
A Quick and focused
overview of R data types
and ggplot2 syntax
MAHENDRA MA R I A DA S S O U, MARIA BERNARD, GERALDINE PASCAL,
LAURENT CAUQUIL

1

R and RStudio
OVERVIEW

2

R and RStudio
 R is a free and open environment for computational statitics and graphics (Open source, Open
development, under GNU General Public Licence): http://www.r-project.org/

3

http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/

R and RStudio
 R is an interpreted language

 There is no compilation

 One can work in the console (this tutorial) or in an script file

 Good for interactive use of the language

 Bad for speed (when performing heavy computations)

4

R and RStudio
 Rstudio provides a nice front-end to R with 4 panel (script, console, workspace, graphics) :
https://www.rstudio.com/

5

https://www.rstudio.com/
https://www.rstudio.com/
https://www.rstudio.com/

R and RStudio
The console is a gloried calculator,
 you submit some R code and press Enter
 R evaluates the expression and returns the answers

2+2

[1] 4

When using R-studio, you can use "CTRL + Enter" to execute some code from the script (as
opposed to "Enter" to execute it from the console).

6

R and RStudio
Getting help

 Widely used packages include detailed help les for the functions they provide.

 help("function name") leads to the help page of function name

 help("mean") ## or ?mean

7

R and RStudio
Installing and loading packages

 The main strength of R comes from the thousands of packages that provide nice functions and
utilities to the language. Most are available from the CRAN (Comprehensive R Archive Network)
and easy to install:

install.packages("ggplot2")

 Loading packages is equally easy:

library(ggplot2)

 Most packages must be loaded at each new session (see the ”Packages” tab in R-studio)

8

R and Rstudio
Variable assignment
 You can save the value of some R code using one of two ways:
 the "arrow operator": <- (or more rarely ->)
 The "equal" sign: = (we recommend <- over =)

 The syntax is simple: variable_name <- value.
a <- 2*4 ## or a = 2*4 (the # sign signals a comment)

 And you can access and manipulate the value of that variable
a

[1] 8

a/2

[1] 4

9

R and RStudio
 Variable assignment

 The arrow is also used to change the value of an object:

 a <- 4

 a

 ## [1] 4

 Modifications made to a copy do no impact the original object:

 b <- a; b <- 8

 a; b

 ## [1] 4

 ## [1] 8

10

R and RStudio
 Variable deletion

 The rm() function is used to remove an object from the workspace:

 a

 ## [1] 4

 rm(a)

 a ## a does not exist anymore

 ## Error in eval(expr, envir, enclos): objet 'a' introuvable

11

R and RStudio
DATA/VARIABLE

12

Data/Variable
In R every basic object has four characteristics:

 a name

 a mode

 a length

 a content

The three main modes are numeric, logical, character.

13

Data/Variable
There are several basic modes in R. The most common ones are illustrated below.

 a logical can only take value TRUE or FALSE
 a character can be dened using simple (') or double (") quotes

14

Numeric Character Logical
x <- 1
class(x)
[1] "numeric"

x <- "hello"
class(x)
[1] "character"

x <- TRUE
class(x)
[1] "logical"

Data/Variable : conversion
 When possible, the functions as.something change a variable from one type to another:

 But sometimes fail (producing NA, Not Available) when the conversion is not properly dened:
 as.numeric("INRA")

 ## Warning: NAs introduits lors de la conversion automatique

 ## [1] NA

 Character is more general than numeric, itself more general than logical.

