A Quick and focused
overview of R data types
and ggplot2 syntax

AAAAAAAAAAA MARIA BERNARD, GERALDINE PAscAL,

< =
0 Q m 4 4
-
6~ Mica | IS
(Q\%

GenPhySE

R and RStudio

VVVVVVV

R and RStudio

R is a free and open environment for computational statistics and graphics (Open source, Open
development, under GNU General Public Licence): http://www.r-project.org/

The R Project for Statistical Computing

®

PCA 5 vars (&)
rincomp(x = dat, cor = cor) . .
- o o
R -+ @
-
ibout R ‘1;:.. I s [
IVhat is R? Examinaiion
Sontributors |Catbolel [Ehucation] | g ® g P Y
icreenshots .
Nhat's new? i / . B
= . L Y & o
iownload, Packages (1-3)B60% & Y P . . Do Qo
RAN oo
 Project N —r .
‘oundation Clustering 4 groups Factor 1 [41%] Factor 3 [18%]
vembers & Donors e
o . roups
sts

3ug Tracking

Zonferences
search

ocumentation

g

[
an en a0

Al

]

NS

vanuals Getting Started:
IAQS
Che R Journal * Ris a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of
Wiki UNIX platforms, Windows and MacOS. To download R, please choose your preferred CRAN mirror.
looks + If you have questions about R like how to download and install the software, or what the license terms are, please
tertification read our answers to frequently asked questions before you send an email.

News :
lisc
Wﬁ}r +« R 2.14.1 prerelease versions will appear starting December 12. Final release is scheduled for December 22, 2011.
ielated Projects useR! 2012, will take place at Vanderbilt University, Nashville Tennessee, USA, June 12-15, 2012.
Jser Groups « R version 2.14.0 (Great Pumpkin) has been released on 2011-10-31.
Anks s R version 2.13.2 has been released on 2011-09-30.

e The R Journal Vol.3/1 is available.

This server is hosted by the Institute for Statistics and Mathematics of the WU Wien.

http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/

R and RStudio

R is an interpreted language

There is no compilation

One can work in the console (this tutorial) or in an script file

Good for interactive use of the language

Bad for speed (when performing heavy computations)

R and RStudio

Rstudio provides a nice front-end to R with 4 panels (script, console, workspace, graphics) :

https://www.rstudio.com/

Plots

P =
27 Untitledl »
@ Osourceonsave | Q #-| & =% Run
1
1:1 | (Top Level) +
Console ~/
R version 3.2.3 (2015-12-10) -- "Wooden Christmas-Tree"

Copyright (C) 2015 The R Foundation for Statistical Computing
Platform: 1686-pc-linux-gnu (32-bit)

R est un logiciel libre livré sans AUCUNE GARANTIE.
Vous pouvez le redistribuer sous certaines conditions.
Tapez 'license()' ou 'licence()' pour plus de détails.

R est un projet collaboratif avec de nombreux contributeurs.
Tapez 'contributors()' pour plus d'information et

'citation()' pour la fagon de le citer dans les publications.
Tapez 'demo()' pour des démonstrations, 'help()' pour 1'aide
en ligne ou 'help.start()' pour ebtenir 1'aide au format HTML.
Tapez 'q()' pour quitter R.

[Workspace loaded from ~/.RData]

> help.start()
>

B[4

=0

Source ~

R Script +

=0

Environment History
<3 [| [# Import Dataset~ | &

) Global Environment »

Files Plots

The R Language ~

Packages Help Viewer

Statistical Data Analysis

vironment is

E] Project: (None) ~

=0

List~

=0

Manuals
An Introduction to R
Writing R Extensions
R Data Import/Export
Reference

Packages

Miscellaneous Material

About R
License
NEWS

The R Language Definition
R Installation and Administration
R Internals

Search Engine & Keywords

Authors Resources
Frequently Asked Questions Thanks

User Manuals Technical papers

https://www.rstudio.com/

R and RStudio

Installing packages

From CRAN :

