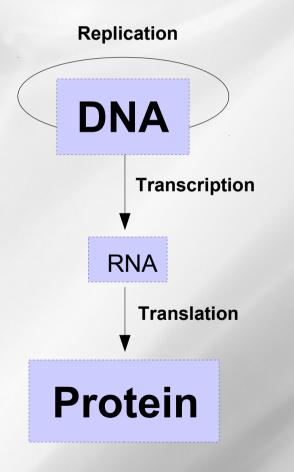


Seno Σ δ b i o i n f o

small RNAseq data analysis miRNA detection

P. Bardou, C. Gaspin, S. Maman, J. Mariette & O. Rué

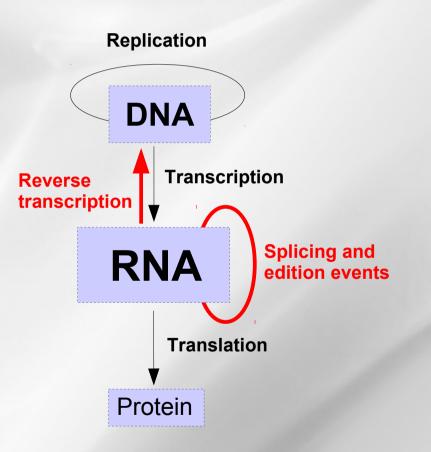

Introduction ncRNA

Central dogma of molecular biology

• Evolution of the dogma : 1950-1970

DNA structure discovery.

