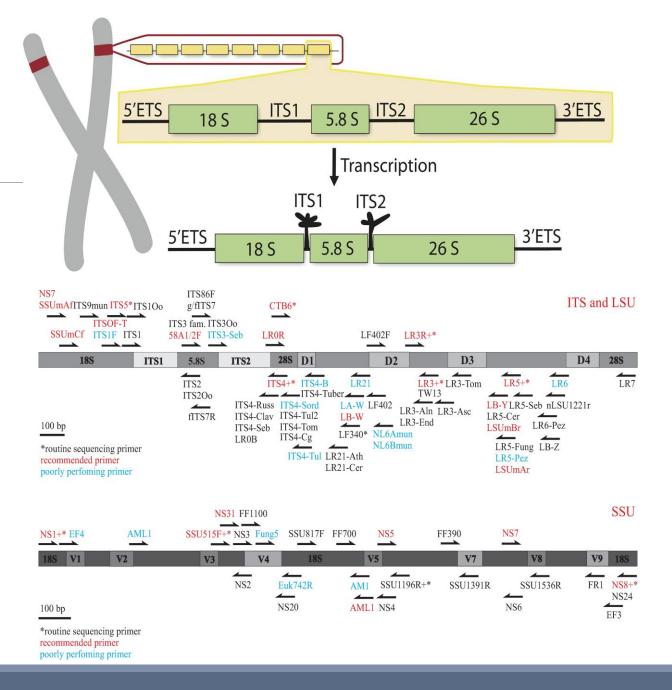

Training on Galaxy: Metabarcoding

March 2024 - Webinar

FROGS Practice on ITS data and Workflow creation

LUCAS AUER, MARIA BERNARD, LAURENT CAUQUIL, MAHENDRA MARIADASSOU, GÉRALDINE PASCAL & OLIVIER RUÉ



What is a ITS?

ITS: Internal Transcribed Spacer

What is a ITS?

- Size polymorphism of ITS (from 361 to 1475 bases in UNITE 7.1)
- Highly conserved regions of the neighboring of ITS1 and ITS2
- Lack of a generalist and abundant ITS databank (several small specialized databanks)
- Multiple copies* (14 to 1400 copies (mean at 113, median at 80))
- Do not target Glomeromycetes/Glomeromycota (→ alternative: 18S)

If your sequencing platform preprocesses your data, it has to keep short and long sequences

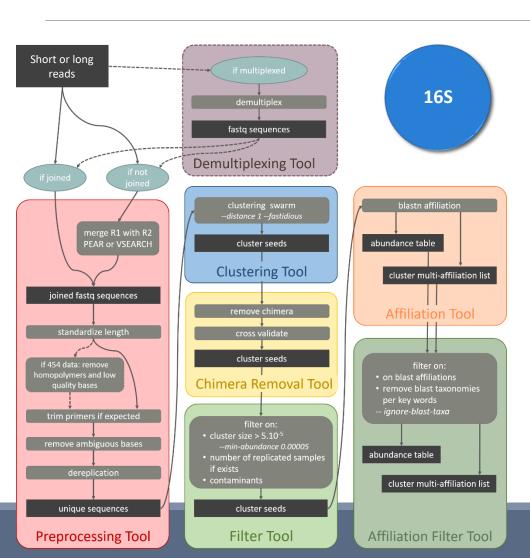
^{*} https://doi.org/10.1111/mec.14995

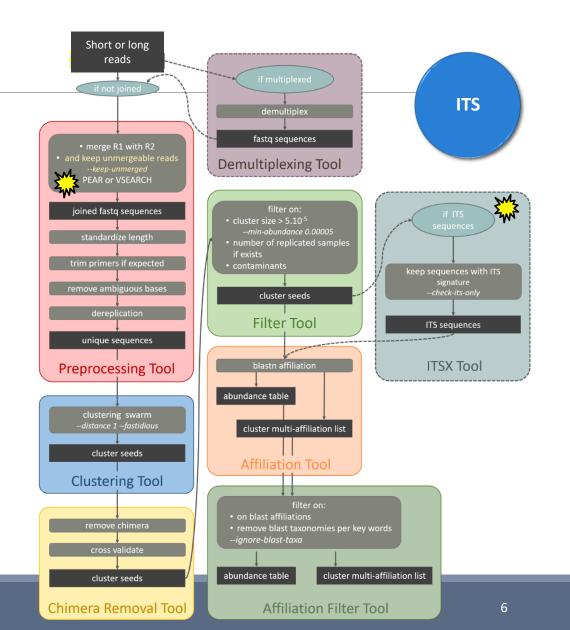
ITS data from manipulated organic soil (MOS network)

While in the past forest biomass exports concerned only trunks, these exports recently increased and now concern also the branches and smaller parts that were previously left on the ground (for pellet production).

The <u>MOS network</u> (18 sites in France) was designed to reveal the long-term effects of intense biomass exports on soil fertility and biodiversity. Different treatment of biomass export are applied with or without supplementation of nutrients.

The aim is to analyse the **impact** of these new forestry practices on **soil microbiota** and **tree health**.