The main strength of R comes from the thousands of Eackages that provide nice functions and utilities to the
language. Most are available from the CRAN (Comprehensive R Archive Network) and easy to install:

install.packages("package _name")

From Bioconductor :
Bioconductor, is an other repository. It stores packages dedicated to biology analysis

source("http://bioconductor.org/biocLite.R")
biocLite ("package_name")

Loading packages is equally easy:
library (ggplot?2) # comming from CRAN
library (phyloseq) # comming from Bioconductor

Most packages must be loaded at each new session (see the "Packages” tab in R-studio)

R and RStudio

Getting help

Widely used packages include detailed help files for the functions they provide.

For a particular function
help("function name") leads to the help page of function name

Tryit!
help ("mean") ## or ?2mean

For a particular packages
vignette("vignette name")

Try it !
vignette ("extending-ggplot2")
vignette ("phyloseg-basics")

R and RStudio

The console is a gloried calculator,
you submit some R code and press Enter
R evaluates the expression and returns the answers

2+2

i [1] 4

When using R-studio, you can use "CTRL + Enter" to execute some code from the script (as
opposed to "Enter" to execute it from the console).

R and Rstudio

Variable assighment

You can save the value of some R code using the "arrow operator": <-
The syntax is simple: variable name <- value.
a <- 2*4

And you can access and manipulate the value of that variable

a
[1] 8
a/?

R and RStudio

Variable assighment

The arrow is also used to change the value of an object:

a <- 4
a
[1] 4

Modifications made to a copy do no impact the original object:
b <- a; b <- 8 #
a; b

[1] 4

[1] 8

; simply separates two commands

R and RStudio

Variable deletion

The rm() function is used to remove an object from the workspace:
a

[1] 4

rm(a)

a ## a does not exist anymore

Error in eval (expr, envir, enclos): objet 'a' introuvable

R and RStudio

DATA/VARIABLE

o _....-."".-.cC. . . . O 2. . 2."© OO° 9.9 .99 .99 9. . 9. . 9. 9. ..,

Data/Variable

In R every basic object has four characteristics:

a hame
a mode
a length
a content

The three main modes are numeric, logical, character.

Data/Variable

The class function return the mode of a variable

Numeric Character Logical
x <-1 x <= "hello" x <—- TRUE
class (x) class (x) class (x)
[1] "numeric" ## [1] "character™ |## [1] "logical"

a logical can only take value TRUE or FALSE
a character can be defined using simple (') or double (") quotes

Data/Variable : length

The length() function returns the length of an object:

a <- 2
a
[1] 2
length (a)
[1] 1
In the previous example, a is a vector of length 1, with a single element

Hence the mysterious [1] in the output of a

Data/Variable : special value

There are two important special valuesinR:
NA stands for Not Available and is a code for missing data.

NULL is the R code for a null object. It has length O.

a <- NA; length(a); is.na(a)

[1] 1

[1] TRUE

x <- NULL; length(x); is.null(x) ## NULL
[1] O

[1] TRUE

Data/Variable : structure

R offers many data structures to organize data. The main ones are
vector (1D array)

factor
matrix (2D array)

data.frame

Data/Variable : vector

Multiples elements of the same mode (numeric, character, logical) can be collected in a vector (1D
array) using the c command:

X <_ C(2, 4, 8, 9/ O)
X
[1] 2 4 8 9 O

Elements of x can be accessed with the indexing operations:

x[1] ## first element x[c(3, 5)] ## third and fifth elements
[1] 2 ## [1] 8 O

Elements of different types are coerced to the most general mode before collection:

c(3.4, 2, TRUE) c(3.4, "MaIAGE", TRUE)

[1] 3.4 2.0 1.0 ## [1] "3.4" "MaIAGE" "TRUE"