15

as.numeric("5")
[1] 5
as.logical(0.0)
[1] FALSE

as.numeric(TRUE)
[1] 1
as.character(TRUE)
[1] "TRUE"

as.numeric("5.56")
[1] 5.56
as.logical(2)
[1] TRUE

Data/Variable : conversion
 Guess the results of the following commands and check your guesses in the console:

 Using the conversion rules from logical to numeric, guess the value of:

 TRUE + TRUE + FALSE * TRUE + TRUE * TRUE

16

Numeric
as.numeric(2/3)
as.numeric(5.67)
as.numeric(FALSE)
as.numeric(TRUE)
as.numeric("5.67")
as.numeric("MaIAGE")

Character
as.character(2/3)
as.character(5.67)
as.character(FALSE)
as.character(TRUE)
as.character(5)
as.character(5+7)

Logical
as.logical(2/3)
as.logical(0)
as.logical("45")
as.logical("MaIAGE")

Data/Variable : length
 The length() function returns the length of an object:

 a <- 2

 length(a)

 ## [1] 1

 a

 ## [1] 2

 In the previous example, a is a vector of length 1, with a single element

 Hence the mysterious [1] in the output of a

17

Data/Variable : special value
 There are two important special values in R :
 NA stands for Not Available and is a code for missing data.
 NULL is the R code for a null object. It has length 0.

 a <- NA; length(a); is.na(a)

 ## [1] 1

 ## [1] TRUE

 x <- NULL; length(x); is.null(x) ## NULL

 ## [1] 0

 ## [1] TRUE

18

Data/Variable : structure
 R offers many data structures to organize data. The main ones are

 vector (1D array)

 factor

 matrix (2D array)

 list

 data.frame

19

Data/Variable : vector
 Multiples elements of the same mode (numeric, character, logical) can be collected in a vector
(1D array) using the c command:
 x <- c(2, 4, 8, 9, 0)
 X
 ## [1] 2 4 8 9 0
 Elements of x can be accessed with the indexing operations:

 Elements of different types are coerced to the most general mode before collection:

20

x[1] ## first element
[1] 2

x[c(3, 5)] ## third and fifth elements
[1] 8 0

c(3.4, 2, TRUE)
[1] 3.4 2.0 1.0

c(3.4, "MaIAGE", TRUE)
[1] "3.4" "MaIAGE" "TRUE"

Data/Variable : vector
 If x is a named vector, elements can be accessed by name rather than by position:

 x <- c("first" = 1, "second" = 4, "third" = 9)

 x

 ## first second third

 ## 1 4 9

21

x[1]
first
1

x["first"]
first
1

Data/Variable : vector
 Names can be set or changed after creating a vector using names

 x <- c(1, 4, 9)

 x

 ## [1] 1 4 9

 names(x) <- c("first", "second", "third")

 x

 ## first second third

 ## 1 4 9

22

Data/Variable : vector
 Logical indexing
 A vector x can be indexed by a logical vector index specifying which elements should be kept. In that
case, index and x should have the same length...
 x <- 1:6

 index <- c(TRUE, FALSE, TRUE, TRUE, FALSE, FALSE)

 x[index] ## = x[c(1, 3, 4)]

 ## [1] 1 3 4

 ...otherwise strange things can happen.
 index <- c(TRUE, FALSE, TRUE, TRUE, FALSE, FALSE, TRUE)

 x[index] ## = x[c(1, 3, 4, 7)] but x[7] does not exist

 ## [1] 1 3 4 NA

23

Data/Variable : vector
Exercice : Guess the result of the following code, check your guess in the console:

 Indexing
x <- c("O", "L", "H", "L", "E")
x[c(3, 5, 2, 4, 1)] ## following Marcel Duchamp

 Type conversion
y <- c(4.5, 3, TRUE, "0.5")
class(y[3])
y[3]

 Conversion and indexing
z <- as.logical(c(4.5, 3, FALSE)) ## converts the whole vector
z
z[c(3, 1, 1)]

24

Data/Variable : matrix
 Matrices are essentially 2-D vectors: all elements must have the same mode. Indexing works the
same way than for vectors but with two indices: the first for rows, the second for columns.
 x <- matrix(1:18, nrow = 3, ncol = 6)
 x
 ## [,1] [,2] [,3] [,4] [,5] [,6]
 ## [1,] 1 4 7 10 13 16
 ## [2,] 2 5 8 11 14 17
 ## [3,] 3 6 9 12 15 18

 x[2, 4] ## element in 2nd row, 4th column
 ## [1] 11

25

x[, 2] ## 2nd column
[1] 4 5 6

x[2,] ## 2nd row
[1] 2 5 8 11 14 17

Data/Variable : matrix
 Try to guess what the following commands do, check in the console

 x[, c(1, 4, 6)]

 x[c(1, 3),]

 x[c(1, 3), c(1, 4, 6)]