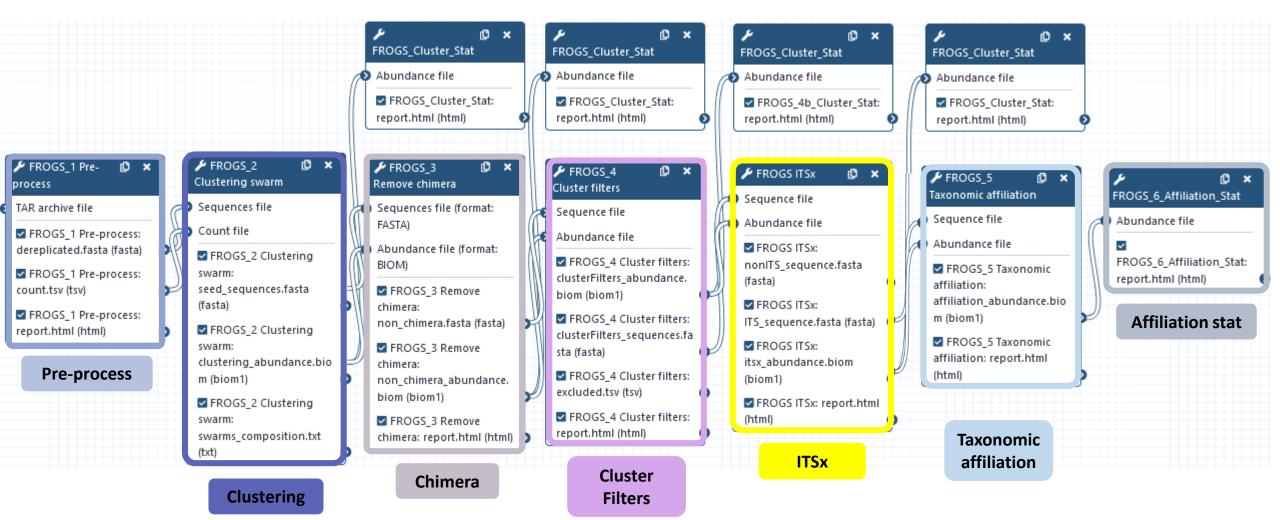

The present dataset concerned one of the site (Champenoux) after 5 years of total Organic Matter removal (OMR treatment : all the organic matter on the ground including leaves was removed), with our without nitrogen supplementation.

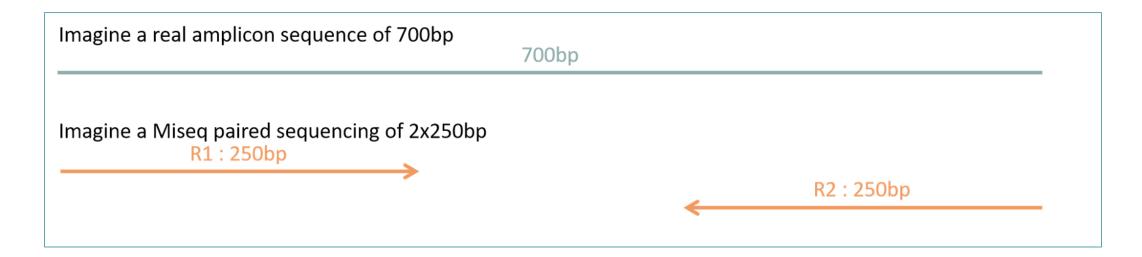

- 5 replicates Control x 2 treatments, 5 replicates OMR x 2 treatments
- DNA is extracted and ITS1 is sequenced
- 2 x 250 bp Illumina MiSeq
- Primer 5': CTTGGTCATTTAGAGGAAGTAA
- Primer 3': GCATCGATGAAGAACGCAGC

Metadata for these samples

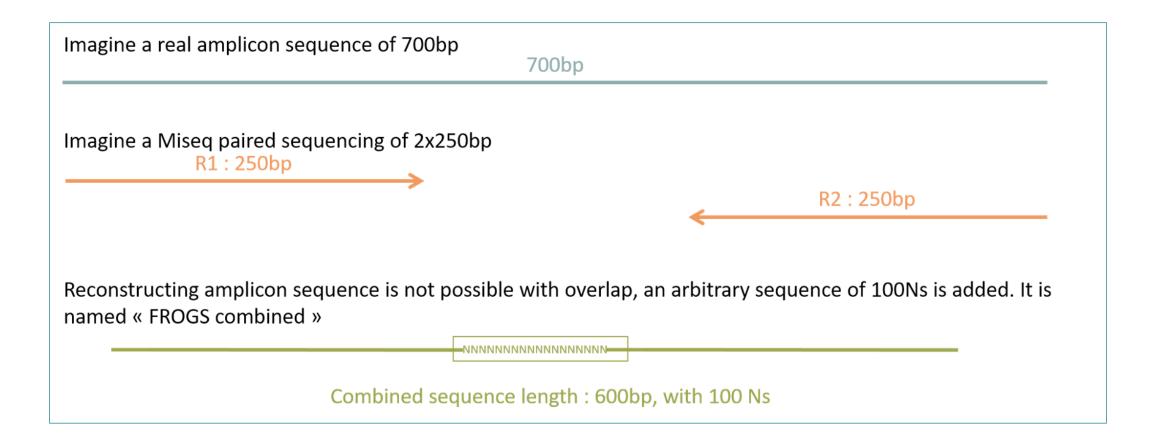
Samples	kept	Replicas	Incubation	Nitrogen	Forest_management	Quality	Treatment
Ph203	h203 79.76		T4	Nitrogen_supplementation	Control	Low degradability	Control_with_N
Ph212	77.64	2	T4	Nitrogen_supplementation	Control	Low degradability	Control_with_N
Ph217	80.26	5	T4	Nitrogen_supplementation	Control	Low degradability	Control_with_N
Ph222	78.65	1	T4	Nitrogen_supplementation	Control	Low degradability	Control_with_N
Ph224	77.18	4	T4	Nitrogen_supplementation	Control	Low degradability	Control_with_N
Ph237	79.68	1	T4	Control	Control	Low degradability	Control
Ph241	78.7	2	T4	Control	Control	Low degradability	Control
Ph243	76.38	4	T4	Control	Control	Low degradability	Control
Ph246	76.37	5	T4	Control	Control	Low degradability	Control
Ph250	77.37	3	T4	Control	Control	Low degradability	Control
Ph407	72.52	3	T4	Nitrogen_supplementation	OMR	Low degradability	OMR_with_N
Ph414	64.98	4	T4	Nitrogen_supplementation	OMR	Low degradability	OMR_with_N
Ph415	78.13	2	T4	Nitrogen_supplementation	OMR	Low degradability	OMR_with_N
Ph417	71.17	1	T4	Nitrogen_supplementation	OMR	Low degradability	OMR_with_N
Ph423	75.2	5	T4	Nitrogen_supplementation	OMR	Low degradability	OMR_with_N
Ph428	73.48	2	T4	Control	OMR	Low degradability	OMR
Ph433	73.21	5	T4	Control	OMR	Low degradability	OMR
Ph434	74.01	3	T4	Control	OMR	Low degradability	OMR
Ph439	74.15	1	T4	Control	OMR	Low degradability	OMR
Ph449	73.77	4	T4	Control	OMR	Low degradability	OMR