Data/Variable : vector

If x is @ named vector, elements can be accessed by name rather than by position:

x <- C(HAH — 1, "R = 4’ non = 9)
X

first second third

1 4 9

Guess :

x[1] x["C"]
first ## first
#4# 1 ## 1

Data/Variable : vector

Names can be set or changed after creating a vector using the function names
x <= c(1, 4, 9)

X

[1]1 1 4 9

names (x) <- c("first", "second", "third")

X

first second third

1 4 9

Exercice : Guess the result of the following code, check your guess in the console:
X <_ C("O", "G", "F", "S", "R")

X [C (3 ’ 5 ’ 1 ’ 2 ’ L)]

"F" "R" "O" "G" "S"

Data/Variable : vector

Logical indexing

A vector x can be indexed by a logical vector index specifying which elements should be kept. In that
case, index and x should have the same length...

x <- 1:6

index <- c¢(TRUE, FALSE, TRUE, TRUE, FALSE, FALSE)
x[index] ## = x[c (1, 3, 4)]

[1] 1 3 4

...otherwise strange things can happen.

index <- c(TRUE, FALSE, TRUE, TRUE, FALSE, FALSE, TRUE)
x[index] ## = x[c(1l, 3, 4, 7)] but x[7] does not exist
[1] 1 3 4 NA

Data/Variable : vector

Exercice:

Try to reorder this rank’s vector!

rank <-c ("Order", "Kingdom", "Genus", "Class", "Family",
"Species", "Phylum")

reordered_rank <= 777

Data/Variable : matrix

Matrices are essentially 2-D vectors: all elements must have the same mode. Indexing works the
same way as for vectors but with two indices: the first for rows, the second for columns.

X <-— matrix(1l:18, nrow = 3, ncol = 6)

pe

[,1] [,2] [,3] [,4] [,5] [,0]

% [1,] 1 4 7 10 13 16

% [2,] 2 5 8 11 14 17

#H (3,1 3 6 9 12 15 18

x[2, 4] ## element in 2nd row, 4th column

[1] 11

x[, 2] ## 2nd column x[2, 1 ## 2nd row

[1] 4 5 6 ## [1] 2 5 8 11 14 17

Data/Variable : matrix

x <- as.matrix(read.csv("data/introR/matrix.tsv", sep= "\t", row.names=1))
X
samplel sample? sample3
otu 1 45 60 0
otu 2 10 5 21
otu 3 O 54 32

Try to guess what the following commands do, check in the console
x[, 3] x["otu 2",]
x[c(l, 2),] x[c(l, 3), c(2, 3)]

How to access to the count of sample2 for otu_3?

Data/Variable : factor

Factors are used for categorical variables that only take a finite number of values (also called
levels)

X <- factor(c("male", "male", "female", "male", "female"))
class (x)

[1] "factor"

Levels can be accessed with levels

levels (x)

[1] "female" "male"

Internally, R treats x as an integer vector and associates each level to a value: here 1 = "female",
2 ="male" (alphabetical order by default) sothat x=c(2, 2, 1, 2, 1).

Data/Variable : factor

Sometimes it's convenient to impose a different ordering with the argument levels of the factor
function.

y <- factor(x, levels = c("male", "female"))

levels (vy)

[1] "male" "female"

Data/Variable : data.frame

A data.frame is a table-like structure (created with the function data.frame) used to store contextual data
of different modes. Technically a data.frame is a list of equal-length vectors and/or factors.

X <- data.frame (number = c(1:4),

group — factor (C ("A", HAH, "B", "B")) ,

desc = c¢c("riri", "f£ifi", "lulu", "picsou"))
X class(x[, 1])
4+ number group desc ## [1] "integer"
#4# 1 1 A riri
class(x[, 2])
#H 2 2 A fifi
[1] "factor"
3 3 B 1lulu
by g A B phosou x[2, "desc"] ## or x[2, 3]
[1] "data.frame"

Data/Variable : data.frame

A data.frame has two dimensions: rows and columns (just like a matrix)

dim(x) ;nrow (x) ;ncol (x)

5 [1]1 4 3

[1] 4

[11 3

Its columns are named and can be accessed with the special operator S.
XSgroup

[1] A A BB

Levels: A B

Data/Variable : data.frame

Guess what the following code does and check in the console.

