
A Quick and focused
overview of R data types
and ggplot2 syntax
MAHENDRA MA R I A DA S S O U , MARIA BE RNARD , GERALDINE PAS C AL ,
LAURENT CAU Q U IL

1

R and RStudio
OVERVIEW

2

R and RStudio
R is a free and open environment for computational statistics and graphics (Open source, Open
development, under GNU General Public Licence): http://www.r-project.org/

3

R and RStudio
� R is an interpreted language

� There is no compilation

� One can work in the console (this tutorial) or in an script file

� Good for interactive use of the language

� Bad for speed (when performing heavy computations)

4

R and RStudio
RStudio provides a nice front-end to R with 4 panels (script, console, workspace, graphics) :

https://www.rstudio.com/

5

R and RStudio
Installing packages

� From CRAN :

� The main strength of R comes from the thousands of packages that provide nice functions and utilities
to the language. Most are available from the CRAN (Comprehensive R Archive Network) and easy to
install:

� install.packages("package_name")

� From Bioconductor :

� Bioconductor , is an other repository. It stores packages dedicated to biology analysis

� source("http://bioconductor.org/biocLite.R")

� biocLite ("package_name")

6

R and RStudio
Loading packages is equally easy:

library (ggplot2) # comming from CRAN

library (phyloseq) # comming from Bioconductor

� Most packages must be loaded at each new session (see the ”Packages” tab in RStudio)

7

R and RStudio
Getting help

Packages include help files for the functions they provide.

� For a particular function
� help("function name") leads to the help page of function name

Try it !
help ("mean") ## or ?mean

Widely used packages include detailed files called "vignette" for the functions they provide

� For a particular packages
� vignette(" vignette name")

Try it !
vignette ("extending-ggplot2")
vignette ("phyloseq-basics")

8

R and RStudio
The console is a gloried calculator,

� you submit some R code and press Enter

� R evaluates the expression and returns the answers

2+2

[1] 4

When using RStudio, you can use "CTRL + Enter" to execute some code from the script (as
opposed to "Enter" to execute it from the console).

9

R and RStudio
Variable assignment

� You can save the value of some R code using the "arrow operator": <-

� The syntax is simple: variable_name <- value

a <- 2*4

� And you can access and manipulate the value of that variable

a

[1] 8

a/2

[1] 4

10

R and RStudio
Variable assignment

The arrow is also used to change the value of an object:

a <- 4

a

[1] 4

Modifications made to a copy do no impact the original object:

b <- a; b <- 8 # ";" simply separates two commands

a; b

[1] 4

[1] 8

11

R and RStudio
DATA/VARIABLE

12

Data/Variable
In R every basic object has four characteristics:

� a name

� a mode

� a length

� a content

The three main modes are numeric, logical, character

13

Data/Variable
The class function return the mode of a variable

� a logical can only take value TRUE or FALSE

� a character can be defined using simple (') or double (") quotes

14

Numeric Character Logical

x <- 1
class (x)
[1] "numeric"

x <- "hello"
class (x)
[1] "character"

x <- TRUE
class (x)
[1] "logical"

Data/Variable : conversion
When possible, the functions as.something change a variable from one type to another:

But sometimes fail (producing NA, Not Available) when the conversion is not properly defined:

as.numeric ("INRA")

Warning: NAs introduced by coercion

[1] NA

Character is more general than numeric, itself more general than logical.

15

as.numeric ("5")
[1] 5
as.logical (0.0)
[1] FALSE

as.numeric (TRUE)
[1] 1
as.character (TRUE)
[1] "TRUE"

as.numeric ("5.56")
[1] 5.56
as.logical (2)
[1] TRUE

Data/Variable : conversion
Guess the results of the following commands and check your guesses in the console:

Using the conversion rules from logical to numeric, guess the value of:

TRUE + TRUE + FALSE * TRUE + TRUE * TRUE

16

Numeric
as.numeric (2/3)
as.numeric (5.67)
as.numeric (FALSE)
as.numeric (TRUE)
as.numeric ("5.67")
as.numeric ("MaIAGE")

Character
as.character (2/3)
as.character (5.67)
as.character (FALSE)
as.character (TRUE)
as.character (5)
as.character (5+7)

Logical
as.logical (2/3)
as.logical (0)
as.logical ("45")
as.logical ("MaIAGE")

Data/Variable : special value
There are special values in R, in particular

� NA which stands for Not Available and is a code for missing data

a <- NA; length (a); is.na (a)