Overview





FROGS Pipeline for ITS


Problematic: some ITS reads (Miseq sequencing) are non-overlapping sequences

Consequence: during bioinformatics process, these reads are lost and underlying organisms will be never represented in the abundance table.

Solution: in preprocess step – creation of "FROGS combined" sequences

FROGS_0 Demultiplex reads Attribute reads to samples in function of inner barcode

FROGS_1 Pre-process merging, denoising and dereplication

FROGS_2 Clustering swarm Single-linkage clustering on sequences

FROGS_Cluster_Stat Process some metrics on clusters

FROGS_3 Remove chimera Remove PCR chimera in each sample

Basic tools

FROGS_4 Cluster filters Filters clusters on several criteria.

FROGS ITSx Extract the highly variable ITS1 and ITS2 subregions from ITS sequences

FROGS_5 Taxonomic affiliation Taxonomic affiliation of each ASV's seed by RDPtools and BLAST

FROGS 6 Affiliation Stat Process some metrics on taxonomies

FROGSSTAT Phyloseq Import Data from 3 files: biomfile, samplefile, treefile

FROGSSTAT Phyloseq Composition Visualisation with bar plot and composition plot

FROGSSTAT Phyloseq Alpha Diversity with richness plot

FROGSSTAT Phyloseq Beta Diversity distance matrix

FROGSSTAT Phyloseq Sample Clustering of samples using different linkage methods

FROGSSTAT Phyloseq Structure Visualisation with heatmap plot and ordination plot

FROGSSTAT Phyloseq Multivariate Analysis Of Variance perform Multivariate Analysis of Variance (MANOVA)

FROGSSTAT DESeq2 Preprocess import a Phyloseq object and prepare it for DESeq2 differential abundance analysis a

FROGSSTAT DESeq2 Visualisation extract and visualise differentially abundant ASVs or functions

FROGS Tree Reconstruction of phylogenetic tree

FROGS Affiliation Filters Filters ASVs on several affiliation criteria

FROGS Affiliation postprocess Aggregates ASVs based on alignment metrics

FROGS Abundance normalisation Normalise ASV abundance.

Optional basic tools

FROGS BIOM to std BIOM Converts a FROGS BIOM in fully compatible BIOM

FROGS TSV_to_BIOM Converts a TSV file in a BIOM file 1

FROGS BIOM to TSV Converts a BIOM file in TSV file

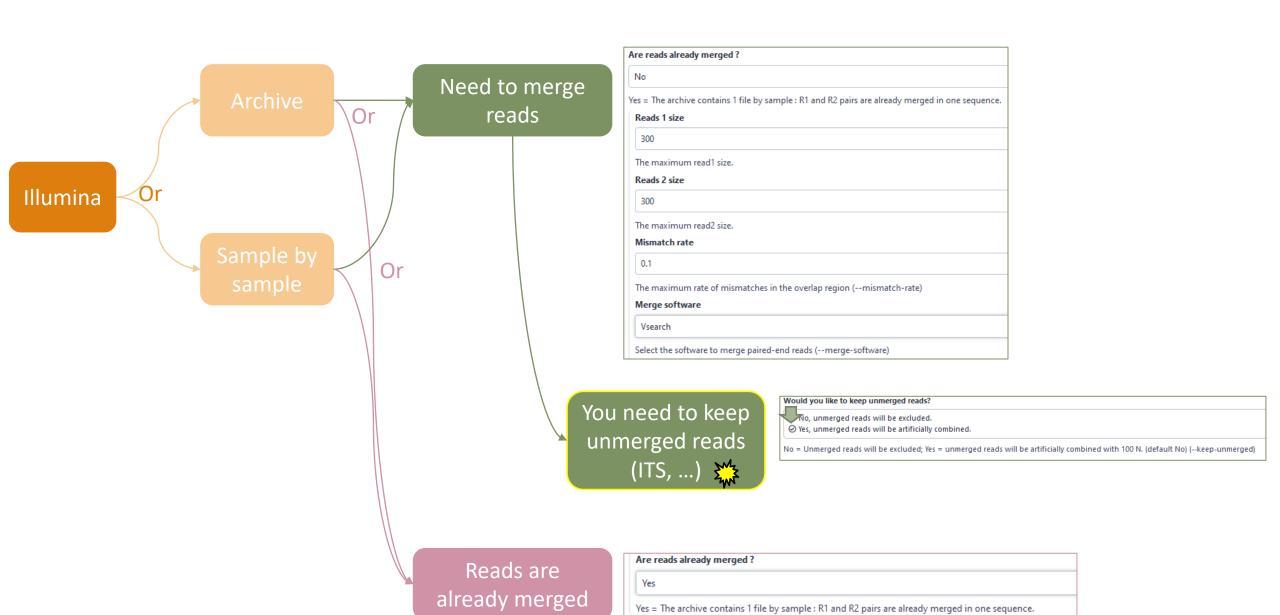
Utilities tools

FROGSFUNC_1_placeseqs_and_copynumbers Places ASVs into a reference phylogenetic tree.

FROGSFUNC_2_functions Calculates functions abundances in each sample.