X i1 <= 1:5

i ID group value . S .
py 1 1 A 1.29891241 df <- x[11, c("ID", "value")]
t# 2 2 A -0.06922655 df

3 3 A -0.21717540

4 4 A -0.23028309 act , 2]

5 5 A -0.17481615 class(df[, 21)

© 6 B -1.30304922

¥+ 7 7 B -1.27979172 diElzy |

8 8 B -1.54874545 class(df[2, 1)

9 9 B -0.64328443

10 10 B 0.20690014

Data/Variable: summary

vector (and matrix): 1-D (and 2-D) array of basic data, all of the same type (integer, numeric,
logical, character)

factor: used for categorical data, collection of elementary variables that can only take a finite
number of values (e.g. small, medium, large)

data.frame: used for experimental results, a table-like structure (technically, a list of equal-
length vectors). All elements in a column have the same type but different columns may have
different types.

Data/Variable: summary

position : index elements by positionina vector/factor (x[1])or 2 positions (row, column)in a
matrix/data.frame(x[1, J])

name: index elements by name ina vector/factor (x["first"]) or 2 names (row, column) in a
matrix/data.frame (x["row", "column"])

ogical index: use a logical mask index of the same size as x that specifies which elements to keep
(x[index])

name with S (for list): use a component's name to extract it from a list. Works for data . frame which
are a special kind of list(x Sname)

More than one element (or row, column) can be indexed at the same time with a vector of
position/name/logical : x [c (11, 12, ..., 1in)]

Data/Variable : filtering

R provides a built-in way to build logical indexes using logical operations (e.g. to filter data)

Xx <= 1:5 ; x

[1] 1 2 3 4 5

7z <- (x < 3); z ## the first command returns a logical vector
[1] TRUE TRUE FALSE FALSE FALSE

z <- (x < 4) & (x > 1); z ## logical AND

[1] FALSE TRUE TRUE FALSE FALSE

z <- (x < 2) | (x > 4); z ## logical OR

[1] TRUE FALSE FALSE FALSE TRUE

'z ## logical NOT

[1] FALSE TRUE TRUE TRUE FALSE

Data/Variable : filtering

The logical indexes can be transformed to integer indexes using which

which (z)

[1]1 1 5

and used to extract part of the data
z <- (x < 4)

xX[z]

[1] 1 2 3

or equivalently

x[x < 4]

[1] 1 2 3

Data/Variable : import

The simplest way to import a tabulated text file” is read.table().

read.table() outputs a and is very flexible. Its main arguments are:
Argument Description
file File name, or complete path to file (can be an URL)
header First line = variable names? (FALSE by default)
sep Field separator character (white character by

default), write "\t" for tabulation.

dec Character used for decimal points ("." by default)

na.string Character vector of strings to be interpreded as NA
(NA by default)

row.names Column number (or name) where the rownames are stored.

* . think excel worksheet, but in text format 36

Data/Variable : export

Matrix-like objects (matrices, data.frame) can be exported as tabulated text files (human-
readable) with write.table(). The typical use is:

for tsv
write.table (matrix object, file = "my file.tsv", sep = "\t")

To save general objects as R -readable objects (more compact), use save() (and load() to load
them back).

save (objectl, object?2, file = "data.Rdata")
load ("data.Rdata")

Finally, save.image() is a shortcut to save the complete workspace.