[1] 1

[1] TRUE

17

Data/Variable : structure
R offers many data structures to organize data. The main ones are:

� vector (1D array)

� factor

� matrix (2D array)

� data.frame

18

Data/Variable : vector
� Multiples elements of the same mode (numeric, character, logical) can be collected in a vector (1D
array) using the c command:

x <- c(2, 4, 8, 9, 0)
x
[1] 2 4 8 9 0

� Elements of x can be accessed with the indexing operations:

x[1] ## first element x[c(3, 5)] ## third and fifth elements
[1] 2 ## [1] 8 0

� Elements of different types are coerced to the most general mode before collection:

c(3.4, 2, TRUE) c(3.4, "MaIAGE" , TRUE)
[1] 3.4 2.0 1.0 ## [1] "3.4" "MaIAGE" "TRUE"

19

Data/Variable : vector
If x is a named vector, elements can be accessed by name rather than by position:

x <- c("A" = 1, "B" = 4, "C" = 9)

x

A B C

1 4 9

Guess :

x[1] x["C"]

A ## C

1 ## 9

20

Data/Variable : vector
Names can be set or changed after creating a vector using the function names

x <- c(1, 4, 9)
x
[1] 1 4 9
names(x) <- c("first", "second", "third")
x
first second third
1 4 9

Exercice : Guess the result of the following code, check your guess in the console:

x <- c("O", "G", "F", "S", "R")
x[c(3, 5, 1, 2, 4)]
"F" "R" "O" "G" "S"

21

Data/Variable : vector
Logical indexing

A vector x can be indexed by a logical vector index specifying which elements should be kept. In that
case, index and x should have the same length ...

x <- 1:6

index <- c(TRUE, FALSE, TRUE, TRUE, FALSE, FALSE)

x[index] ## = x[c(1, 3, 4)]

[1] 1 3 4

...otherwise strange things can happen

index <- c(TRUE, FALSE, TRUE, TRUE, FALSE, FALSE, TRUE)

x[index] ## = x[c(1, 3, 4, 7)] but x[7] does not exist

[1] 1 3 4 NA

22

Data/Variable : vector
Exercice:

Try to reorder this rank’s vector thanks to position index!

rank <- c("Order" , "Kingdom" , "Genus" , "Class" , "Family" ,
"Species" , "Phylum")

reordered_rank <- rank [c(2, 7, 4, 1, 5, 3, 6)]

23

Data/Variable : matrix
Matrices are essentially 2-D vectors: all elements must have the same mode.

Indexing works the same way as for vectors but with two indices: the first for rows, the second
for columns.

x <- matrix (1:18, nrow = 3, ncol = 6)
x
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 4 7 10 13 16
[2,] 2 5 8 11 14 17
[3,] 3 6 9 12 15 18

x[2, 4] ## element in 2nd row, 4th column
[1] 11

24

x[, 2] ## 2nd column
[1] 4 5 6

x[2,] ## 2nd row
[1] 2 5 8 11 14 17

Data/Variable : matrix
x <- as.matrix (read.csv ("data/introR/matrix.tsv" , sep= "\t" , row.names=1))

x
sample1 sample2 sample3

otu_1 45 60 0
otu_2 10 5 21
otu_3 0 54 32

Try to guess what the following commands do, check in the console

x[, 3] x["otu_2" ,]

x[c(1, 2),] x[c(1, 3), c(2, 3)]

How to access to the count of sample2 for otu_3 ?

x["otu_3" , "sample2"] x[3, 2]

x["otu_3" , 2] x[3, "sample2"]

25

Data/Variable : factor
Factors are used for categorical variables that only take a finite number of values (also called
levels)

x <- factor (c("male", "male", "female", "male", "female"))

class (x)

[1] "factor"

Levels can be accessed with levels

levels (x)

[1] "female" "male"

Internally, R treats x as an integer vector and associates each level to a value:

here 1 = "female", 2 = "male" (alphabetical order by default) so that x = c(2, 2, 1, 2, 1).