FROGSFUNC_3_pathways Calculates pathway abundances in each sample.

Functional inference tools


Statistics tools

Pre-process tool

For short reads from illumina

ITS

FROGS_1 Pre-process merging, denoising and dereplication (Galaxy Version 4.1.0+galaxy1)

Illumina

Select the sequencing technology used to produce the sequences.

Input type

TAR Archive

Samples files can be provided in a single TAR archive or sample by sample (with one or two files each).

TAR archive file

1: ITS_fast.tar.gz

The TAR file containing the sequences file(s) for each sample.

Are reads already merged?

No

Yes = The archive contains 1 file by sample: R1 and R2 pairs are already merged in one sequence.

Reads 1 size

250

The maximum read1 size.

Reads 2 size

250

The maximum read2 size.

Mismatch rate

0.1

The maximum rate of mismatches in the overlap region (--mismatch-rate)

Merge software

Vsearch

Select the software to merge paired-end reads (--merge-software)

Would you like to keep unmerged reads?

- O No, unmerged reads will be excluded.

To keep FROGS combined sequences, choose YES

No = Unmerged reads will be excluded; Yes = unmerged reads will be artificially combined with 100 N. (default No) (--keep-unmerged)

Minimum amplicon size
180
The minimum size of the amplicons (with primers) (min-amplicon-size)
Maximum amplicon size
490
The maximum size of the amplicons (with primers) (max-amplicon-size)
Do the sequences have PCR primers?
O No
5' primer
CTTGGTCATTTAGAGGAAGTAA
The 5' primer sequence (wildcards are accepted). This primer must be written in 5' to 3' orientation (see details in 'Primers parameters' help section) (five-prim-primer)
3' primer
GCATCGATGAAGAACGCAGC
The 3' primer sequence (wildcards are accepted). This primer must be written in 5' to 3' orientation (see details in 'Primers parameters' help section) (three-prim-primer)
Primer 5': CTTGGTCATTTAGAGGAAGTAA

Primer 3': GCATCGATGAAGAACGCAGC

Go to « ITS » history

Launch the pre-process tool on this data set

→ objective: understand preprocess report and « FROGS combined sequences »

Explore Preprocess report.html

2 tables:

Details on merged sequences

Samples 1	before process 11	% kept ↑↓	paired-end assembled	with 5' primer †↓	with 3' primer †	with expected length	without N 1
Ph203	10,000	79.42	7,954	7,948	7,942	7,942	7,942
Ph212	10,000	78.28	7,837	7,832	7,828	7,828	7,828
Ph217	10,000	80.48	8,061	8,052	8,048	8,048	8,048
Ph222	10,000	78.34	7,839	7,835	7,834	7,834	7,834

Details on artificial combined sequences

Own tag for combined sequences

>M01328:521:000000000-KRPTR:1:1103:15714:11240;size=6 1:N:0:238 AAGTCGTAACAAGGTAACCGTAGGTGAACCTGCGGTTGGATCATTAAAAATTTATGAGTTTCCGTTGAC >M01328:521:000000000-KRPTR:1:2102:7650:15129;size=1 1:N:0:239 AAGTCGTAACAAGGTAACCGTAGGTGAACCTGCGGTTGGATCATTAAAAATTTATGAGTTTCCGTTGA@ >M01328:521:000000000-KRPTR:1:1112:8680:15899;size=1 1:N:0:202 >M01328:521:000000000-KRPTR:1:1111:21036:16514_FROGS_combined;size=1 AAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTACAAGTTCTGTAGGTCTGTCGCAA >M01328:521:000000000-KRPTR:1:1106:19343:17084_FROGS_combined;size=1

≛ CSV

Search:

Filter only on minimum length for « combined ».

Minimum length = R1 + 100N + R2 - primers sizes

If the primers are very internal to the read, after trimming them, the combined sequence could be smaller than a read. FROGS rejects these cases.

FROGS_0 Demultiplex reads Attribute reads to samples in function of inner barcode

FROGS_1 Pre-process merging, denoising and dereplication

FROGS_2 Clustering swarm Single-linkage clustering on sequences

FROGS Cluster Stat Process some metrics on clusters

FROGS_3 Remove chimera Remove PCR chimera in each sample

Basic tools

FROGS 4 Cluster filters Filters clusters on several criteria.

FROGS ITSx Extract the highly variable ITS1 and ITS2 subregions from ITS sequences

FROGS_5 Taxonomic affiliation Taxonomic affiliation of each ASV's seed by RDPtools and BLAST

FROGS 6 Affiliation Stat Process some metrics on taxonomies

FROGSSTAT Phyloseq Import Data from 3 files: biomfile, samplefile, treefile

FROGSSTAT Phyloseq Composition Visualisation with bar plot and composition plot

FROGSSTAT Phyloseq Alpha Diversity with richness plot

FROGSSTAT Phyloseq Beta Diversity distance matrix

FROGSSTAT Phyloseq Sample Clustering of samples using different linkage methods

FROGSSTAT Phyloseq Structure Visualisation with heatmap plot and ordination plot

FROGSSTAT Phyloseq Multivariate Analysis Of Variance perform Multivariate Analysis of Variance (MANOVA)

FROGSSTAT DESeq2 Preprocess import a Phyloseq object and prepare it for DESeq2 differential abundance analysis a

FROGSSTAT DESeq2 Visualisation extract and visualise differentially abundant ASVs or functions

FROGS Tree Reconstruction of phylogenetic tree

FROGS Affiliation Filters Filters ASVs on several affiliation criteria

FROGS Affiliation postprocess Aggregates ASVs based on alignment metrics

FROGS Abundance normalisation Normalise ASV abundance.