One gene = one function

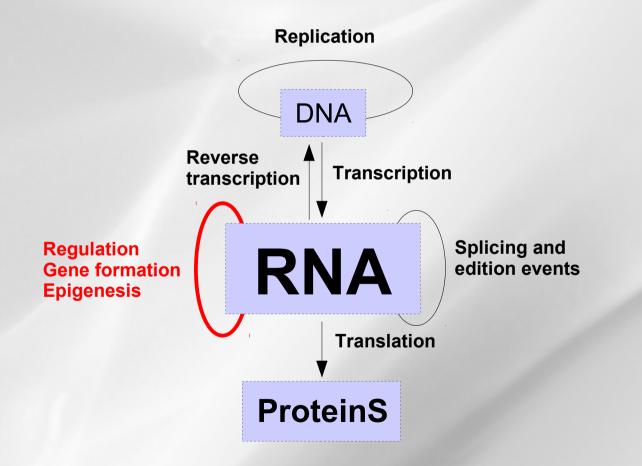


Plateforme Bioinformatique Midi-Pyréné

Central dogma of molecular biology

• Evolution of the dogma : 1970-1980

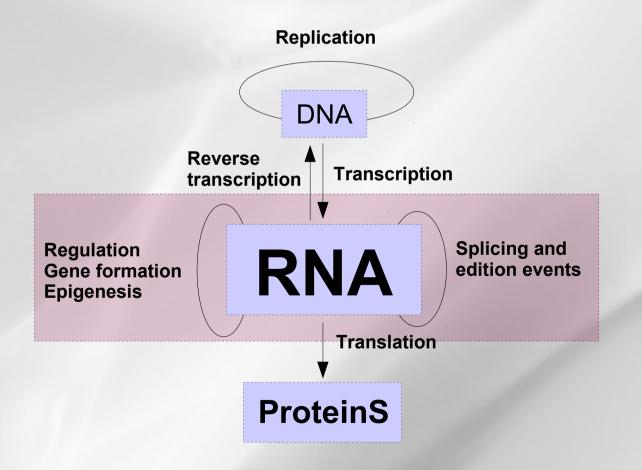
Genome analysis



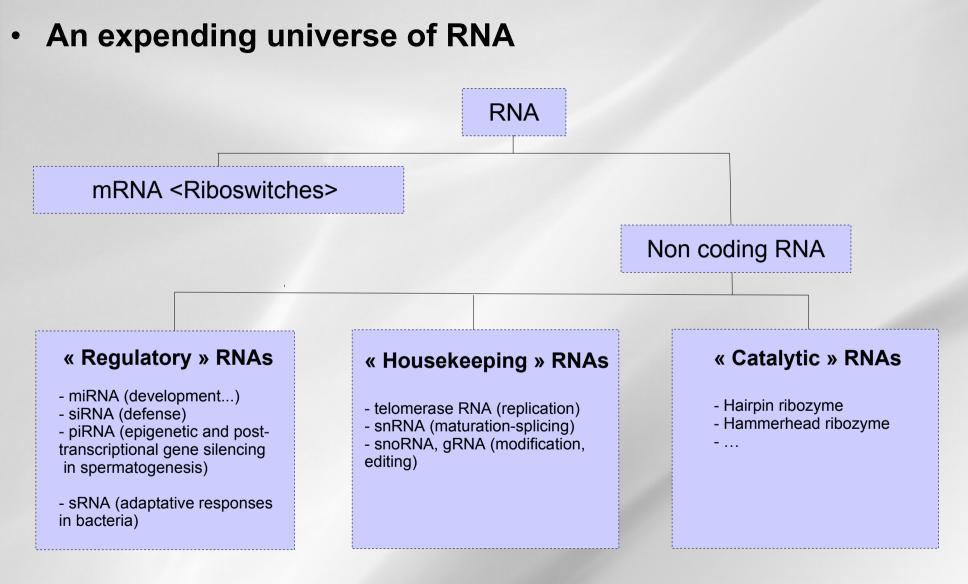
Central dogma of molecular biology

Evolution of the dogma : aujourd'hui

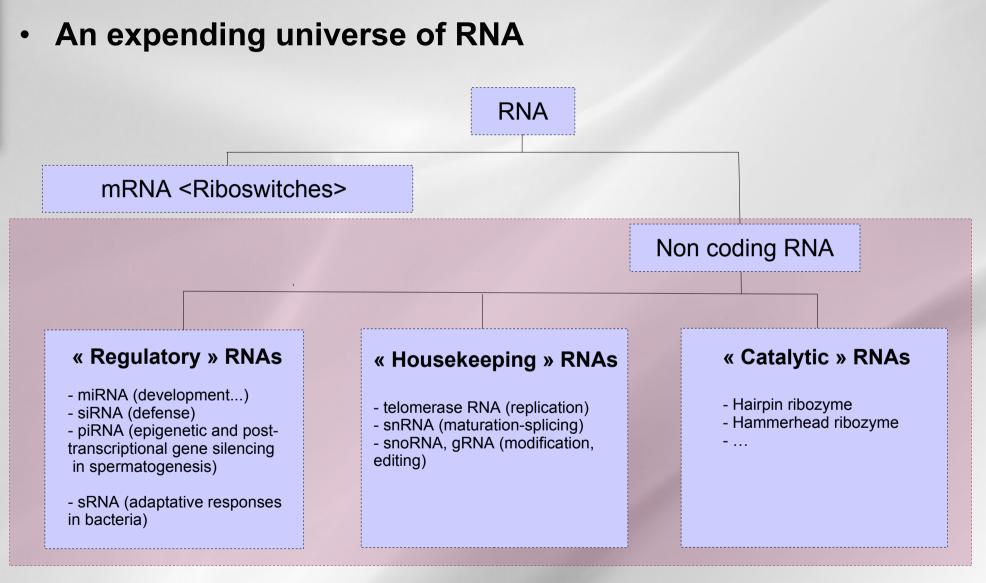
Genome analysis + Sequencing


Many genes = one functionnel complex

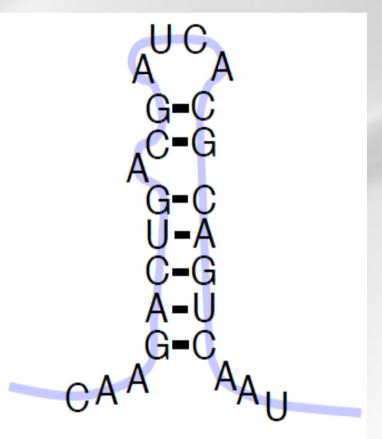
Central dogma of molecular biology


Evolution of the dogma : aujourd'hui

Genome analysis + Sequencing


Many genes = one functionnel complex

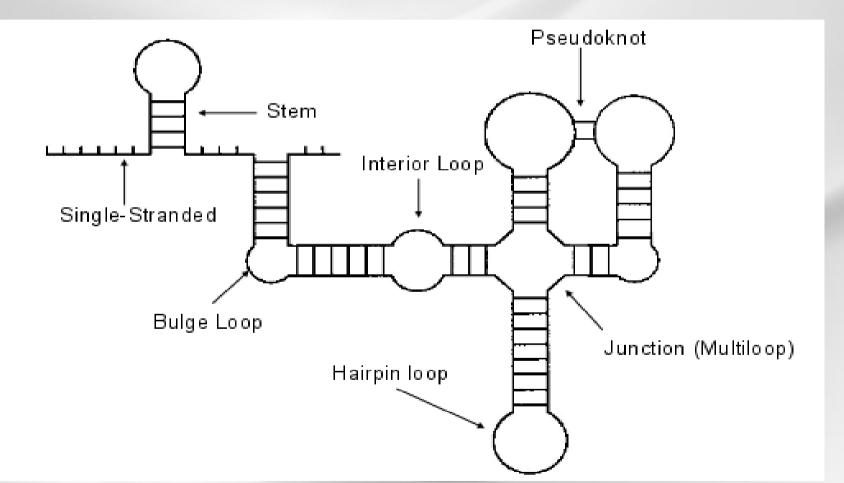
\rightarrow Multiple roles of RNA in genes regulation



 \rightarrow Multiple roles of RNA in genes regulation

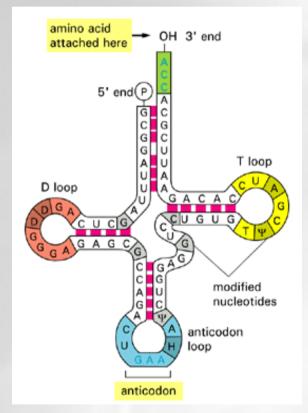
RNA background

- RNA folds on itself by base pairing :
 - A with U : A-U, U-A
 - C with G : G-C, C-G
 - Sometimes G with U : U-G, G-U
- Folding = Secondary structure
- Structure related to function : ncRNA of the same family have a conserved structure
- Sequence less conserved


The non coding protein RNA world

Not predicted by gene prediction

- No specific signal (start, stop, splicing sites...)
- Multiple location (intergenic, intronic, coding, antisens)
- Variable size
- No strong sequence conservation in general
- A variety of existing approaches not always easy to integrate
 - Known family: Homology prediction
 - New family: *De novo* prediction


RNA background Different elementary motifs

Plateforme Bioinformatique Midi-Pyrénée

RNA background Example: tRNA structure

The non coding protein RNA world

Large non coding protein RNA

- >300 nt
- rRNA, tRNA, Xist, H19, ...
- Genome structure & expression

Small non coding protein RNA

- >30 nt
- snoRNA, snRNA...
- mRNA maturation, translation

Micro non coding protein RNA

- 18-30 nt
- miRNA, hc-siRNA, ta-siRNA, nat-siRNA, piRNA...
- PTGS, TGS, Genome stability, defense...

The non coding protein RNA world

Large non coding protein RNA

- >300 nt
- rRNA, tRNA, Xist, H19, ...
- Genome structure & expression

Small non coding protein RNA

- >30 nt
- snoRNA, snRNA...
- mRNA maturation, translation

Micro non coding protein RNA

- 18-30 nt
- miRNA, hc-siRNA, ta-siRNA, nat-siRNA, piRNA...
- PTGS, TGS, Genome stability, defense...

Introduction to miRNA world and sRNAseq

The miRNA world

Discovery of lin-4 in C. elegans in 1993

Cell, Vol. 75, 843-854, December 3, 1993, Copyright © 1993 by Cell Press

The C. elegans Heterochronic Gene *lin-4* Encodes Small RNAs with Antisense Complementarity to *lin-14*

Rosalind C. Lee, *† Rhonda L. Feinb and Victor Ambros† Harvard University Department of Cellular and Developm Cambridge, Massachusetts 02138

Summary

lin-4 is essential for the normal ter diverse postembryonic developmen elegans. *lin-4* acts by negatively regulin-14 protein creating a temporal d

Cell, Vol. 75, 855-862, December 3, 1993, Copyright © 1993 by Cell Press

Posttranscriptional Regulation of the Heterochronic Gene *lin-14* by *lin-4* Mediates Temporal Pattern Formation in C. elegans

Bruce Wightman,*† Ilho Ha,* and Gary Ruvkun Department of Molecular Biology Massachusetts General Hospital Boston, Massachusetts 02114

Summary

During C. elegans development, the temporal pattern of many cell lineages is specified by graded activity of the heterochronic gene *Lin-14*. Here we demonstrate site phenotypes (Ambros and Horvitz, 1987). *lin-14(lf)* alleles cause larvae stage 2 (L2) patterns of cell lineage in a variety of tissues to be executed precociously during the L1 stage (Ambros and Horvitz, 1987). Two *lin-14(gf)* alleles cause the opposite transformation in temporal cell fate, reiterations of early cell fates at later stages. For instance, at the L2 stage, *lin-14(gf)* mutants repeat patterns of cell lineage appropriate for the L1 stage (Ambros and Horvitz, 1984).

lin-14 controls these stage-specific cell lineages by generating a temporal gradient of Lin-14 nuclear protoio (Lin-

5'GUUCCCUGAGACCUCAAGUG.UGAG lin-4 3'CAAG.GACUC....UCGU-ACUC UAAG.GACUC.-....ACUU CAAGGGACUC. - . . . UUUAC-GCUC lin-14 UAAG.GACUC.-....U.ACUC 3'UTR CAAGGGACUC.....CAU..CUU CAAG.GACU..-...UGU.-UUC CA.GGGACUC.-....ACUC а GAGA CUCA GUGUGA GUA lin-4 pre-miRNA GGG CUCU GGGU CACACUUCGU GGAC lin-4 miRNA UCCCUGAGACCUCAAGUGUGA b Ribosom RISC RISC RISC RISC RISC RISC RISC ORF polyA UCACAACCAACUCAGGGA GAGILCOCT AGUGU UCAUGCUCUCAGGA UCAUUGAACUCAGGA AUUCAAAACUCAGGA UUAUGUUAAAAUCAGGA 22nt UCGCAUUU UCUACCUCAGGGA CUCAGGG AGGUGGAGUCCCU U AA AGUGUGAA GAGUC

(He & Hannon, Nature reviews, 2004)

The miRNA world

A key regulation function

Nature. 2011 January 20; 469(7330): 336-342. doi:10.1038/nature09783.