26

Data/Variable : factor
Sometimes it's convenient to impose a different ordering with the argument levels of the factor
function.

x <- as.factor (c("strong", "strong", "weak", "middle", "weak"))

levels (x)

[1] "middle" "strong"" "weak"

y <- factor (x, c("weak", "middle", "strong"))

levels (y)

[1] "weak" "middle" "strong"

27

Data/Variable : data.frame
A data.frame is a table-like structure (created with the function data.frame) used to store contextual data of
different modes. Technically a data.frame is a list of equal-length vectors and/or factors.

x <- data.frame (number = c(1:4),
group = factor (c("A", "A", "B", "B")),
desc = c("riri", "fifi", "lulu", "picsou"),
stringsAsFactors = FALSE)

x

number group desc

1 1 A riri

2 2 A fifi

3 3 B lulu

4 4 B picsou

class (x)

[1] "data.frame"

class (x[, 1])

[1] "integer"

class (x[, 2])

[1] "factor"

x[2, "desc"] ## or x[2, 3]

[1] "fifi"

28

Data/Variable : data.frame
A data.frame has two dimensions: rows and columns (just like a matrix)

dim (x); nrow (x); ncol (x)

[1] 4 3

[1] 4

[1] 3

Its columns can be named and accessed with the special operator $

x$group

[1] A A B B

Levels: A B

29

Data/Variable : data.frame
Guess what the following code does and check in the console.

x
ID group value
1 1 A 1.29891241
2 2 A -0.06922655
3 3 A -0.21717540
4 4 A -0.23028309
5 5 A -0.17481615
6 6 B -1.30304922
7 7 B -1.27979172
8 8 B -1.54874545
9 9 B -0.64328443
10 10 B 0.20690014

ii <- 1:5

df <- x[ii , c("ID", "value")]

df

df [, 2]

class (df [, 2])

df [2,]

class (df [2,])

30

Data/Variable: summary
� vector (and matrix): 1-D (and 2-D) array of basic data, all of the same type (integer, numeric,
logical, character)

� factor: used for categorical data, collection of elementary variables that can only take a finite
number of values (e.g. small, medium, large)

� data.frame: used for experimental results, a table-like structure (technically, a list of equal-
length vectors). All elements in a column have the same type but different columns may have
different types

31

Data/Variable: summary
� position: index elements by position in a vector/factor (x[i]) or 2 positions (row, column) in a
matrix/data.frame (x[i, j])

� name: index elements by name in a vector/factor (x["first"]) or 2 names (row, column) in a
matrix/data.frame (x["row", "column"])

� logical index: use a logical mask index of the same size as x that specifies which elements to keep
(x[index])

� names with $ (for list): use a component's name to extract it from a list. Works for data.frame which
are a special kind of list(x$name)

More than one element (or row, column) can be indexed at the same time with a vector of
position/name/logical : x[c(i1, i2, ..., in)]

32

Data/Variable : filtering
R provides a built-in way to build logical indexes using logical operations (e.g. to filter data)

x <- 11:15 ; x

[1] 11 12 13 14 15

z <- (x < 13); z ## the first command returns a logical vec tor

[1] TRUE TRUE FALSE FALSE FALSE

z <- (x < 14) & (x > 11); z ## logical AND

[1] FALSE TRUE TRUE FALSE FALSE

z <- (x < 12) | (x > 14); z ## logical OR

[1] TRUE FALSE FALSE FALSE TRUE

! z ## logical NOT

[1] FALSE TRUE TRUE TRUE FALSE

33

Data/Variable : filtering
The logical indexes can be transformed to integer indexes using which

which (z)

[1] 1 5

and used to extract part of the data

z <- which (x < 14)

x[z]

[1] 1 2 3

or equivalently

x[x < 14]

[1] 1 2 3

34

Data/Variable : import
The simplest way to import a tabulated text file* is read.table()

read.table() outputs a data.frame and is very flexible. Its main arguments are:

35

Argument Description

file File name, or complete path to file (can be an URL)

header First line = variable names? (FALSE by default)

sep Field separator character (white character by
default), write "\t" for tabulation.

dec Character used for decimal points ("." by default)

na.string Character vector of strings to be interpre ded as NA
(NA by default)

row.names Column number (or name) where the rownames are stored.

* : think excel worksheet, but in text format

Data/Variable : export
Matrix-like objects (matrices, data.frame) can be exported as tabulated text files (human-
readable) with write.table().

The typical use is:

for tsv

write.table (matrix_object , file = "my_file.tsv" , sep = "\t")

To save several objects as R objects in one file (more compact), use save() (and load() to load
them back).

save (object1 , object2 , file = "data.RData")

load ("data.RData")

Finally, save.image() is a shortcut to save the complete workspace.