Optional basic tools

FROGS BIOM to std BIOM Converts a FROGS BIOM in fully compatible BIOM

FROGS TSV_to_BIOM Converts a TSV file in a BIOM file 1

FROGS BIOM to TSV Converts a BIOM file in TSV file

Utilities tools

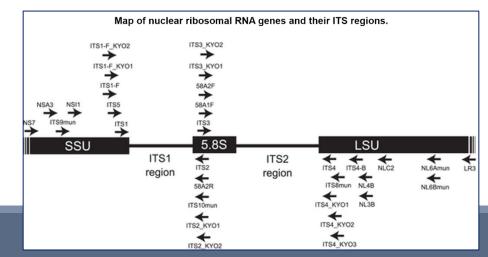
FROGSFUNC_1_placeseqs_and_copynumbers Places ASVs into a reference phylogenetic tree.

FROGSFUNC_2_functions Calculates functions abundances in each sample.

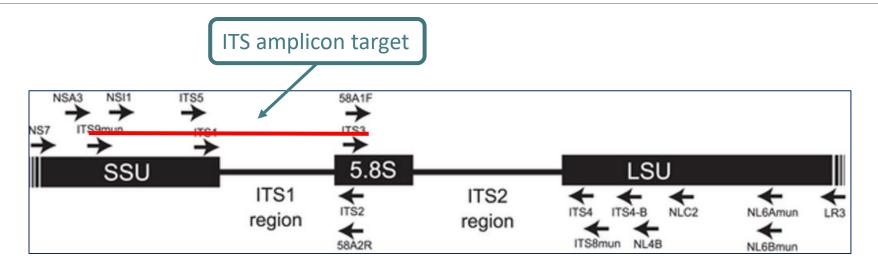
FROGSFUNC_3_pathways Calculates pathway abundances in each sample.

Functional inference tools

Statistics tools

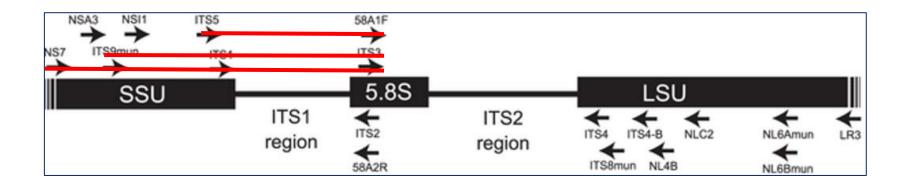

ITSx tools

What is the purpose of the ITSx tool?


- ITSx is a tool to filter sequences.
- ITSx identifies and trimms ITS regions in sequences.
- It excludes the highly conserved neighboring sequences SSU, 5S and LSU rRNA.
- If the ITS1 or ITS2 region is not detected, the sequence is discarded.
- You can choose to check only if the sequence is detected as an ITS.
 In this case, the sequence is not trimmed, only sequences not detected as ITS are rejected (e.g.

contaminants).

What is the purpose of the ITSx tool?


1st case: choose to trim
ITS1 is well detected
SSU part and 5.8S part are trimmed
Result:

2nd case: choose to check only
ITS1 is well detected
SSU part and 5.8S part are not trimmed
Result:

Check only if sequence is detected as ITS? Yes or not?

- If not, only ITS1 or ITS2 part will be conserved
- This is interesting to keep only the ITS parts without the flanking sequences in case of :
 - comparison of sequenced amplicons with different primers targeting the same region to be amplified.
 - using a database with only ITS part

When should we use ITSx?

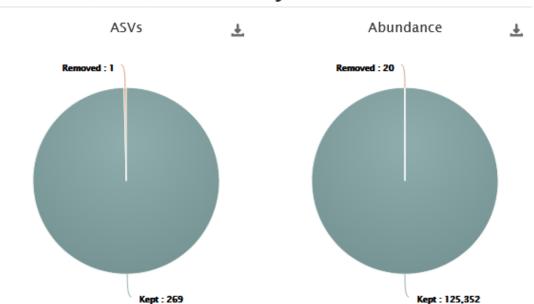
FROGS ITSx Extract the highly variable ITS1 and ITS2 subregions from ITS sequences (Galaxy Version 4.1.0+galaxy1) Sequence file ø 16: FROGS_4 Cluster filters: clusterFilters_sequences.fasta The sequence file to filter (format: FASTA). Abundance file 15: FROGS_4 Cluster filters: clusterFilters_abundance.biom The abundance file to filter (format: BIOM) Trim conserved sequence (SSU, 5.8S, LSU)? ⊗ No, keep conserved regions

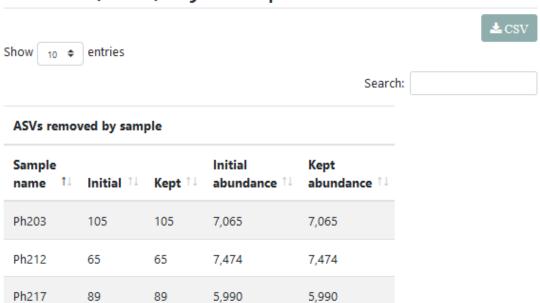
◆ O Yes, trim conserved regions By default, the ITSs are kept in their entirety. If Yes, only part of the sequences with ITS signature will be kept, SSU, LSU or 5.8S regions will be trimmed (default : No) (--check-its-only) Choose pertinent organisms to scan: ■ Select/Unselect all ☑ Fungi □ Alveolata □ Bryophyta ■ Bacillariophyta Amoebozoa Euglenozoa ☐ Chlorophyta □ Rhodophyta Phaeophyceae ■ Marchantiophyta By defaut, sequences are considered as FUNGI sequences. ☐ Metazoa □ Oomycota Change it, if it is not the case. ☐ Haptophyceae □ Raphidophyceae □ Rhizaria Synurophyceae □ Tracheophyta ☐ Eustigmatophyceae Save a lot of time by checking pertinent organism group model to scan (--organism-groups) **Email notification**

✓ Execute

Send an email notification when the job completes.

24


Careful!


