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With the following R scripts, it’s possible to perform a statistical analysis
on RNA-seq data. Bioinformatics and biostatistics major steps and methods
for the anaysis of this type of data is detailed in “A survey of best practices for
RNA-seq data analysis”, Conesa 2016.

These three scripts can be run either directly on R/Rstudio or using a com-
mand line on a cluster for example but R version 3.2 minimum is required.
Packages importation is integrated in each script but you need to change the
environment variable R_LIBS if you don’t have the right to write in the folder
which are save R packages:

export R\_LIBS=‘‘./your_dir_for_R_packages/’’



1 Normalization

Normalization is a process designed to identify and remove systematic technical
differences between samples. This process aims at ensuring that technical bias
has minimal impact on the results of statistical analyses such as differential
expression analysis. The most common symptom of the need for normalization
is differences in the total number of aligned reads (sequencing depth).

1.1 Methods

All the normalization methods considered here are global procedures, in the
sense that only a single factor is used to scale the counts of every sample, C}.
For the three following methods, we have:

exp( YL, log C1)

C; =
J c

with N the number of samples.

Further details can be found in “A comprehensive evaluation of normal-
ization methods for Illumina high-throughput RNA sequencing data analysis”,
Dillies 2012. None of the methods is the best for all datasets but on all meth-
ods, only the RLE and TMM normalization methods seem to be robust to the
presence of different library sizes and widely different library compositions.

Notations:

G: number of genes,

N: number of samples,

K,;: counts (number of reads) of gene g in sample j,
Dj: total number of reads for sample j.

Upper quartile

Gene counts are divided by a quartile (usually 75% quartile) of count distri-
bution which are different from 0 in the sample. This normalization factor is
itself divided by the average upper quartile across all samples to ensure that the
corrected counts have a scale similar to the original ones:
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with Q;p ) the p-th quantile

RLE

This normalization method is based on the hypothesis that most genes are not
DE. A scaling factor for a given sample is computed as the median of the ratio
of a gene read count over its geometric mean across all samples:

1. compute a pseudo-reference sample: R, = (vazl ng) N,



R Ky
2. center samples compared to the reference: K,; = T

3. calculate normalization factor: C; = median,{Kg;}.

The underlying idea is that non-DE genes should have similar read counts
across samples, leading to a ratio of 1. Assuming most genes are not DE, the
median of this ratio provides an estimate of the correction factor that should be
applied to all read counts of the corresponding sample to fulfill the hypothesis.

TMM

This normalization method is also based on the hypothesis that most genes are
not DE. The TMM factor is computed with one sample being considered as a
reference sample and the others as test samples (the method is not sensitive to
which sample is chosen as a reference). For each test sample, TMM is computed
as the weighted mean of log ratios between this test and the reference, after
exclusion of the most expressed genes and the genes with the largest log ratios:

1. remove extreme data for fold-changed (M) and average intensity (A) (fig-

ure 1):
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Figure 1: Extreme data removed

2. on remaining data, calculate the weighted mean of M-values:

Zg:not trimmed Wg (j7 T)Mg (-7’ T)

Zg:not trimmed Wg (-7’ T)

TMM(j,r) =

with wg(4,r) an appropriate weight that approximates the inverse of the
variance for M,

3. calculate normalization factor: C’j = oTMM(5,r),

According to the hypothesis of low DE, this TMM should be close to 1.
If it is not, its value provides an estimate of the correction factor that must
be applied to the library sizes (and not the raw counts) in order to fulfill the
hypothesis.