26

Data/Variable : factor
 Factors are used for categorical variables that only take a finite number of values (also called
levels)

 x <- factor(c("a", "a", "b", "a", "c"))

 class(x)

 ## [1] "factor"

 Levels can be accessed with levels

 levels(x)

 ## [1] "a" "b" "c"

 Internally, R treats x as a integer3 vector and associates each level to a value: here 1 = "a", 2 =
"b" and 3 = "c" (alphabetical order by default) so that x = c(1, 1, 2, 1, 3).

27

Data/Variable : factor
 Sometimes it's convenient to impose a different ordering with the argument levels of the factor
function.

 y <- factor(x, levels = c("b", "a", "c"))

 levels(y)

 ## [1] "b" "a" "c"

 Finally since factors are internally coded as integer vectors, conversions can be surprising:

28

as.numeric(x) ## 1="a", 2="b"
[1] 1 1 2 1 3
as.character(x)
[1] "a" "a" "b" "a" "c"

as.integer(y) ## 1="b", 2="a"
[1] 2 2 1 2 3
as.character(y)
[1] "a" "a" "b" "a" "c"

Data/Variable : factor
 Compare the two dierent codes and try to guess the results. Check with the console.

 x <- c("a" = 1, "b" = 2, "c" = 3)
 y <- c("a", "b", "c")
 x[y]
 z1 <- factor(y, levels = c("a", "b", "c"))
 z2 <- factor(y, levels = c("b", "a", "c"))
 z1
 x[z1]
 x[as.character(z1)]
 z2
 x[z2]
 x[as.character(z2)]

 Did you guess right? If not, remember that factor are coded as integer vectors and try to guess
the representation of z1 and z2 as numeric vectors.

29

Data/Variable : data.frame
A data.frame is a table-like structure (created with data.frame() used to store contextual data of dierent
modes. Technically a data.frame is a list of equal-length vectors and/or factors.
x <- data.frame(number = c(1:4),

 group = factor(c("A", "A", "B", "B")),

 desc = c("riri", "fifi", "lulu", "picsou"))
 x

 ## number group desc

 ## 1 1 A riri

 ## 2 2 A fifi

 ## 3 3 B lulu

 ## 4 4 B picsou

 class(x)

 ## [1] "data.frame"

 class(x[, 1])

 ## [1] "integer"

 class(x[, 2])

 ## [1] "factor"

 x[2, "desc"] ## or x[2, 3]

 ## [1] "fifi"

30

Data/Variable : data.frame
 A data.frame has two dimensions: rows and columns (just like a matrix)

 dim(x);nrow(x);ncol(x)

 ## [1] 4 3

 ## [1] 4

 ## [1] 3

 Its columns are names and can be accessed with the special operator $.

 x$group

 ## [1] A A B B

 ## Levels: A B

31

Data/Variable : data.frame
Guess what the following code does and check in the console.
 x
 ## ID group value
 ## 1 1 A 1.29891241
 ## 2 2 A -0.06922655
 ## 3 3 A -0.21717540
 ## 4 4 A -0.23028309
 ## 5 5 A -0.17481615
 ## 6 6 B -1.30304922
 ## 7 7 B -1.27979172
 ## 8 8 B -1.54874545
 ## 9 9 B -0.64328443
 ## 10 10 B 0.20690014

 ii <- 1:5

 df <- x[ii, c("ID", "value")]

 df

 df[, 2]

 class(df[, 2])

 df[2,]

 class(df[2,])

32

Data/Variable
 vector (and matrix): 1-D (and 2-D) array of basic data, all of the same type (integer, numeric,
logical, character)

 factor: used for categorical data, collection of elementary variables that can only take a finite
number of values (e.g. small, medium, large)

 data.frame: used for experimental results, a table-like structure (technically, a list of equal-
length vectors). All elements in a column have the same type but different columns may have
different types.