* . think excel worksheet, but in text format

R and Rstudio : website

http://www.r-project.org/

http://www.bioconductor.org/help/publications/

https://cran.r-project.org/doc/contrib/Paradis-rdebuts fr.pdf

http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.bioconductor.org/help/publications/
http://www.bioconductor.org/help/publications/
//jj-1313-srvdata/user/mbernard/Documents/FROGS/FROGS_formation/phyloseq/cran.r-project.org/doc/contrib/Paradis-rdebuts_fr.pdf
//jj-1313-srvdata/user/mbernard/Documents/FROGS/FROGS_formation/phyloseq/cran.r-project.org/doc/contrib/Paradis-rdebuts_fr.pdf
//jj-1313-srvdata/user/mbernard/Documents/FROGS/FROGS_formation/phyloseq/cran.r-project.org/doc/contrib/Paradis-rdebuts_fr.pdf
//jj-1313-srvdata/user/mbernard/Documents/FROGS/FROGS_formation/phyloseq/cran.r-project.org/doc/contrib/Paradis-rdebuts_fr.pdf
//jj-1313-srvdata/user/mbernard/Documents/FROGS/FROGS_formation/phyloseq/cran.r-project.org/doc/contrib/Paradis-rdebuts_fr.pdf
//jj-1313-srvdata/user/mbernard/Documents/FROGS/FROGS_formation/phyloseq/cran.r-project.org/doc/contrib/Paradis-rdebuts_fr.pdf

goplot? : overview

ggplot2 is a powerful package by Hadley Wickham to produce elegant statistical graphics

it has relatively simple syntax
gg stands for grammar of graphics (Leland Wilkinson, 2005)

the plot is built one component at a time with smart defaults settings

library (ggplot?2)

oggplot2: overview

A ggplot is composed of :

data: must be stored as a data.frame
aesthetics: Visual characters that represent the data (position, size, color, fill, etc.)

scales: For each aesthetic, the conversion from data to display value (color scale, size scale,
transparency scales, log-transformation of continuous values, etc)

geoms: Type of geometric objects used to represent the data (points, line, bar, etc.)

facets: a way to split the data into subsets (e.g. male only/female only) and represent the data
as small multiple plots

ggplot? : overview

These slides are not a complete introduction to ggplot2. They only intend to introduce elements
used in the phyloseq training session and therefore to :

present the syntax of a ggplot
present simple examples of ggplot graphs
illustrate the data to visual characteristics mapping

show how to modify a graph by:
adding a custom color scale

changing the color scale
subdividing the data to draw small multiple plots

ogoplot?2

BUILD A PLOT

o _....-."".-.cC. . . . O 2. . 2."© OO° 9.9 .99 .99 9. . 9. . 9. 9. ..,

goplot? : diamonds dataset

We'll work with the built-in diamonds dataset (10 attributes of almost 54000 diamonds, see
?diamonds for details)

data (diamonds) ## import datasets
class (diamonds) ## data.frame

head (diamonds) ## documented properties

carat cut color clarity depth table price X % Z
1 0.23 Tdeal E SI2 ©61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VSl 56.9 65 327 4.05 4.07 2.31
4 0.29 Premium I VS2 ©62.4 58 334 4.20 4.23 2.63

help (diamonds) ## description of dataset

ggplot? : build a plot

The ggplot function is used to build the plot layer by layer. The general syntax is
p <- ggplot(data, aes(x, y)) + layerl + layer2 +

set base plot, x coordinate 1is
carat, y 1s price

13000 -

p <- ggplot (diamonds, mapping =
aes(x = carat, y = price))

Add a layer to represent data as
point

pl <- p + geom point ()

plot (pl)

. e
.

ogoplot? : build a plot, aesthetics

ggplot allow to add easily color scale in function of an other variable

set base plot, x coordinate is carat, vy
1s price and colored by cut

op

p <- ggplot (diamonds, mappling = aes(x =

carat, y = price, color = cut))

Add a layer to represent data as point o
p2 <- p + geom point ()

plot (p2)

Or precise color aesthetics in 8
geom point function

cut

o« ao o

p <- ggplot (diamonds, mapplng = aes(x =
carat, y = price))

Add a layer to represent data as point
p2 <- p + geom point (aes(color=cut))
plot (p2)

NB : For color scale you must choose variables with finite number of values.

ogoplot2: build a plot, aesthetics

The first command tells ggplot that
data is stored in the diamonds data.frame

global aesthetics (set with aes) are as follows : carat is mapped to x coordinate, price to y
coordinate

The second one adds a layer in which data are represented by points (geom_point). The
aesthetics are extracted from global aesthetics aes(x = carat, y = price).