- The ITSx step is time consuming and has to be done on minimum of clusters.
- 1. Preprocess step,
- 2. Clustering step,
- 3. Chimera removing step,
- 4. Filter on ASVs abundances and replicates step,
- 5. ITSx

Report.html, ITSX output

Filters (ITSx) summary

Filters (ITSx) by samples

FROGS_0 Demultiplex reads Attribute reads to samples in function of inner barcode

FROGS_1 Pre-process merging, denoising and dereplication

FROGS_2 Clustering swarm Single-linkage clustering on sequences

FROGS_Cluster_Stat Process some metrics on clusters

FROGS_3 Remove chimera Remove PCR chimera in each sample

Basic tools

FROGS_4 Cluster filters Filters clusters on several criteria.

FROGS ITSx Extract the highly variable ITS1 and ITS2 subregions from ITS sequences

FROGS_5 Taxonomic affiliation Taxonomic affiliation of each ASV's seed by RDPtools and BLAST

FROGS 6 Affiliation Stat Process some metrics on taxonomies

FROGSSTAT Phyloseq Import Data from 3 files: biomfile, samplefile, treefile

FROGSSTAT Phyloseq Composition Visualisation with bar plot and composition plot

FROGSSTAT Phyloseq Alpha Diversity with richness plot

FROGSSTAT Phyloseq Beta Diversity distance matrix

FROGSSTAT Phyloseq Sample Clustering of samples using different linkage methods

FROGSSTAT Phyloseq Structure Visualisation with heatmap plot and ordination plot

FROGSSTAT Phyloseq Multivariate Analysis Of Variance perform Multivariate Analysis of Variance (MANOVA)

FROGSSTAT DESeq2 Preprocess import a Phyloseq object and prepare it for DESeq2 differential abundance analysis a

FROGSSTAT DESeq2 Visualisation extract and visualise differentially abundant ASVs or functions

FROGS Tree Reconstruction of phylogenetic tree

FROGS Affiliation Filters Filters ASVs on several affiliation criteria

FROGS Affiliation postprocess Aggregates ASVs based on alignment metrics

FROGS Abundance normalisation Normalise ASV abundance.

FROGSFUNC_1_placeseqs_and_copynumbers Places ASVs into a reference phylogenetic tree.

FROGSFUNC_2_functions Calculates functions abundances in each sample.

FROGSFUNC_3_pathways Calculates pathway abundances in each sample.

Functional inference tools

Statistics tools

Not specific for ITS but often useful

rts a FROGS BIOM in fully compatible BIOM

TSV file in a BIOM file 1

FROGS BIOM to TSV Converts a BIOM file in TSV file

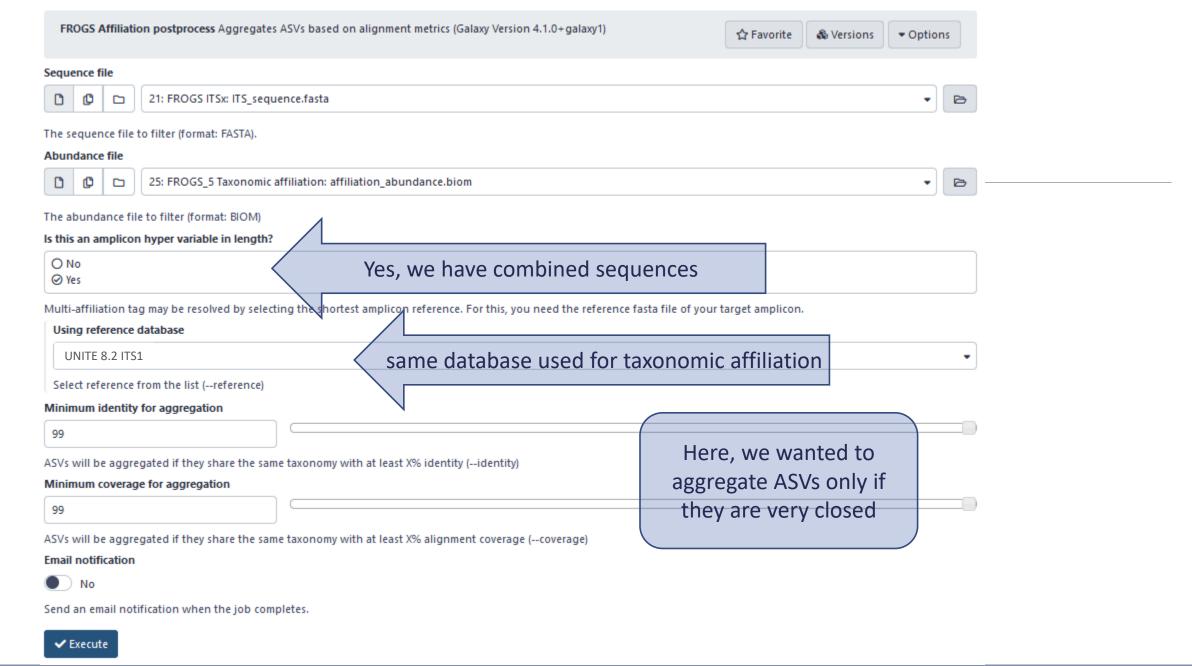
Utilities tools

Affiliation Post-process

What is the purpose of the *Affiliation* post-process tool?

This tool allows **grouping ASVs together** in accordance with the %id and %cov chosen by the user and according to the following criteria:

- They must have the same affiliation
 Or
- 2. If they have "multi-affiliation" tag in FROGS taxonomy, they must have in common in their list of possible affiliations at least one identical affiliation.


What is the purpose of the *Affiliation* post-process tool?