Pervasive roles of microRNAs in cardiovascular biology

Eric M. Small¹ and Eric N. Olson¹ ¹Department of Molecular Biology, University of Texas Southwestern Medical Center, Hines Boulevard, Dallas, Texas 75390-9148, USA

Development 138, 1081-1086 (2011) doi:10.1242/dev.056317

Small RNAs Guide Hematopoi @ 2011. Published by The Company of Biologists Ltd **Differentiation and Function**

Since then, several g

RNA-cloning strategies to

vertebrates and invertebra

Regulation of mouse stomach development and Barx1 Francisco Navarro and Judy Lieberma

This information is current as of December 28, 2011

J Immunol 2010:184:5939-5947 doi:10.4049/jimmunol.0902567

expression by specific microRNAs

http://www.jimmunol.org/content/184 Byeong-Moo Kim^{1,2,*,†} Janghee Woo^{1,3,†}, Chryssa Kanellopoulou⁴ and Ramesh A. Shivdasani^{1,2,‡}

Developmental Cell 11, 441-450, October, 2006 ©2006 Elsevier Inc. DOI 10.1016/j.devcel.2006.09.009

The Diverse Functions of MicroRNAs in Animal Development and Disease

Origin, Biogenesis, and Activity of Plant MicroRNAs

Olivier Voinnet^{1,*}

¹Institut de Biologie Moléculaire des Plantes, CNRS UPR2357-Université de Strasbourg, 67084 Strasbour *Correspondence: olivier.voinnet@ibmp-ulp.u-strasbg.fr DOI 10.1016/j.cell.2009.01.046

MicroRNAs (miRNAs) are key posttranscriptional regulators of eukaryotic g use highly conserved as well as more recently evolved, species-specific m array of biological processes. This Review discusses current advances in o origin, biogenesis, and mode of action of plant miRNAs and draws compa zoan counterparts.

miSSING LINKS: miRNAs and plant development Christine Hunter and R Scott Poethig

The discovery of hundreds of plant micro RNAs (miRNAs) has triggered much speculation about their potential roles in plant development. The search for plant genes involved in miRNA processing has revealed common factors such as DICER, and new molecules, including HEN1. Progress is also being made toward identifying miRNA target genes and understanding the mechanisms of miRNA-mediated gene regulation in plants. This work has lead to a reexamination of m

PTGS and co-suppression, whereas siRNAs of 24-26 nt (long siRNAs) are associated with long-range transmission of silencing signals and methylation of corresponding genomic regions (Figure 1) [4]. The role of siRNAs in plant PTGS has been reviewed recently [5,6] and so is not discussed in detail here.

372

characterized mutations that are now International Journal of Alzheimer's Disease components or targets of miRNA-med Volume 2011 (2011), Article ID 894938, 6 pages

doi:10.4061/2011/894938

Addresses Plant Science Institute, Department of Biological Pennsylvania, Philadelphia, Pennsylvania 1

Review Article

Avenues

Current Opinion in Genetics & Develo MicroRNAs and Alzheimer's Disease Mouse This review comes from a themed issue

Pattern formation and developmental m Models: Current Insights and Future Research 0959-437X/\$ - see front matter © 2003 Elsevier Ltd. All rights reserved

DOI 10.1016/S0959-437X/0300081-9

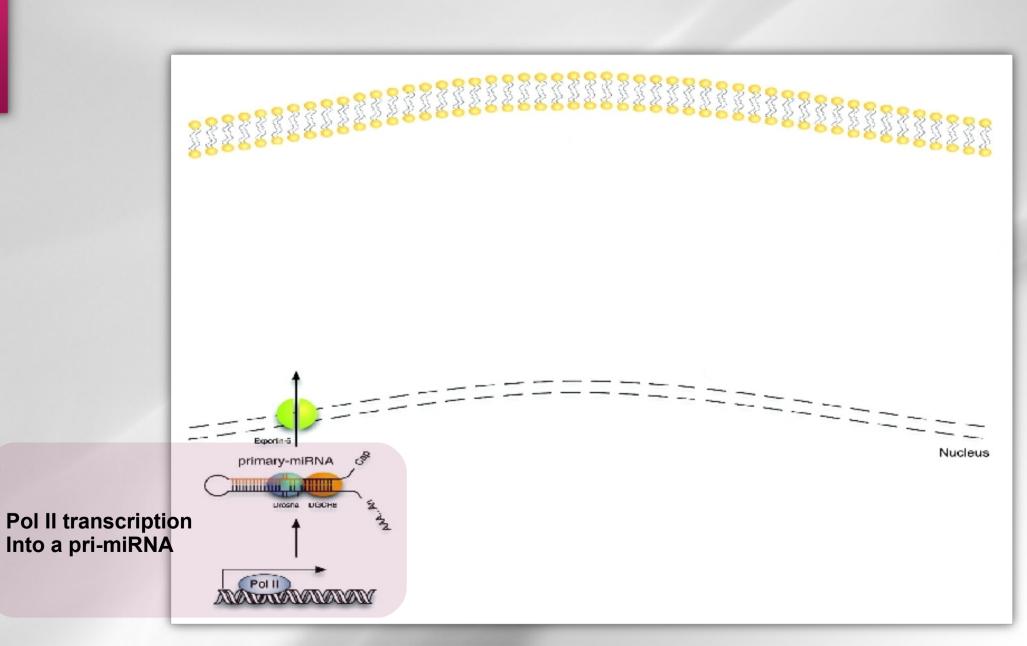
Charlotte Delav^{1,2} and Sébastien S. Hébert^{1,2}