The variant aes(color = cut) adds a new local aesthetic for the point layer. cut value is mapped
to the color of the points and both a legend and a color scale are automatically constructed.

goplot2: build a plot, aesthetics

The value of each aesthetic can be either
identical for all observations: the argument must be given outside of aes (e.g.
geom_ point(color = "black"))
mapped to a variable value (here cut): the argument must be given inside of aes (e.g.
geom_point(aes(color = cut)))

We played with color but with geom point we can also play with
shape
Size
alpha (transparency)
fill

ogoplot2: build a plot, aesthetics

About geom:

Here we used geom_point to represent data as points. We could have used other geometric
representations of the data:

geom_point
geom_line
geom_bar
geom_density
geom_boxplot
geom_histogram

Each geometry expects and accepts different aesthetics (e.g linetype is useful for lines but
useless for points)

ggplot2: build a plot, facetting

Try to represent the distribution of price in function of cut thanks to a boxplot.

LR T T

p <- ggplot (diamonds, aes(x =
cut, y = price)

p3 <- p + geom boxplot ()

plot (p3)

NB : For boxplot you must choose variables with finite number of values for x.

ggplot2: build a plot

Add some color in function of clarity

. T Y
B EIEMEE WSS 5 @ -
- .

p4 <- ggplot (diamonds, aes(x =
cut, y = price, color = e
clarity)) + geom boxplot () E '
plot (p4)

s e - (X
. & e e -

1!,

'I‘l
L4 []
li.
. -

. .
‘l‘
.
[] .

1

- -
-
g s

£].1

.

H

]

:

™

]

]

.

1

.

.

SIS § ENLED ¥ DD MRENSSS BENEN NN JER S B AE

- .

THI-O DD §
£

g
- g

2] =
= B

2 g

g

ggplot2: build a plot, facetting

Go back to geom_point plot of price in function of carat colored by cut

p2 <- ggplot (diamonds, mapping = aes(x = carat, y = price, color =
cut)) + geom point ()

We can split the data in subsets to draw small multiple plots using facetting. There are two variants
of facetting:

facet_wrap if only one variable is used for facetting
facet grid, usually used for two or more variables (but can be used for one)

ggplot2: build a plot, facetting

Compare facet wrap and facet grid when using only one variable for facetting: facets are
organized differently

facet along cut
pS <- pZ2 + facet wrap(~ cut)
plot (p5) =

1 S0 -

<L .
" L1l .
N T O
10000 - : 1 " %
] Wi
00 -
G.-
™ -
L " &
L] -
L]

1 S0 -

* Far

® VeryGoad

* Premium

ggplot2: build a plot, facetting

Compare facet wrap and facet grid when using only one variable for facetting: facets are organized
differently

facet along cut, only points from a given cut appear in a facet
p6 <- p2 + facet grid(~ cut)
plot (p6)

ggplot2: build a plot, facetting

= aSMESSSSSiSSESCESS Saenoascsl SSMETSSs Senscied
e AN }5" j‘ jf F
5““‘3:.-!"
facet_grid is most useful when splitting the data along - l'-i'.)F }‘ j jt .
two factors e :
. o g i ' : -
facet along clarity(rows) * S A } }P] l e
cut (column) b [S EEEE EJHES RFEHE] -
~ . : A)l' g -
p/7 <- p2 + facet grid(clarity ~ cut) 7. ;.) .
_ ~EES ; é
plot (p7) o b S f j jﬂ

ggplot2: build a plot, facetting

Sometimes, facetting wastes spaces. On boxplot : try to facet by cut.
p4 <- ggplot (diamonds, aes(x = cut, y = price, color = clarity))

+ geom boxplot () . - -
-k
p8 <- p4 + facet wrap (~cut) mw
plot (p8) w#
| s
Each cut is represented in only one facet and

the common x-scale wastes a lot of space.