33

Data/Variable
 position index elements by position in a vector/factor (x[i]) or positions (row, column) in a
matrix/data.frame (x[i, j])

 name: index elements by name in a vector/factor (x["first"]) or positions (row, column) in a
matrix/data.frame (x["row“, "column"])

 logical index: use a logical mask index the same size as x that species which elements to keep
(x[index])

 name with $ (for list): use a component's name to extract it from a list. Works for data.frame which
are a special kind of list(x$name)

More than one element (or row, column) can be indexed at the same time: x[c(i1, i2, ..., in)]

34

Data/Variable : filtering
 R provides a built-in way to build logical indexes using logical operations (e.g. to filter data)

 x <- 1:5

 z <- (x < 3); z ## the first command returns a logical vector

 ## [1] TRUE TRUE FALSE FALSE FALSE

 z <- (x < 4) & (x > 1); z ## logical AND

 ## [1] FALSE TRUE TRUE FALSE FALSE

 z <- (x < 2) | (x > 4); z ## logical OR

 ## [1] TRUE FALSE FALSE FALSE TRUE

 !z ## logical NOT

 ## [1] FALSE TRUE TRUE TRUE FALSE

35

Data/Variable : filtering
 The logical indexes can be transformed to integer indexes using which

 which(z)

 ## [1] 1 5

 and used to extract part of the data

 z <- (x < 4)

 x[z]

 ## [1] 1 2 3

 ## or equivalently

 x[x < 4]

 ## [1] 1 2 3

36

Data/Variable : import
 The simplest way to import a tabulated text file* is read.table().

 read.table() outputs a data.frame and is very flexible. Its main arguments are:

37

Argument Description

file File name, or complete path to file (can be an URL)

header First line = variable names? (FALSE by default)

sep Field separator character (white character by default)

dec Character used for decimal points ("." by default)

na.string Character vector of strings to be interpreded as NA
(NA by default)

row.names Column number (or name) where the rownames are stored.

* : think excel worksheet, but in text format

Data/Variable : export
 Matrix-like objects (matrices, data.frame) can be exported as tabulated text files (human-
readable) with write.table(). The typical use is:

 ## for tsv

 write.table(matrix_object, file = "my_file.tsv", sep = "nt")

 To save general objects as R -readable objects (more compact), use save() (and load() to load
them back).

 save(object1, object2, file = "data.Rdata")

 load("data.Rdata")

 Finally, save.image() is a shortcut to save the complete workspace.

38 * : think excel worksheet, but in text format

R and Rstudio : website
 http://www.r-project.org/

 http://www.bioconductor.org/help/publications/

 https://cran.r-project.org/doc/contrib/Paradis-rdebuts_fr.pdf

39

http://www.r-project.org/
http://www.bioconductor.org/help/publications/

ggplot2
OVERVIEW

40

ggplot2 : overview
 ggplot2 is a powerful package by Hadley Wickham to produce elegant statistical graphics

 it has relatively simple syntax

 gg stands for grammar of graphics (Leland Wilkinson, 2005)

 the plot is built one component at a time with smart defaults settings

library(ggplot2)

41

ggplot2: overview
A ggplot is composed of :

 data: must be stored as a data.frame

 aesthetics: Visual characters that represent the data (position, size, color, ll, etc.)

 scales: For each aesthetic, the conversion from data to display value (color scale, size scale,
transparency scales, log-transformation of continuous values, etc)

 geoms: Type of geometric objects used to represent the data (points, line, bar, etc.)

 coord: 2D coordinate systems used to represent the data (cartesian, polar, etc.)

 stat: data-smoothing, statistical transformation used to summarize the data

 facets: a way to split the data into subsets (e.g. male only/female only) and represent the data
as small multiple plots

42

ggplot2 : overview
 These slides are not a complete introduction to ggplot2. They only intend to introduce elements
used in the phyloseq training session and therefore to

 present the syntax of a ggplot

 present simple examples of ggplot graphs

 illustrate the data to visual characteristics mapping

 show how to modify a graph by:
 adding a custom color scale
 changing the color scale
 subdividing the data to draw small multiple plots

43

ggplot2
BUILD A PLOT

44

ggplot2 : build a plot
 The ggplot function is used to build the plot layer by layer. The general syntax is

 ## p stands for plot

 p <- ggplot(data, aes(x, y)) + layer1 + layer2 + ...