The miRNA world Regulatory functions

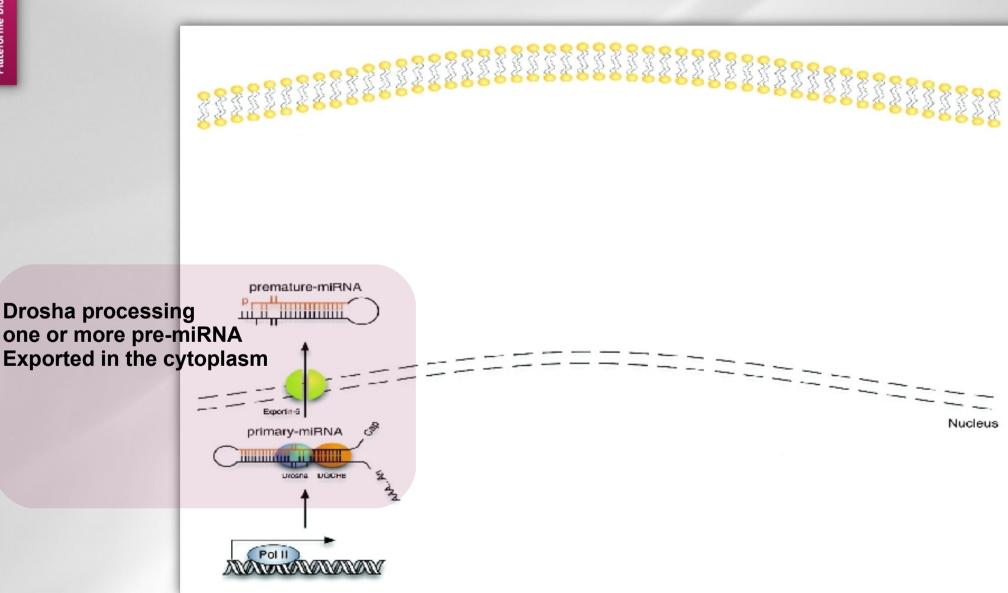
Animals

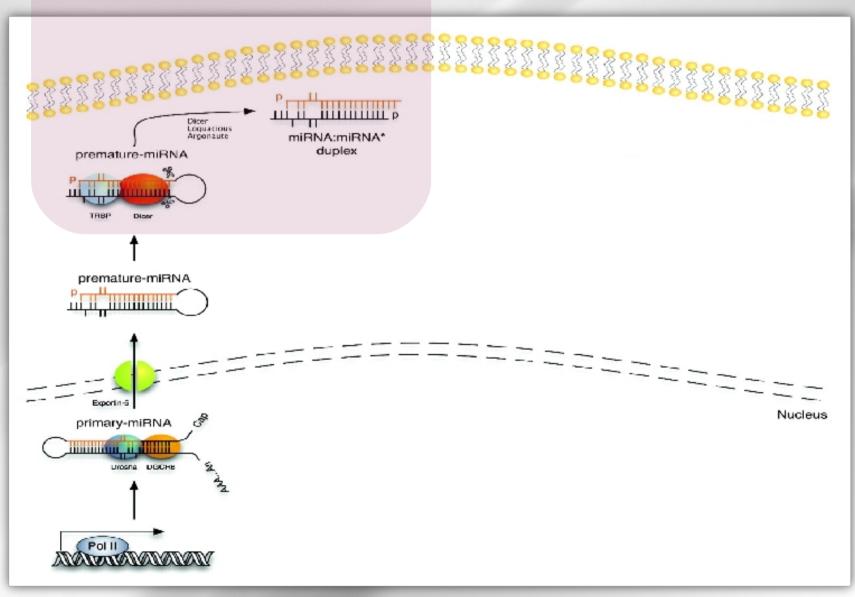
- Developmental timing (C. elegans): lin-4, let-7
- Neuronal left/right asymetry (C. elegans): Lys-6, mir-273
- Programmed cell death/fat metabolism (D. melanogaster): mir-14
- Notch signaling (D. malanogaster): mir-7
- Brain morphogenesis (Zebrafish): mir-430
- Myogeneses and cardiogenesis: mir-1, miR-181, miR-133
- Insulin secretion: miR-375
- ...

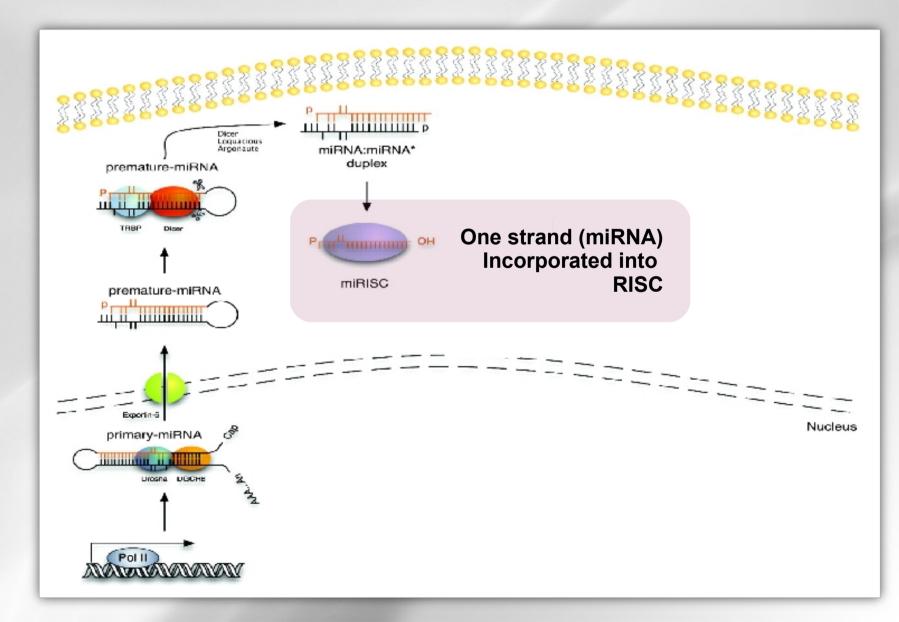
1600 precursors in Human !!! (ref: miRBase, August 2012)


Plants

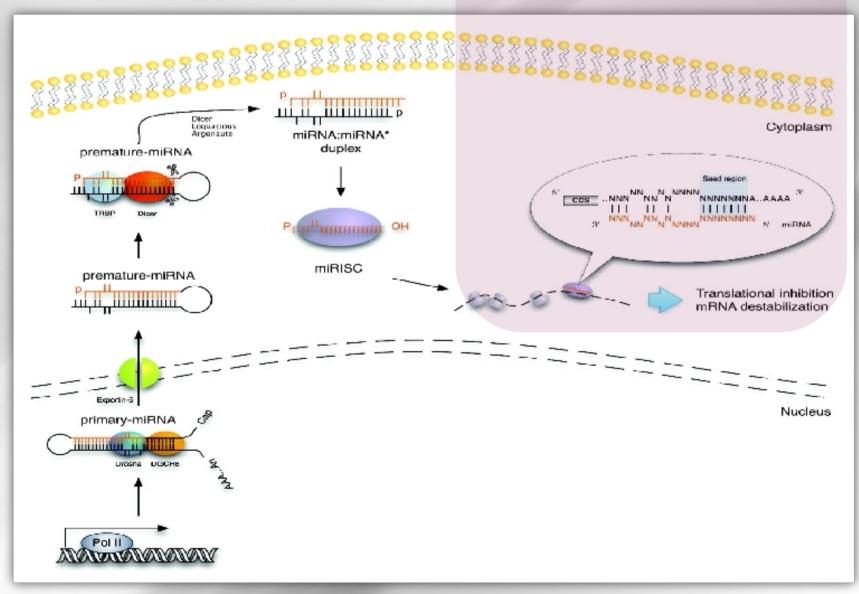
- Floral timing and leaf development: miR-156
- Organ polarity, vascular and meristen development: mir-165, miR-166
- Expression of auxin response genes: miR-160