1.2 Plots

The diagnostic plots can be used to choose the best normalization method.
Normalization methods search for homogeneity, especially inside a given exper-

imental condition (e.g., control/treated).
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MAnplots

MA plot on raw pseud its: vs. MA plot on normalized pseudo-counts: treated2 vs. treated3

Figure 6: Bad Figure 7: Good

1.3 Script Normalization.R

This script uses the R package edgeR to import data, perform the three nor-
malization methods described above and produce diagnostic plots.
To run it, two options are mandatory:

e with a command line (Linux):

Rscript --vanilla <script_path>/Normalization.R
-f <raw_data_path>/<file_name>.csv
-0 <results_path>

e in R or Rstudio : before execution, you need to comment part “Parameter
initialization when the script is launched from command line” ; uncomment
part “Parameter initialization when the script is launched from R or Rstu-
dio” and change paths in opt$file and opt$out. The all script can then be
run.

Parameters:

e file: path and name of the raw counts file. Columns in this file need to
be separated by tabulation and have samples names as columns
names (e.g. gene_id libl 1ib2),

e out: folder path where results are stored (if the folder does not exist it
will be created).

Outputs:

e plots: boxplot, density plot and MDS on raw counts and normalized counts
(three methods) are produced (<method>_<type>.svg) and saved in file
defined in the out parameter. Tables to reproduce these plots are also
saved (<method>_<type>.csv).



e pseudo-counts: three files with normalized pseudo-counts for each method
(<method>_pseudocounts.csv : tabulate separation between columns (e.g.
gene_id lib1 1ib2)),

e normalization factors: the files with samples names and sizes and normal-
ization factors (<method>_info.txt : tabulate separation between columns
(e.g. sample.name lib.size norm.factors)).

2 Differential expression analysis

A differential expression analysis selects genes with significantly different level
of expression between experimental conditions. At least TWO replicates by
condition are needed to carry out a reliable statistical analysis. Nevertheless,
an analysis is performed with Fisher test if only one replicate is available in a
condition but the results of this test are not trustful.

2.1 Methods

Three steps are performed on normalized counts to obtain a list of differentially
expressed (DE) genes:

1. Estimate dispersion (not with less than 2 replicates)
2. Filter low expressed genes (not with less than 2 replicates)

3. Perform a test between conditions

2.1.1 Estimation of dispersion

In edgeR, pseudo-counts are modeled by a negative binomial distribution, so an
estimation of dispersion parameters is needed. The edgeR approach implements
the empirical Bayes strategy proposed by Robinson and Smyth 2007'; Robinson
and Smyth 2008? for estimating the tagwise negative binomial dispersions. First,
it uses the count data for estimating a common dispersion parameter for all the
genes by conditional maximum likelihood (figure 8). The profile likelihood is
then adjusted to the prior distribution for tagwise dispersions (figure 9). Finally,
the adjusted profile is used as a prior value for a second estimation round, which
results in the final estimates of dispersion (figure 10).

2.1.2 Independent filtering

Weakly expressed genes in RNA-Seq data have low chance to be declared dif-
ferentially expressed. The reason is that the variability of these counts is often
too large for the differences to be relevant.

The idea of independent filtering is to filter out those genes from the pro-
cedure that have no, or little chance of showing significant evidence, without
even looking at their test statistic. At first sight, there may seem to be little
benefit in filtering out these genes. However, these genes have an influence on

LRobinson, M. D., & Smyth, G. K. (2007). Moderated statistical tests for assessing differ-
ences in tag abundance. Bioinformatics, 23(21), 2881-2887.

2Robinson, M. D., & Smyth, G. K. (2008). Small-sample estimation of negative binomial
dispersion, with applications to SAGE data. Biostatistics, 9(2), 321-332.
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Figure 10: Step 3

the multiple testing adjustment, which is less severe if such genes are removed.
By removing the weakly-expressed genes from the input to the FDR procedure,
the power of our test is improved.

HTSFilter (package HTSFilter) is a function which implements a data-based
filtering procedure based on the calculation of a similarity index among biolog-
ical replicates for read counts arising from replicated transcriptome sequencing
(RNA-seq) data.

