011). Several clustering algorithms, including
complete hierarchical clustering, k-means clustering and par-
titioning around medoids (PAM) were tested.
B. The number and quality of clusters were validated using
the Calinski–Harabasz (CH) Index as described by
Arumugam, Raes and colleagues (2011), which showed good
performance in recovering two clusters.
Fig. S6. Dynamics of enterotype-like clusters in piglets
across five age strata.
In the plot, violet cells: Ruminococcaceae cluster, and orange
cells: Prevotella cluster.
Fig. S7. Body weight distribution across ages.
The bar plot graph represents the body weight distribution
at birth, 21 days, 28 days and 70 days of all 31 piglets
respectively.
Fig. S8. Correlation between Firmicutes/Bacteroidetes ratio
at day 36, performance variables and sIgA in piglets. The
heat map visualizes all Spearman correlation coefficients
between the Firmicutes/Bacteroidetes ratio (F : B ratio), per-
formance variables (BW_70d: body weight at 70 days;
ADG_29_70d: average daily gain between days 29 and 70)
and sIgA (IgA). Each row and column represents a single
trait. The negative correlations between traits are indicated in
blue and the positive correlations in red.

Fig. S9. Hierarchical clustering to assess the capabilities of
three different normalization methods.
Three different normalization methods have been tested: (i)
relative abundance normalization; which divides raw counts
from a particular sample by the total number of reads in each
sample; (ii) the ‘calcNormFactors’ normalization function of
edgeR package, which scales raw counts through a TMM
between samples (Robinson and Oshlack, 2010); and (iii) the
CSS) method (Paulson et al., 2013), which divides raw
counts by the cumulative sum of counts up to a percentile
determined using a data-driven approach. A hierarchical clus-
tering analysis matrix is represented (distance = correlation;
aggregation method = ward). In the tree, each unit corre-
sponds to one animal, time point and normalization method.
Table S1. Summary of study samples and faecal bacterial
16S rRNA gene amplicon sequence datasets.
Sequences reads were generated by 454-pyrosequencing of
the V3–V4 region of 16S rRNA gene and analysed using the
open source software package Quantitative Insights Into
Microbial Ecology (QIIME) (Caporaso et al., 2010). After trim-
ming the primers and barcodes, the sequences were filtered
and clustered at a threshold of 97% similarity level using
cd-hit (Cluster Database at High Identity with Tolerance; Li
and Godzik, 2006). The most abundant member of each OTU
was selected as the representative sequence and assigned
to different taxonomic levels using the GreenGenes tax-
onomy database, with consensus annotation from the RDP
naïve Bayesian classifier (Cole et al., 2009). Subject descrip-
tion: Day 14 (D14, n = 31), Day 36 (D36, n = 31), Day 48
(D48, n = 31), Day 60 (D60, n = 31), day 70 (D70, n = 31) and
sow (n = 29).
Table S2. The OTU abundance in piglets at different ages
and in sows.
The OTU abundance is listed by group including sequence
number, abundance and closest reference strain and similar-
ity. The OTU sequences were assigned to different taxonomic
levels (from phylum to genus) using the GreenGenes data-
base (release August 2012), with consensus annotation from
the Ribosomal Database Project naïve Bayesian classifier
[RDP 10 database, version 6 (Cole et al., 2009)]. The domi-
nant OTU in piglets at day 14 (7.3% of reads, corresponding to
Bacteroides fragilis) was only detected with less than two
sequences in piglets at all subsequent time points and in sows.
Table S3. Results from analysis of similarities (ANOSIM) test
between faecal microbiota of piglets across age strata and
sows.
ANOSIM is a permutation-based test where the null hypoth-
esis states that within-group distances are not significantly
smaller than between-group distances. The test statistic (R)
can range from 1 to −1, with a value of 1 indicating that all
samples within groups are more similar to each other than
to any other samples from different groups. Inter-individual
variation in microbiota communities during the first 14 days
of life were significantly higher than that observed at older
ages and for the sows. Mean ± 95% CI and R values are
shown.
Table S4. Random forest machine-learning analyses dis-
criminates the faecal microbiota according to age strata.
Random Forest confirmed distinct community signatures
before and after weaning (baseline error = 0.348, cross-
validation error = 0.00001). The higher values of mean
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decrease in accuracy and the mean decrease in Gini indexes
were found for Prevotella, confirming the importance of this
genus as a discriminatory taxon for piglets before and after
weaning. Main contributors are indicated in bold characters.
Table S5. Differences in relative abundance of genera
between age strata.
We performed a Kruskal–Wallis test to determine differential
abundances of genera between ages with FDR multiple cor-
rection. FDR < 0.05 were considered significant. The subject
numbers (#N) are counts of subjects that contain correspond-
ing genera in each age strata faecal samples. The average
percentage of each genus is indicated in the column ‘% Total’.
Table S6. Influence of gender on microbiota composition
across age.
We performed a Mann–Whitney test to determine differential
abundance of genera between genders (male versus female)
across ages with FDR multiple correction. The subject
numbers (#N) are counts of subjects that contain correspond-
ing genera in each age strata faecal samples. The average
percentage of each genus is indicated in the column ‘% Total’.
Table S7. Influence of pen on microbiota composition across
ages.
We performed a Kruskal–Wallis test to determine differential
abundances of genera between seven different pens across
ages with FDR multiple correction. The subject numbers
(#N) are counts of subjects that contain corresponding
genera in each age strata faecal samples. The average
percentage of each genus is indicated in the column ‘%
Total’.

Table S8. The core OTU abundance in piglets at different age
and sows.
An OTU was considered a member of a core if presented in
all subjects (100%) sampled. The OTU abundance is listed by
group including sequence number, abundance and closest
reference strain and similarity.
Table S9. Random Forest classifier discriminates the faecal
microbiota according to enterotype-like clustering.
Random Forest confirmed distinct community signatures
before and after weaning (baseline error = 0.194, cross-
validation error = 0.011). The higher values of mean
decrease in accuracy and the mean decrease in Gini indexes
were found for Prevotella, revealing the importance of
Prevotella as the most discriminatory genus between the two
enterotype-like clusters. Main contributors are indicated in
bold characters.
Table S10. The Mann–Whitney test results between the two
enterotype-like clusters.
We performed a Mann–Whitney test to determine differential
abundances of genera between the two enterotype-like clus-
ters with FDR multiple correction. FDR < 0.05 were consid-
ered significant.
Table S11. Determination of potential genera biomarkers for
performance and immune system response in piglets.
Correlation between relative abundance of microbiota at day
36 and different phenotypes using non-parametric Spearman
rank correlation.
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