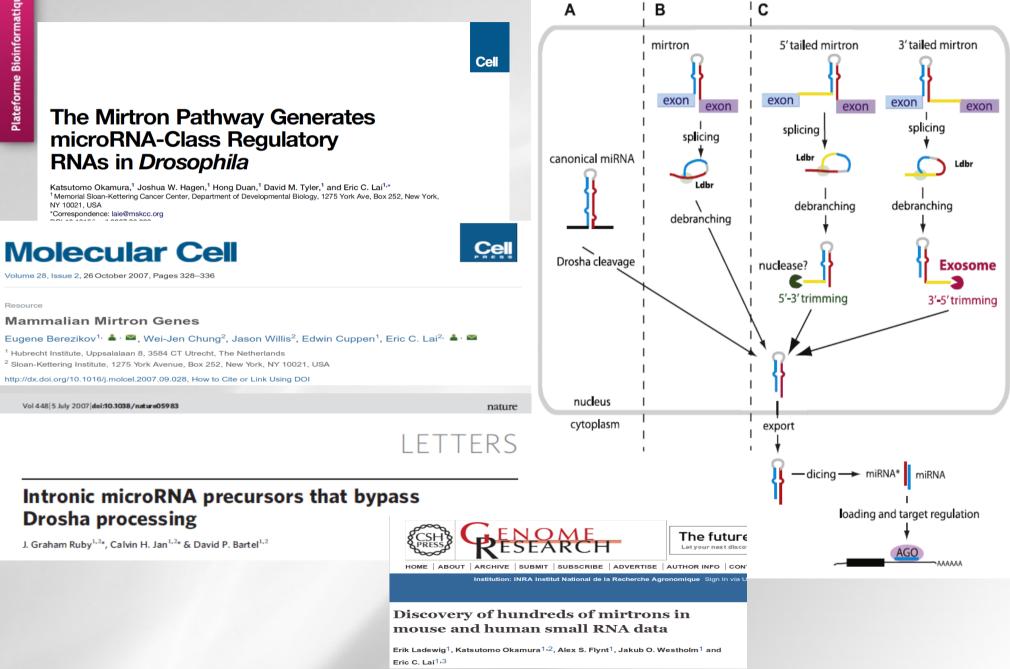

•

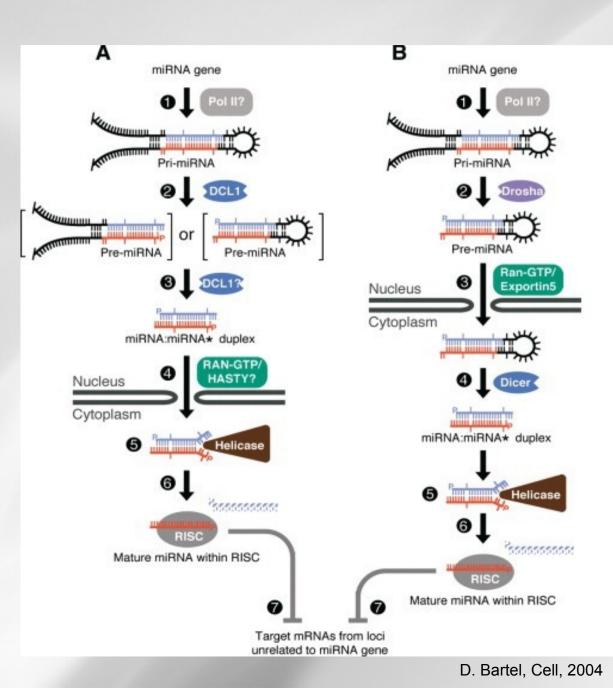


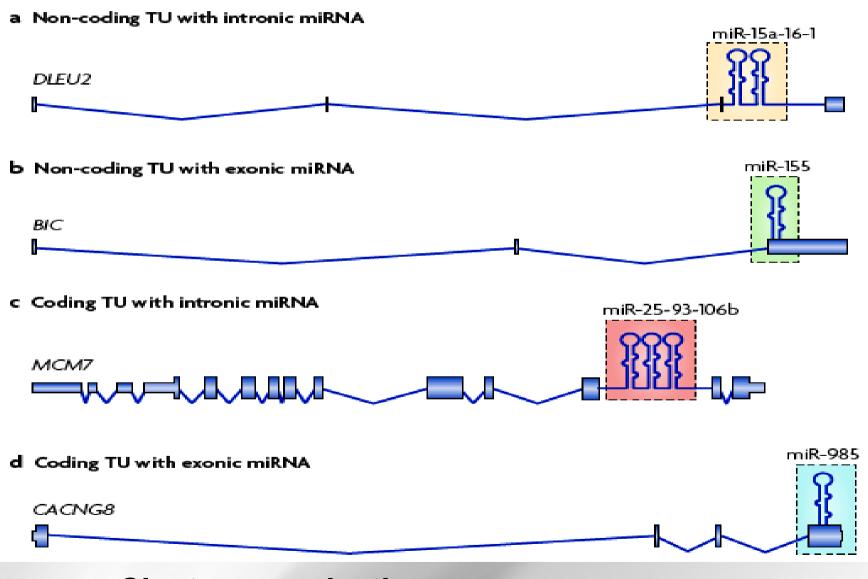


Dicer processing Into a duplex miRNA Structure









The miRNA location

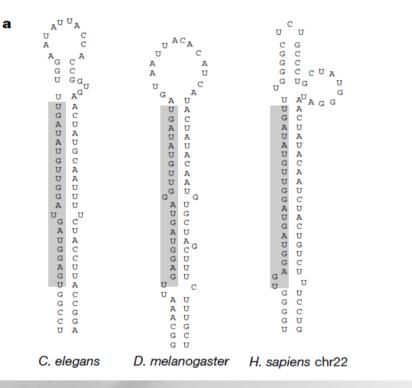
\rightarrow Cluster organisation

geno toul bioinfo

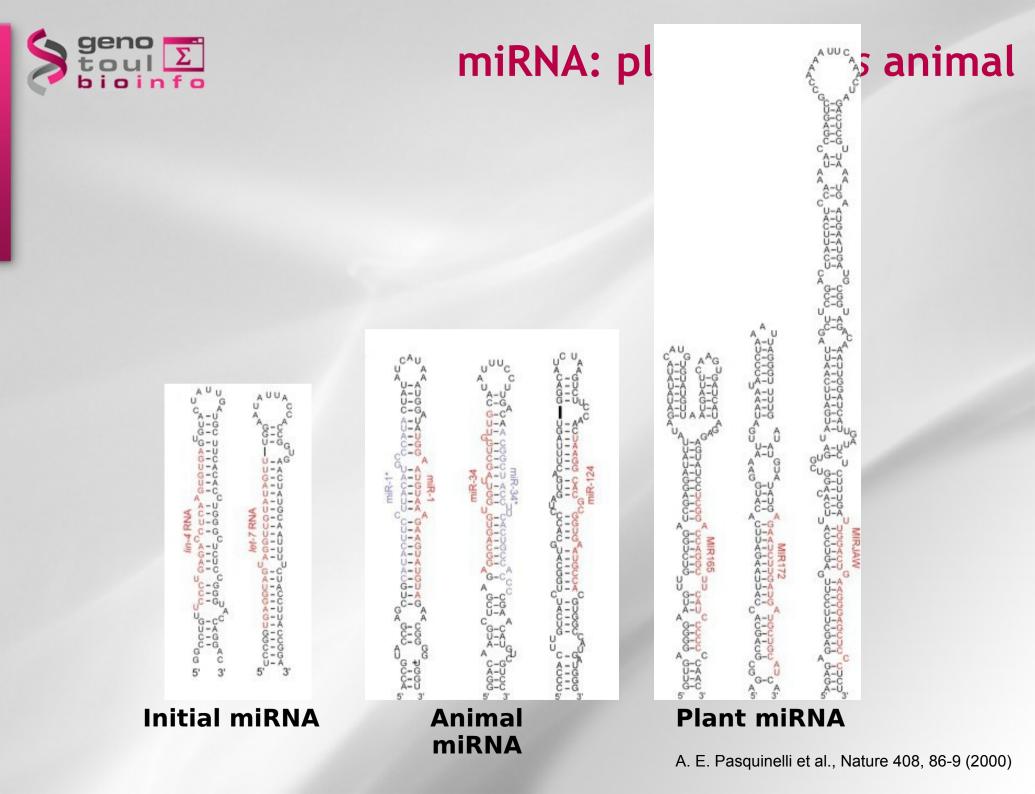
miRNA conservation

Conservation of the sequence and temporal expression of *let-7* heterochronic regulatory RNA

Amy E. Pasquinelli*†, Brenda J. Reinhart*†, Frank Slack‡, Mark Q. Martindale§, Mitzi I. Kurodall, Betsy Maller‡, David C. Hayward¶, Eldon E. Ball¶, Bernard Degnan#, Peter Müller*, Jürg Spring*, Ashok Srinivasan**, Mark Fishman**, John Finnerty††, Joseph Corbo‡‡, Michael Levine‡‡, Patrick Leahy§§, Eric Davidson§§ & Gary Ruvkun*

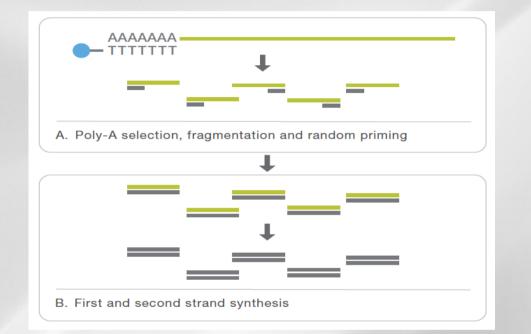

* Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA

‡ Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA


§ Kewalo Marine Lab, Pacific Biomedical Research Center, University of Hawaii, Honolulu, Hawaii 96813, USA

Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA

CD LOLICDIIICI DOD 475