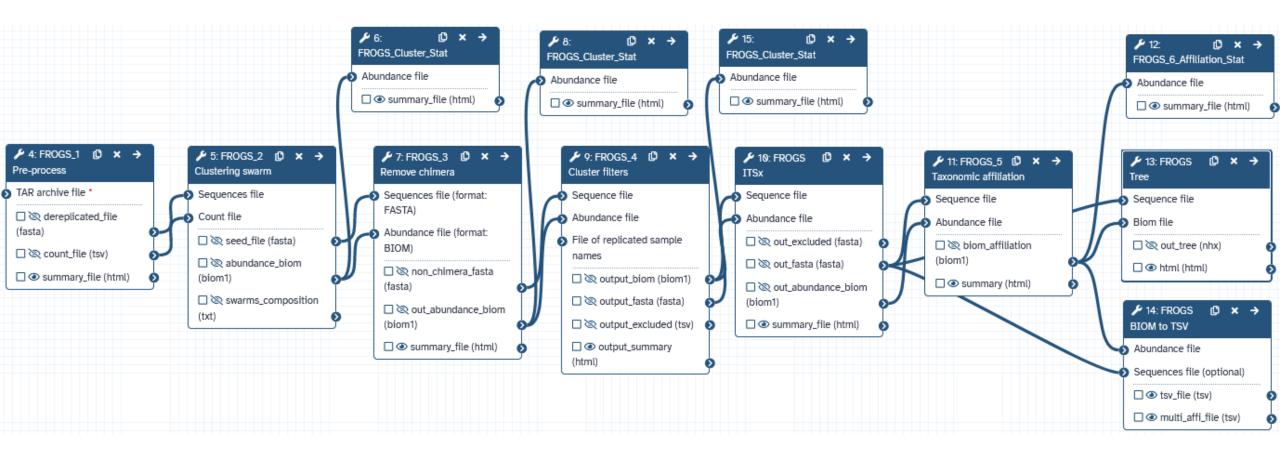
In consequence:

The different affiliations involved in multi-affiliation are merged.

The abundances are added together.

It is the most abundant ASV seed that is kept.

FROGS Affiliation postprocess: OTU_aggregation_composition.txt

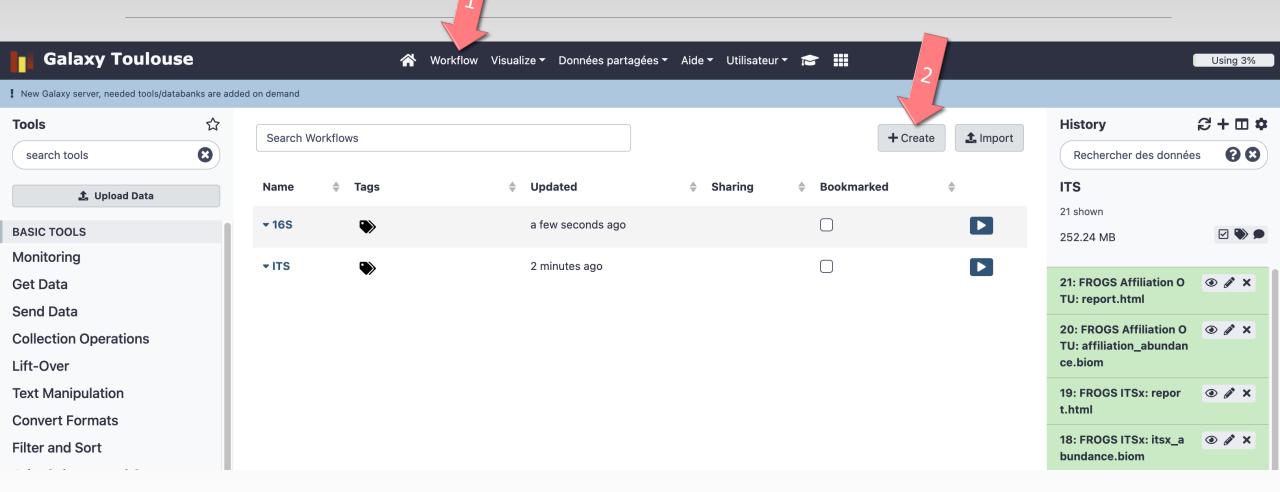

FROGS Affiliation postprocess: sequences.fasta

FROGS Affiliation postprocess: affiliation_abundance.biom

Cluster_1
Cluster_2
Cluster_8
Cluster_3
Cluster_5
Cluster_4
Cluster_6
Cluster_7
Cluster_9
Cluster_13
Cluster_10
Cluster_11
Cluster_16
Cluster_17
Cluster_14
Cluster_12
Cluster_15
Cluster_22
Cluster_18
Cluster_23
Cluster_25
Cluster_19
Cluster_21
Cluster_26
Cluster_29
Cluster_34
Cluster_35
Cluster_28
Cluster_31
Cluster_32
Cluster_42
Cluster_33
Cluster_75_FROGS_combined Cluster_121_FROGS_combined Cluster_137_FROGS_combined Cluster_144_FROGS_combi