36* : think excel worksheet, but in text format

R and RStudio : website
� http://www.r-project.org/

� http://www.bioconductor.org/help/publications/

� https://cran.r-project.org/doc/contrib/Paradis-rdebuts_fr.pdf

37

ggplot2
OVERVIEW

38

ggplot2 : overview
� ggplot2 is a powerful package by Hadley Wickham to produce elegant statistical graphics

� it has relatively simple syntax

� gg stands for grammar of graphics (Leland Wilkinson, 2005)

� the plot is built one component at a time with smart defaults settings

library (ggplot2)

39

ggplot2 : overview
These slides are not a complete introduction to ggplot2. They only intend to introduce elements
used in the phyloseq training session and therefore to :

� present the syntax of a ggplot

� present simple examples of ggplot graphs

� illustrate the data to visual characteristics mapping

� show how to modify a graph by:

� adding a custom color scale

� changing the color scale

� subdividing the data to draw small multiple plots

40

ggplot2
BUILD A PLOT

41

ggplot2: overview
A ggplot is composed of:

� At least
� data stored as a data.frame

� aesthetics: visual characters that represent the data (which variables for coordinates x, y, or color, and
aesthetics caracteristics: fill, position, size, etc.)

� and additionnal layers
� scales: for each aesthetic, the conversion from data to display value (color scale, size scale,

transparency scales, log-transformation of continuous values, etc)

� geoms: type of geometric objects used to represent the data (points, line, bar, etc.)

� facets: a way to split the data into subsets (e.g. male only/female only) and to represent data as small
multiple plots

The general syntax is

p <- ggplot (data , aes (x, y)) + layer1 + layer2 + ...

42

ggplot2 : diamonds dataset
We'll work with the built-in diamonds dataset (10 attributes of almost 54000 diamonds, see
?diamonds for details)

data (diamonds) ## import datasets

class (diamonds) ## data.frame

head (diamonds) ## first lines of the data.frame

carat cut color clarity depth table price x y z
1 0.23 Ideal E SI2 61.5 55 326 3.95 3 .98 2.43
2 0.21 Premium E SI1 59.8 61 326 3 .89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4 .05 4.07 2.31
4 0.29 Premium I VS2 62.4 58 334 4 .20 4.23 2.63

help (diamonds) ## description of dataset

43

ggplot2 : build a plot

set base plot, x coordinate is
carat, y is price

p <- ggplot (diamonds , aes (x =
carat, y = price))

Add a layer to represent data as
point

p1 <- p + geom_point ()

plot (p1)

44

ggplot2: build a plot, aesthetics
� The first command line tells ggplot that

� data is stored in the diamonds data.frame

� global aesthetics (set with aes) are as follows : carat is mapped to x coordinate, price to y
coordinate

� The second one adds a layer in which data are represented by points (geom_point)

45

ggplot2 : build a plot, aesthetics
ggplot allow to add easily color scale in function of an other variable

46

set base plot, x coordinate is carat,
y is price and colored by cut

p <- ggplot (diamonds , aes (x = carat, y =
price, color = cut))

p2 <- p + geom_point ()

plot (p2)

Or precise color aesthetics in
geom_point function

p <- ggplot (diamonds , aes (x = carat, y =
price))

p2 <- p + geom_point (aes(color=cut))

plot (p2)

NB : For color scale you must choose variables with finite number of values.

ggplot2: build a plot, aesthetics
� Local aesthetics (aes(color = cut))can be added for the point layer (geom_point()).

� cut value is mapped to the color of the points and both a legend and a color scale are
automatically constructed

If local aesthetics is:

� identical for all points: the argument must be given outside of aes.

geom_point (color = "black"))

� mapped to a variable value (here cut): the argument must be given inside of aes.

geom_point (aes (color = cut))

47

ggplot2: build a plot, aesthetics
We played with color but with geom_point we can also play with

� shape

� size

� alpha (transparency)

� fill

48

ggplot2: build a plot, aesthetics
About geom:

� Here we used geom_point to represent data as points. We could have used other geometric
representations of the data:

� geom_line

� geom_bar

� geom_density

� geom_boxplot

� geom_histogram

� Each geometry expects and accepts different aesthetics (e.g linetype is useful for lines but
useless for points)

49

ggplot2: build a plot, facetting

p <- ggplot (diamonds , aes (x =
cut, y = price)

p3 <- p + geom_boxplot ()
plot (p3)

50

Try to represent the distribution of price in function of cut thanks to a boxplot.