A. E. Pasquinelli et al., Nature 408, 86-9 (2000)

How can we study miRNA?

• RNAseq not suited for miRNA (protocol and size)



- small RNAseq: ability of high throughput sequencing to
 - Interrogate known and new small RNAs
 - Quantify them
 - Profile them on a large number of samples
 - Cost-effective

small RNA-Seq library preparation

 Monophosphate presence in 5' extremity and OH presence in 3' extremity

Total RNA: contain all kinds of RNA species including miRNA, mRNA, tRNA, rRNA...

RNA with modified 3'-end will not ligate with 3' adapters. Only RNA with OH in 3'-end will ligate.

Only RNA with monophosphate in 5'-end will ligate with 5' adapters.

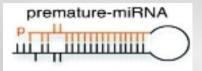
CDNA containing both adapter sequences will be amplified. MicroRNA will be enriched from PCR

and gel size selection.

MicroRNA sequencing library

What are we looking for ?

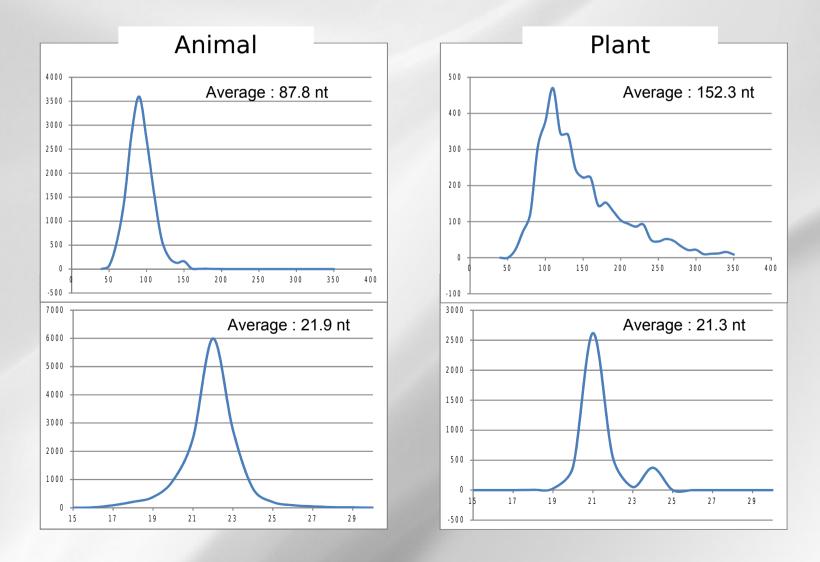
- List of known miRNA
- List of new miRNA
- miRNA target(s)
- miRNA quantification
- Differential expression



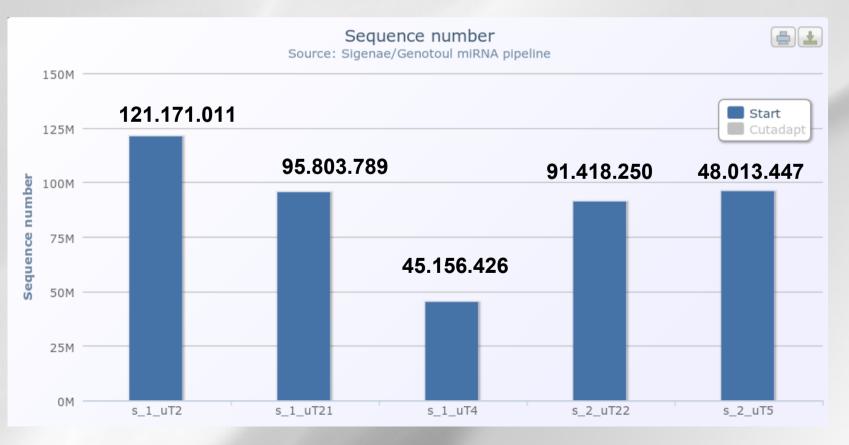
small RNAseq data analysis

What should we retain for data analysis ?