2.1.3 Test

When there is more than one replicate by condition, a test based on the nega-
tive binomial distribution is performed. Otherwise, Fisher’s exact test is used.
Fisher’s exact test is NOT recommended because it does not estimate the vari-
ability in gene expression.

Negative binomial model and test Count data are usually modeled with
the Poisson distribution but due to heterogeneity between individuals, the vari-



ance is often much larger than the mean so this distribution isn’t realistic for
this type of data. With a negative binomial model, the variability is properly
capture. We can suppose that the count for gene g K, follow a negative bino-
mial distribution with parameters ¢, and py, K5 ~ N B(d)g_l, Pg), Parametrised

in ters of its mean A, and variance o}, via

A 02—\,
pg=—"2 and ¢,=-L-—
% g
Then, we wish to test if the mean of counts under experimental condition A
is the same as that in condition B. Thus, the null hypothesis is :

Ho: Aga = A\yp, for each gene g

Fisher exact test Fisher exact test fixes the marginal totals of the 2 x 2
contingency table (table ??) and tests differential expression using the null hy-
potheses that treatment do not affect gene expression levels (i.e., that the two
groups are independent).

Group A Group B Total

Gene g NgA NgB Ng
Remaining genes Ng —nga Np—ngp N —n4
Total Ng Np N

Table 1: 2x2 contingency table for gene g

Multiple testing correction Because multiple tests are carried out simulta-
neously, a correction for multiple testing IS NEEDED to keep an acceptable
false-positive rate. For example, if you don’t control the global risk, with 20
tests, we have a 64% chance of observing at least one significant result, even
if all of the tests are actually not significant. There is two types of correction
based on:

e the control of the probability that at least one test is declared positive
whereas it is not (i.e., it controls the probability to have at least one
type I error). This quantity is called familywise error rate (FWER). The
Bonferroni correction is a correction designed to control FWER,

e and the control of the expected proportion of type I error among the re-
jected hypothesis (FDR: false discovery rate). The Benjamini & Hochberg
(BH) correction is a correction designed to control FDR.

FWER correction is appropriate when you want to guard against any false
positives. However, in many cases, a certain number of false positive is not a
problem and the user will prefer not to filter out possible positive genes. In this
case, the more relevant quantity to control is the false discovery rate (FDR). In
summary, BH correction is less severe than Bonferroni correction and will yield
to a larger number of DEG.



2.2 Plots
Heatmap

To explore the similarity between genes, it is often instructive to combine clus-
tering methods with a graphical representation of the “primary” count table by
means of the so-called clustering image map (CIM) or heatmap.

A CIM (or heatmap) is a two-dimensional, rectangular, colored grid, repre-
senting each data point (rectangle) with a color that quantitatively and qual-
itatively reflects the original experimental observations. The rows (and/or
columns) of the matrix are rearranged (independently) according to some hier-
archical clustering method, so that genes or groups of genes with similar expres-
sion patterns are adjacent. The computed dendrogram (tree) resulting from the
clustering is added to a side of the image to indicate the relationships among
genes.
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Figure 11: Example

MDS or PCA plots

This type of plot is useful for visualizing the overall effect of experimental co-
variates and batch effects.

The plot is produced from the output of Principal Component Analysis
(PCA) on the transposed of the given count matrix. PCA is used to reduce the
dimension of multidimensional datasets. The method builds linear combination
of the original data that are designed so as to be the best summary of the
original dataset (formally, they are the combinations with the largest variability
S0 as to preserve the entropy of the original data at best).

The purpose of multidimensional scaling (MDS) is to provide a visual repre-
sentation of the pattern of proximities (i.e., dissimilarities or distances) among
a set of objects. MDS takes a set of dissimilarities and returns a set of points in
2D such that the distances between the points are the most similar to the orig-
inal dissimilarities as possible. In the present case, the dissimilarity between
each pair of samples (columns) is the root-mean-square deviation (Euclidean



distance) for the top genes. Distances on the plot can be interpreted as lead-
ing log2-fold-change, meaning the typical (root-mean-square) log2-fold-change
between the samples for the genes that distinguish those samples.