 We'll work with the built-in diamonds dataset (10 attributes of almost 54000 diamonds, see
?diamonds for details)

 data(diamonds) ## import datasets

 class(diamonds) ## data.frame

 ## [1] "data.frame"

 names(diamonds) ## documented properties

 ## [1] "carat" "cut" "color" "clarity" "depth" "table" ## [8] "x"
"y" "z"

45

ggplot2 : build a plot

Add a layer to represent data as point
p1 <- p + geom_point()
plot(p1)

Add a layer to represent data as point,
colored by cut
p2 <- p + geom_point(aes(color = cut))
plot(p2)

46

set base plot, x coordinate is carat, y is price
p <- ggplot(diamonds, mapping = aes(x = carat, y = price))

ggplot2: build a plot
 The first command tells ggplot that
 data is stored in the diamonds data.frame
 global aesthetics (set with aes) are as follows : carat is mapped to x coordinate, price to y

coordinate

 The second one adds a layer in which data are represented by points (geom_point). The
aesthetics are extracted from global aesthetics aes(x = carat, y = price).

 The variant aes(color = cut) adds a new local aesthetic for the point layer. cut value is mapped
to the color of the points and both a legend and a color scale are automatically constructed.

47

ggplot2: build a plot, aesthetics
 We played with color but with geom_point we can also play with
 shape
 size
 alpha (transparency)
 fill

 The value of each aesthetic can be either
 identical for all observation: the argument must be given outside of aes (e.g.

geom_point(color = "black"))
 mapped to a variable value (here cut): the argument must be given inside of aes (e.g.

geom_point(aes(color = cut)))

48

ggplot2: build a plot, aesthetics

Manual color scale
p2.1 <- p2 +
scale_color_manual(values = palette)
plot(p2.1)

49

cut is a factor, with a discrete number of values. We can change the color scale manually with the family of
functions scale_color_something
palette <- c("black", "red", "blue", "magenta", "gray")
names(palette) <- c("Fair", "Good", "Very Good", "Premium", "Ideal")

Use built-in color palette
p2.2 <- p2 + scale_color_brewer()
plot(p2.2)

ggplot2: build a plot, aesthetics
About scales:

 Each aesthetic is associated with a scale

 Whenever possible, ggplot2 will try to merge the scales (like color and fill)

 For aesthetics mapped to a variable, the scale will vary depending on the nature of the variable:
numeric (continuous) or factor, logical (discrete)
 every scale is build in the following way they all begin with scale_
 continue with the aesthetic name (linetype, fill, color)
 and end with the name of the scale (manual, discrete, brewer)

50

ggplot2: build a plot, aesthetics
About geom:

 Here we used geom_point to represent data as points. We could have used other geometric
representations of the data:
 geom_point
 geom_line
 geom_bar
 geom_density
 geom_boxplot
 geom_histogram

 Each geometry expects and accepts different aesthetics (e.g linetype is useful for lines but
useless for points)

51

ggplot2: build a plot, facetting
 We can split the data in subsets to draw small multiple plots using facetting. There are two variants
of facetting:
 facet_wrap if only one variable is used for facetting
 facet_grid, usually used for two or more variables (but can be used for one)

 ## facet along cut, only points from a given cut appear in a facet
 p3 <- p2 + facet_grid(~ cut)
 plot(p3)

52

ggplot2: build a plot, facetting
 Compare facet wrap and facet grid when using only one variable for facetting: facets are
organized differently
 ## facet along cut

 p3 <- p2 + facet_wrap(~ cut)

 plot(p3)

53

ggplot2: build a plot, facetting
 facet grid is most useful when splitting the data along
two factors
 ## facet along clarity(rows) *
cut(column)

 p3 <- p2 + facet_grid(clarity ~ cut)

 plot(p3)

54

ggplot2: build a plot, facetting

p <- ggplot(diamonds, aes(x =
cut, y = price, color =
clarity)) + geom_boxplot()
plot(p)

55

Sometimes, facetting wastes spaces. Imagine we want to compare the distribution (using
boxplot) of prices (y) for different cuts (x) and highlight (with color) the differences between
different clarities

ggplot2: build a plot, facetting

 p1 <- p + facet_wrap(~cut)

 plot(p1)

 Each cut is represented in only one facet and
the common x-scale wastes a lot of space.