Pre-miRNA information:


- Hairpin structure of the pre-miRNA
- Pre-miRNA localisation (coding/non coding TU intronic/exonic)
- Presence of cluster
- Size of the pre-miRNA
- miRNA-5p and miRNA-3p information:

- Existence of both miRNA-5p and miRNA-3p
- Sequence conservation
- Overhang (around 2 nt) related to drosha and Dicer cuts
- Size of miRNA-5p and miRNA-3p
- Overexpression of one of the miRNA-5p and miRNA-3p
- Existence of other products in sRNAseq data


What should we retain for data analysis ? miRbase data on pre-miRNA / mature

Description of the dataset

- 5 experiments (5 lanes, no multiplexing)
 - Different tissues, different stages
- No reference genome
 - Only scaffolds

. . .

Fastq format

@D61655M1 171:2:1:1192:1017#0/1 +D61655Ml 171:2:1:1192:1017#0/1 @D61655M1 171:2:1:1202:1038#0/1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN +D61655M1 171:2:1:1202:1038#0/1 @D61655M1 171:2:1:13360:1961#0/1 NTCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAAAAAA +D61655M1 171:2:1:13360:1961#0/1 @D61655M1 171:2:1:13406:1958#0/1 NGAGGT AGT AGATTGAAT AGT TAT CTC GT ATGC CGT +D61655M1 171:2:1:13406:1958#0/1 @D61655M1 171:2:1:13770:1993#0/1 +D61655M1 171:2:1:13770:1993#0/1 @D61655Ml 171:2:1:13819:1998#0/1 T AGCTT ATC AGA CTG GTG TTG GC ATCT CGT ATG CCG +D61655M1 171:2:1:13819:1998#0/1 gggggggggfgfgggfg^ggggfggggeggggdgggg @D61655M1_171:2:1:2975:2145#0/1 T AGT TT GTC AGA CTT TT GTT T GGA GGT CGT AT GGCA +D61655M1 171:2:1:2975:2145#0/1

Fastq format

@D61655M1 171:2:1:1192:1017#0/1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN +D61655M1 171:2:1:1192:1017#0/1 @D61655M1 171:2:1:1202:1038#0/1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN +D61655M1 171:2:1:1202:1038#0/1 @D61655Ml 171:2:1:13360:1961#0/1 NTCT CGT AT GCC GT CT TC T GCT T G A A A A A A A A A A A +D61655M1 171:2:1:13360:1961#0/1 B[[[[Y[YXXcccccccc\cccc aacccYUUVV0Q @D61655Ml 171:2:1:13406:1958#0/1 NGAGGT AGT AGATTG AAT AGT TAT CTC GT AT GC CGT +D61655M1 171:2:1:13406:1958#0/1 @D61655M1 171:2:1:13770:1993#0/1 GTCT CGTAT GCC GGC TTT TGC TTG AAA AAA AAA GAA +D61655M1 171:2:1:13770:1993#0/1 @D61655M1 171:2:1:13819:1998#0/1 TAGCTTATCAGACTGGTGTTGGCATCTCGTATGCCG +D61655M1 171:2:1:13819:1998#0/1 gggggggggfgfgggfg^ggggfggggeggggdgggg @D61655M1_171:2:1:2975:2145#0/1 T AGT T T GT C AGA CT T T T G T T T GGA GGT C GT AT G G C A +D61655M1 171:2:1:2975:2145#0/1

Line 1 starts with @

Information	Meaning
D61655M1_171	The unique instrument name
2	Flowcell lane45.156.426
1	Tile number within the flox cell lane
1192	'x'-coordinate of the cluster within the tile
1017	'y'-coordinate of the cluster within the tile
#0	index number for a multiplexed sample (0 for no indexing)
/1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only)

1 1 1

@D61655M1 171:2:1:1192:1017#0/1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN +D61655M1 171:2:1:1192:1017#0/1 @D61655Ml 171:2:1:1202:1038#0/1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN +D61655M1 171:2:1:1202:1038#0/1 @D61655M1 171:2:1:13360:1961#0/1 +D61655M1 171:2:1:13360:1961#0/1 @D61655M1 171:2:1:13406:1958#0/1 NGAGGT AGT AGATTG AAT AGT TAT CTC GT ATGC CGT +D61655M1 171:2:1:13406:1958#0/1 @D61655M1 171:2:1:13770:1993#0/1 GTCT CGTAT GCC GGCTTT TGCTTG AAA AAA AAA GAA +D61655M1 171:2:1:13770:1993#0/1 @D61655M1 171:2:1:13819:1998#0/1 TAGCTTATCAGACTGGTGTTGGCATCTCGTATGCCG +D61655M1 171:2:1:13819:1998#0/1 gggggggggfgfgfggfg^ggggfggggeggggdgggg @D61655M1 171:2:1:2975:2145#0/1 T AGT TT GTC AGA CTT TT GTT T GGA GGT CGT AT GGCA +D61655M1 171:2:1:2975:2145#0/1

Line 1 starts with @

Information	Meaning
D61655M1_171	The unique instrument name
2	Flowcell lane45.156.426
1	Tile number within the flox cell lane
1192	'x'-coordinate of the cluster within the tile
1017	'y'-coordinate of the cluster within the tile
#0	index number for a multiplexed sample (0 for no indexing)
/1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only)

Line 2 Raw sequence of 36 nt (36 cycles in sequencing)

1 1 1

bioinfo

Fastq format

@D61655M1 171:2:1:1192:1017#0/1 +D61655M1 171:2:1:1192:1017#0/1 @D61655Ml 171:2:1:1202:1038#0/1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN +D61655M1 171:2:1:1202:1038#0/1 @D61655M1 171:2:1:13360:1961#0/1 +D61655M1 171:2:1:13360:1961#0/1 @D61655M1 171:2:1:13406:1958#0/1 NGAGGT AGT AGATTGAAT AGT TAT CTC GT ATGC CGT +D61655M1 171:2:1:13406:1958#0/1 @D61655M1 171:2:1:13770:1993#0/1 GTCT CGTAT GCC GGCTTT TGCTTG AAA AAA AAA GAA +D61655M1 171:2:1:13770:1993#0/1 @D61655M1 171:2:1:13819:1998#0/1 TAGCTTATCAGACTGGTGTTGGCATCTCGTATGCCG +D61655M1 171:2:1:13819:1998#0/1 gggggggggfgfgfggfg^ggggfggggeggggdgggg @D61655M1 171:2:1:2975:2145#0/1 T AGT TT GTC AGA CTT TT GTT T GGA GGT CGT AT GGCA +D61655M1 171:2:1:2975:2145#0/1