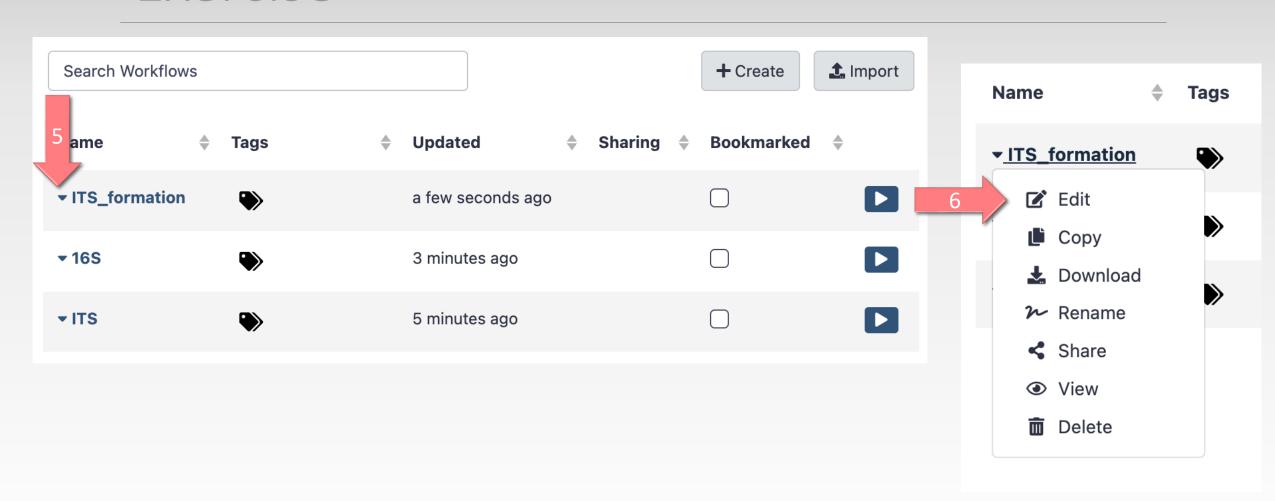
Workflow creation

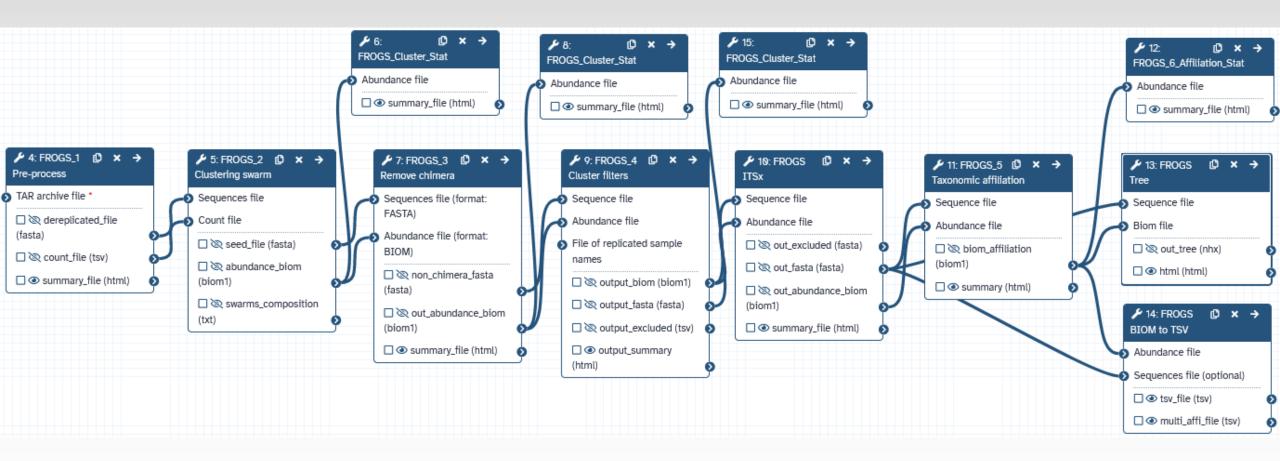
Workflow are useful for routine analyses

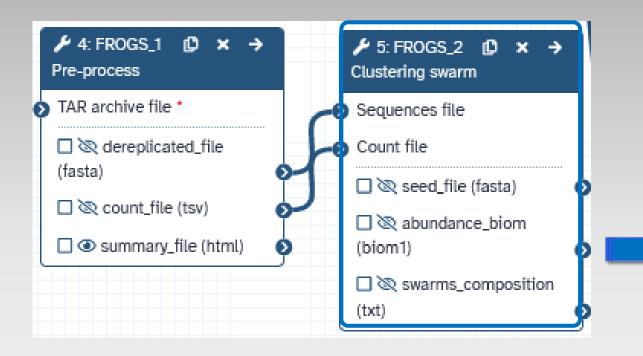

A workflow links FROGS steps together and when it is launched, all the steps run automatically.

Practice

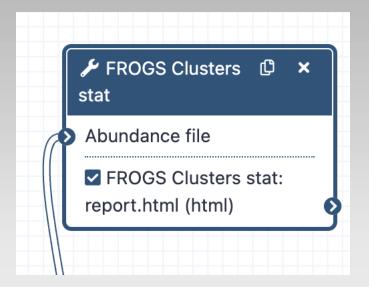
CREATE YOUR OWN WORKFLOW!





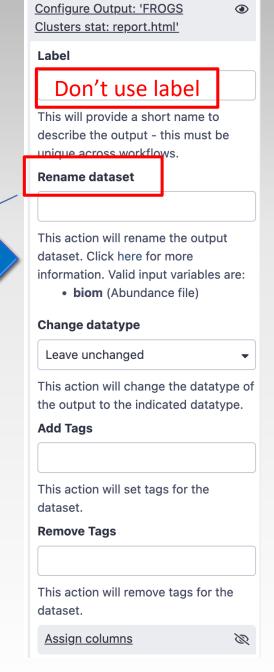


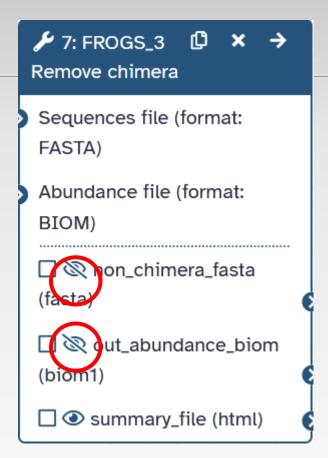
Solution of exercise:



For each tool, think to:

1. Set parameters




Configure Output: 'FROGS Clusters stat: report.html'

B

For each tool, think to:

- 1. Set parameters
- 2. Rename output files

For each tool, think to:

- 1. Set parameters
- 2. Rename output files
- 3. Hide intermediate files to simplify your history

When your workflow is built

Run your own workflow with ITS data with:

2. Run FROGSSTAT tools