NB : For boxplot you must choose variables with finite number of values for x.

ggplot2: build a plot

p4 <- ggplot (diamonds , aes (x =
cut, y = price, color =
clarity)) + geom_boxplot ()

plot (p4)

51

Add some color in function of clarity

ggplot2: build a plot, facetting
Go back to geom_point plot of price in function of carat colored by cut

p2 <- ggplot (diamonds , aes (x = carat, y = price, color = cut)) +
geom_point ()

We can split the data in subsets to draw small multiple plots using facetting. There are two variants
of facetting:

� facet_wrap if only one variable is used for facetting

� facet_grid, usually used for two or more variables (but can be used for one)

52

ggplot2: build a plot, facetting
Compare facet_wrap and facet_grid when using only one variable for facetting

facet along cut

p5 <- p2 + facet_wrap (~ cut)

plot (p5)

53

ggplot2: build a plot, facetting
Compare facet_wrap and facet_grid when using only one variable for facetting

facet along cut, only points from a given cut ap pear in a facet
p6 <- p2 + facet_grid (~ cut)
plot (p6)

54

ggplot2: build a plot, facetting

facet_grid is most useful when splitting the data along
two factors

facet along clarity(rows) *
cut(column)

p7 <- p2 + facet_grid (clarity ~ cut)

plot (p7)

55

ggplot2: build a plot, facetting

p8 <- p4 + facet_wrap (~cut)

plot (p8)

Each cut is represented in only one facet and
the common x-scale wastes a lot of space

56

Sometimes, facetting wastes spaces when using same variable for coordinates and facetting.

On boxplot of price in function of cut, try to facet by cut.
p4 <- ggplot (diamonds , aes (x = cut, y = price, color = clarity))
+ geom_boxplot ()

ggplot2: build a plot, facetting

p9 <- p4 + facet_wrap (~cut,
scales = "free_x")

plot (p9)

scales = "free_y" would lead to one y-scale per
facet

scales = "free" to one y-scale and one x-scale
per facet

57

We facet by cut but do not impose a common x-scale which leads to a much better use of space.

ggplot2: build a plot, color scales

58

cut is a factor, with a discrete number of values. We can change the color scale manually with

the family of functions scale_color_something

palette <- c("black", "red",
"blue", "magenta", "gray")

names(palette) <- c("Fair", "Good",
"Very Good", "Premium", "Ideal")

palette

Manual color scale
p6.1 <- p6 +
scale_color_manual (values =
palette)
plot (p6.1)

ggplot2: build a plot, color scales

59

cut is a factor, with a discrete number of values. We can change the color scale manually with

the family of functions scale_color_something

Use built-in color palette
p7.1 <- p7 +
scale_color_brewer ()
plot (p7.1)

ggplot2: build a plot, aesthetics
About scales:

� Each aesthetic is associated with a scale

� Whenever possible, ggplot2 will try to merge the scales (like color and fill)

� For aesthetics mapped to a variable, the scale will vary depending on the nature of the variable:
numeric (continuous), factor or logical (discrete)

� Every scale is built in the following way

� they all begin with scale_ and

� continue with the aesthetic name (linetype, fill, color)

� and end with the name of the scale (manual, discrete, brewer)

60

ggplot2: build a plot, title and labels
You can add (or change) title and axis labels with the commands ggtitle, xlab and ylab.

p10 <- p9 + ggtitle ("Diamond prices as a function of clarity") +
xlab ("Diamond clarity") + ylab ("Diamond price")

plot (p10)

61

ggplot2
EXPORT AND LEARN

62

ggplot2: export
� You can save graphics using ggsave,

� It guesses the file type from the filename extension

� By default, it saves the last plot with its current dimensions

� But you can override the dimensions at will

the last three arguments are optional

ggsave ("myplot.png" , plot = p, width = 10, height = 4)

63

ggplot2: references
� docs.ggplot2.org/current

� http://groups.google.com/group/ggplot2

� http://cran.r-project.org/web/packages/ggplot2/index.html

� Wickman, "ggplot2. Elegant Graphics for Data Analysis" Springer, 212p.

64

Annexe

65

R : length function
The length() function returns the length of an object:

a <- 2

a

[1] 2

length (a)

[1] 1

In the previous example, a is a vector of length 1, with a single element

Hence the mysterious [1] in the output of a

66

R : rm function
Variable deletion

The rm() function is used to remove an object from the workspace:

a

[1] 4

rm(a)

a ## a does not exist anymore

Error in eval(expr, envir, enclos): objet 'a' int rouvable

67