56

We may want to facet by cut to make the plot easier to read

ggplot2: build a plot, facetting

 p2 <- p + facet_wrap(~cut,
scales = "free_x")

 plot(p2)

 scales = "free_y" would lead to one y-scale per
facet

 scales = "free" to one y-scale and one x-scale
per facet

57

We facet by cut but do not impose a common x-scale which leads to a
much better use of space.

ggplot2: build a plot, facetting
 Finally, note that the same graph can be obtained in many different ways.
 p <- ggplot(diamonds, aes(x = clarity, y = price, color =
clarity)) + geom_boxplot() + facet_wrap(~cut)
 plot(p)

58

ggplot2: build a plot, title and labels
 You can add (or change) title and axis labels with the commands ggtitle, xlab and ylab
 p <- p + ggtitle("Diamond prices as a function of clarity") +
xlab("Diamond clarity") + ylab("Diamond price")

 plot(p)

59

ggplot2
EXPORT AND LEARN

60

ggplot2: export
 You can save graphics using ggsave,

 it guesses the file type from the filename extension.

 By default, it saves the last plot with its current dimensions

 but you can override the dimensions at will

 ## the last three arguments are optional

 ggsave("myplot.png", plot = p, width = 10, height = 4)

61

ggplot2: references
 http://had.co.nz/ggplot2/

 http://groups.google.com/group/ggplot2

 http://cran.r-project.org/web/packages/ggplot2/index.html

 Wickman, H. 2009 { ggplot2. Elegant graphics for data analysis. Springer, 212p.

62

http://had.co.nz/ggplot2/
http://groups.google.com/group/ggplot2
http://cran.r-project.org/web/packages/ggplot2/index.html

	A Quick and focused overview of R data types and ggplot2 syntax
	R and RStudio
	R and RStudio
	R and RStudio
	R and RStudio
	R and RStudio
	R and RStudio
	R and RStudio
	R and Rstudio
	R and RStudio
	R and RStudio
	R and RStudio
	Data/Variable
	Data/Variable
	Data/Variable : conversion
	Data/Variable : conversion
	Data/Variable : length
	Data/Variable : special value
	Data/Variable : structure
	Data/Variable : vector
	Data/Variable : vector
	Data/Variable : vector
	Data/Variable : vector
	Data/Variable : vector
	Data/Variable : matrix
	Data/Variable : matrix
	Data/Variable : factor
	Data/Variable : factor
	Data/Variable : factor
	Data/Variable : data.frame
	Data/Variable : data.frame
	Data/Variable : data.frame
	Data/Variable
	Data/Variable
	Data/Variable : filtering
	Data/Variable : filtering
	Data/Variable : import
	Data/Variable : export
	R and Rstudio : website
	ggplot2
	ggplot2 : overview
	ggplot2: overview
	ggplot2 : overview
	ggplot2
	ggplot2 : build a plot
	ggplot2 : build a plot
	ggplot2: build a plot
	ggplot2: build a plot, aesthetics
	ggplot2: build a plot, aesthetics
	ggplot2: build a plot, aesthetics
	ggplot2: build a plot, aesthetics
	ggplot2: build a plot, facetting
	ggplot2: build a plot, facetting
	ggplot2: build a plot, facetting
	ggplot2: build a plot, facetting
	ggplot2: build a plot, facetting
	ggplot2: build a plot, facetting
	ggplot2: build a plot, facetting
	ggplot2: build a plot, title and labels
	ggplot2
	ggplot2: export
	ggplot2: references