PCA and MDS are equivalent when used with the dissimilarity used in MDS
is the Euclidean distance. With an MDS analysis (or with PCA), other effects
than the experimental conditions are sometimes visible on the 2D projection of
the data.

control : paired-end
control : single—end
treated : paired-end

treated : single-end
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Figure 12: Here, an effect of extracting methods (single-end or paired-end) and
condition (treated or control).

2.3 Script DEG.R

This script uses the R package edgeR to import data, do tests to find differen-
tially expressed genes and produces diagnostic plots.
Two options are mandatory to run the test:

e with a command line (Linux):

Rscript --vanilla <script_path>/Normalization.R
-f <raw_data_path>/<file_name>.csv

-n <normalized_factor_path>/<file_name>.csv

-o <results_path> --pooll 1ib1l,1ib2...

--pool2 1ib3,1ib4... --filter true or false
--correct "BY" or "BH" --MAplots true or false
--alpha 0.05

e in R or Rstudio: before execution, you need to comment part “Parameter
initialization when the script is run from command line” , uncomment part
“Parameter initialization when the script is run from R or Rstudio” and
change parameters opt$XXX. The all script can then be run.
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Parameters:

e file: path and name of the raw counts file. Columns in this file need to
be separated by tabulation and have samples names as columns
names (e.g. gene_id libl 1ib2),

e norm: file with normalized factors and library name (e.g. sample.name
lib.size norm.factors). This file is obtained with script 'Normalization.R’,

e out: folder path where results are stored (if the folder doesn’t exist it will
be created),

e pooll: library name in pool 1 separeted by ’,’,
e pool2: library name in pool 2 separeted by ’,’,
o filter: if TRUE low expressed genes are removed,

e alpha: significance level of the tests (i.e. acceptable rate of false-positive
in the list of differentially expressed genes),

e correct: method used to adjust p-values for multiple testing ("BH’ or 'bon-
ferroni’),

e MAplots: if TRUE all MAplots are saved.

Outputs:

e diagnostic plots: a pdf file with all plots (boxplot, density plot, MA-plots
and MDS on raw counts and normalized counts (methods chosen at the
beginning), histograms on p-values, MA plot and heatmap and MDS on
DE genes),

e results: list of DEG (resDEG.csv : tabulate separation between columns
(e.g. gene_id log fold-change p-value adjusted p-value over-expressed
pool)) and data to reproduce plots (<plot_-name>.csv),

e some statistics: number of over-expressed genes (total, in pool 1, in pool
2), number of genes with no counts and number of gene filtered by HTS-
Filter (statistics.txt),

e json files: two json files are produced in case the results are display in an
interface.

3 Gene set enrichment analysis

List of differentially expressed genes is not sufficient for biologists to find the
underlying biological mechanism involved. More biological information about
this set, of genes is needed to enhance the interpretation of such a list. The Gene
Ontology consortium?® provides a database with a correspondence between gene
and various functions. These functions are structured as a directed acyclic

3http://geneontology.org/
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graph, and each term has defined relationships to one or more other terms in
the same domain.

With this database, it is possible to find which functions are over-represented
in a set of genes compared to the other genes used in the analysis.

3.1 Methods

First, we need to choose a test to find if a GO is over-represented in the set of
genes of interest compared to all the genes in the analysis. Two tests can be
used: Fisher’s exact test based on gene counts and Kolmogorov-Smirnov test
based on gene ranks.

Then, a algorithm is chosen to take into account the dependency between
GO nodes. Three are proposed in the script : “classic”, “elim” and “weight”.
The last two are explained in “Improved scoring of functional groups from gene
expression data by decorrelating GO graph structure” (Alexa et al., 2006).