T OO D

&
=g

gt

ggplot2: build a plot, facetting

We facet by cut but do not impose a common x-scale which leads to a
much better use of space.

Fair Good

15000 -

p9 <- p4 + facet wrap (~cut,

10000 -

scales = "free x") | ll
plot (p9) - 1,

el n=
facet

scales = "free_y" would lead to one y-scale per : * :
|
|
|

scales = "free" to one y-scale and one x-scale

per facet . IQ ;
) | .

clarity

=1
Ese
E=
=qT

E wvsz
E st
F:_- IF

ogoplot2: build a plot, color scales

cut is a factor, with a discrete number of values. We can change the color scale manually with the family of

functions scale_color_something

palette <- c("black", "red",
"blue", "magenta", "gray")

names (palette) <- c("Fair", "Good", ..
"Very Good", "Premium", "Ideal")

Manual color scale

p6.1 <- p6 +
scale color manual (values

paletEe)
plot (p6.1)

ogoplot2: build a plot, color scales

cut is a factor, with a discrete number of values. We can change the color scale manually with the family of
functions scale_color_something

Fair | Good \ery Good [| Premium
150004

10000 4 .y
& e

5000+ 'ﬂ jp‘

0- L

t
150004 i

Use built-in color palette B
p/.1 <- p/ + -
scale color brewer ()
plot(p7.1) o

price

» Vary Good

* | Premium

»anpy
.

e\,
SN,
Yo N S NN, |

i v o
N .y

g 8
e [N
\"”'\'!!.

©o 1 2 3 4 50 1 2 3 4 50 1 2 3 4 50 1 2 3 4 50 1 2 3 4 5

ogoplot2: build a plot, aesthetics

About scales:

Each aesthetic is associated with a scale
Whenever possible, ggplot2 will try to merge the scales (like color and fill)

For aesthetics mapped to a variable, the scale will vary depending on the nature of the variable:
numeric (continuous) or factor, logical (discrete)

every scale is buitd in the following way they all begin with scale and
continue with the aesthetic name (linetype, fill, color)
and end with the name of the scale (manual, discrete, brewer)

ogoplot2: build a plot, title and labels

You can add (or change) title and axis labels with the commands ggtitle, xlab and ylab

pl0 <- P9 + ggtitle("Diamond prices as a function of clarity") +
xlab ("Diamond clarity") + ylab("Diamond price")

lamonds prices as a function of clarity

plot (pl0) ; o —

;“:M%%Aé%ﬁaagéimaawgg

TOTDIO00E

bl g s

ogoplot?2

EXPORT AND LEARN

o _....-."".-.cC. . . . O 2. . 2."© OO° 9.9 .99 .99 9. . 9. . 9. 9. ..,

goplot2: export

You can save graphics using ggsave,

it guesses the file type from the filename extension.

By default, it saves the last plot with its current dimensions
but you can override the dimensions at will

the last three arguments are optional

ggsave ("myplot.png", plot = p, width = 10, height = 4)

oggplot2: references

http://had.co.nz/ggplot2/

http://groups.google.com/group/ggplot2

http://cran.r-project.org/web/packages/ggplot2/index.html

Wickman, H. 2009 { ggplot2. Elegant graphics for data analysis. Springer, 212p.

http://had.co.nz/ggplot2/
http://had.co.nz/ggplot2/
http://groups.google.com/group/ggplot2
http://groups.google.com/group/ggplot2
http://cran.r-project.org/web/packages/ggplot2/index.html
http://cran.r-project.org/web/packages/ggplot2/index.html
http://cran.r-project.org/web/packages/ggplot2/index.html
http://cran.r-project.org/web/packages/ggplot2/index.html