“Classic” algorithm

For all nodes, tests are realized without take into account dependency between
nodes. Then a correction for multiple testing is performed as for differential
expression analysis. This algorithm is simple but not recommended because of
the dependency between nodes.

“Elim” algorithm

The “elim” method investigates the nodes in the GO graph bottom-up. At each
level, tests and Bonferroni correction of p-value are performed for each node. If
a node is found significant all genes mapped to it are removed in all its ancestors
thus following tests are performed without these genes.

“Weight” algorithm (only with Fisher’s exact test)

With the strategy implemented in the “elim” algorithm a node is considered to
be significant if it p-value is below a given threshold. Because of the removal
process, more significant nodes on higher levels can be missed. An alternative
is implemented in the “weight” method. Nodes are not removed but genes are
weighted.

At the beginning, all genes have a weight set to 1. Let u be the currently
processed node in the bottom-up process. If node u has a lower p-value than
its children, genes contained in the children are down-weighted (old weight are
multiplied with new weight) and then p-values are updated. Else if at least one
child has a lower p-value than u, all genes of these children are down-weighted
in the node u and its ancestors and then p-value are recomputed on the new
weights.

Weight between node u and v are calculated with a predefined function which

can be, in the script, a simple ratio % or a ratio of natural logs 8¢ .
v logu

3.2 Plots

To represent differences between GO in a set of genes (generally differentially
expressed genes) and GO in all the genes, the script create a barplot with the
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percent of gene of the sample for each GO at level 2 (see figure 13).
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Figure 13: Barplot of level 2 GO

After the enrichment analysis, significant GO can be represented in a DAG
(see figure 14). Boxes indicate the 10 most significant terms. Box color repre-
sents significance, ranging from dark red (most significant) to light yellow (least
significant).

3.3 Script GOEnrichment.R

This script performs an enrichment analysis for Gene Ontology (GO) and pro-
duces
Two options are mandatory to run the test:

e with a command line (Linux):

Rscript --vanilla <script_path>/GOEnrichment.R

-f <raw_data_path>/<file_name>.csv

--fileFormat "topGO" or "twoColumns"

—-interest <interest_data_path>/<interest_file_name>.csv

-0 <results_path> --test "fisher" or "ks"

--algorithm "classic", "elim" or "weight"

--paramAlgo "bonferroni", "BH", 0.01, 0.05, "ratio" or "log"
--alpha 0.05

--target "contigs", "gene"...
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Figure 14: DAG of cellular component ontology

in R or Rstudio: before execution, you need to comment part “Parameter
initialization when the script is run from command line”, uncomment part
“Parameter initialization when the script is run from R or Rstudio” and
change parameters opt$XXX. The all script can then be run.

Parameters:

file: tabulated matrix with the correspondence gene to GO,

fileFormat: format of previous file, either one gene by line (“topGO”:
gene_id1 GO_1,GO_2,...) or two columns (“twoColumns”: gene_id GO_id),

interest: matrix with id of genes of interest in the first column (all these
genes must be in the first file),

out: folder path where results are stored (if the folder doesn’t exist it will
be created),

test: test used to find significant GO (’fisher’ or ’ks’ Kolmogorov-Smirnov),
algorithm: algorithm used to correct p-value (classic’, ’elim’ or 'weight’),
paramAlgo:

— for ’classic’ algorithm: method used to correct p-values (’bonferroni’
or 'BH’),

— for ’elim’ algorithm: value used to remove genes from significant GO,
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— for ’weight’ algorithm: weighted function used (’ratio’ or ’log’),
e alpha: significance level of the tests,

e target: type of data (e.g. “contigs” or “genes”).

Outputs:
e plots: barplot and three DAG,

e results: list of significant GO (GOSig.csv : tabulate separation between
columns (e.g. ontology GO GODef pval)), list of genes associated with
significant GO (GOgeneSig.csv : tabulate separation between columns
(e.g. ontology GO GODef contigs pval ) and data to reproduce
barplot (barplot.csv),
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