Line 1 starts with @

Information	Meaning
D61655M1_171	The unique instrument name
2	Flowcell lane45.156.426
1	Tile number within the flox cell lane
1192	'x'-coordinate of the cluster within the tile
1017	'y'-coordinate of the cluster within the tile
#0	index number for a multiplexed sample (0 for no indexing)
/1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only)

Line 2 Raw sequence of 36 nt (36 cycles in sequencing)

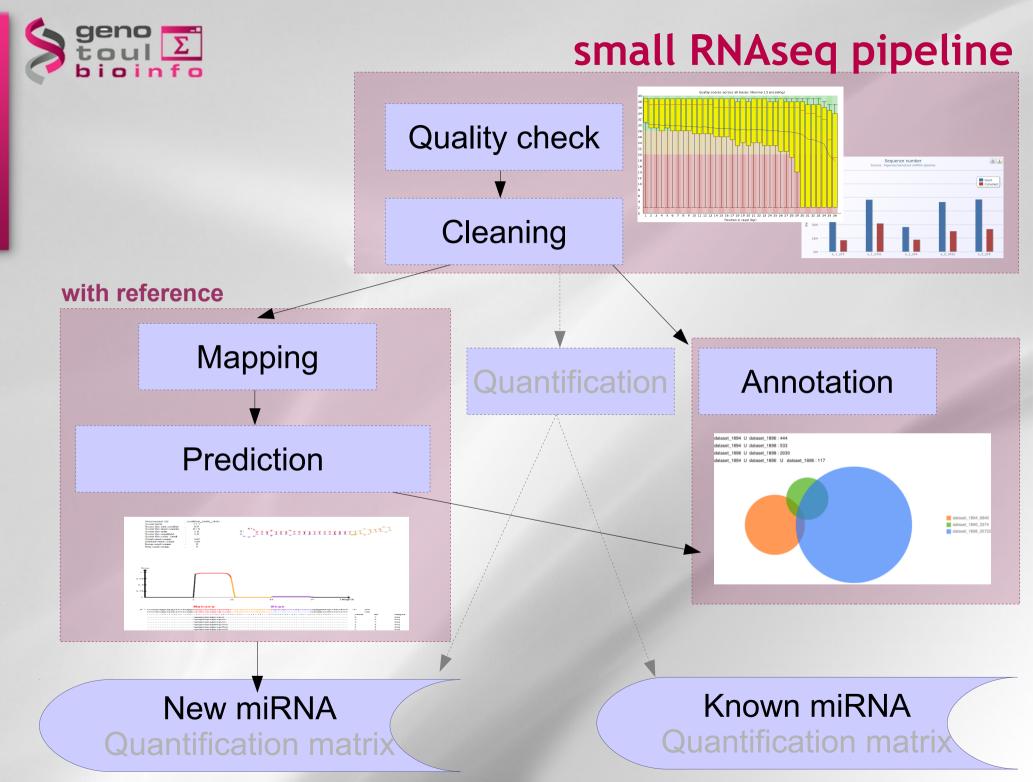
Line 3 starts with a '+' character and is optionally followed by the same sequence identifier (and any description) again.

1 1 1

Fastq format

@D61655M1 171:2:1:1192:1017#0/1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN +D61655M1 171:2:1:1192:1017#0/1 @D61655M1 171:2:1:1202:1038#0/1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN +D61655M1 171:2:1:1202:1038#0/1 @D61655M1 171:2:1:13360:1961#0/1 +D61655M1 171:2:1:13360:1961#0/1 @D61655M1 171:2:1:13406:1958#0/1 NGAGGT AGT AGATTG AAT AGT TAT CTC GT AT GC CGT +D61655M1 171:2:1:13406:1958#0/1 @D61655M1 171:2:1:13770:1993#0/1 GTCT CGTAT GCC GGCTTT TGCTTG AAA AAA AAA GAA +D61655M1 171:2:1:13770:1993#0/1 @D61655M1 171:2:1:13819:1998#0/1 T AGCTT ATC AGA CTG GTG TTG GC ATCT CGT ATG CCG +D61655M1 171:2:1:13819:1998#0/1 @D61655Ml 171:2:1:2975:2145#0/1 T AGT TT GTC AGA CTT TT GTT T GGA GGT CGT AT GGCA +D61655M1 171:2:1:2975:2145#0/1

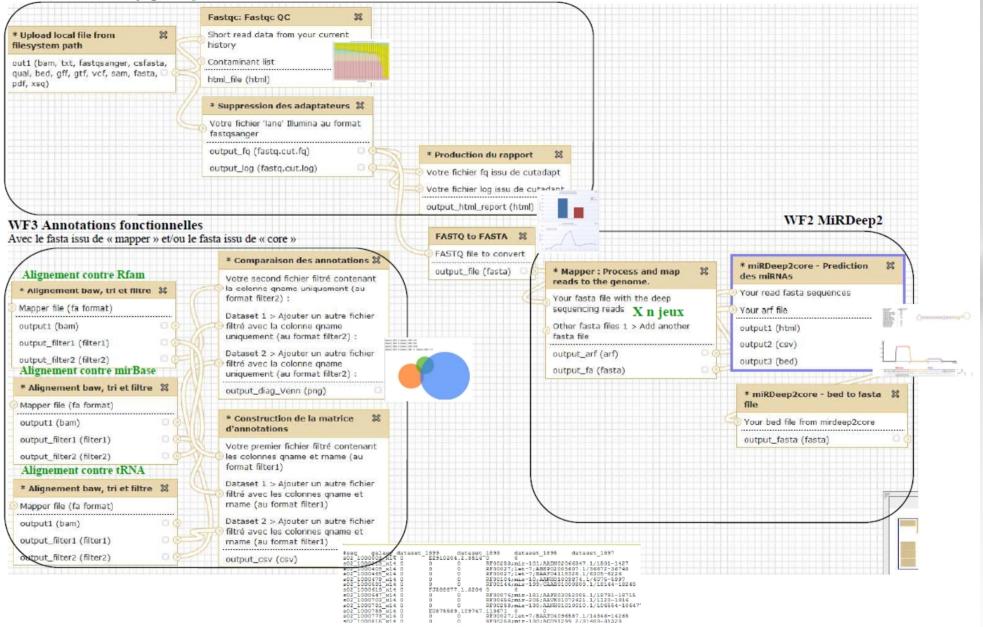
Line 1 starts with @

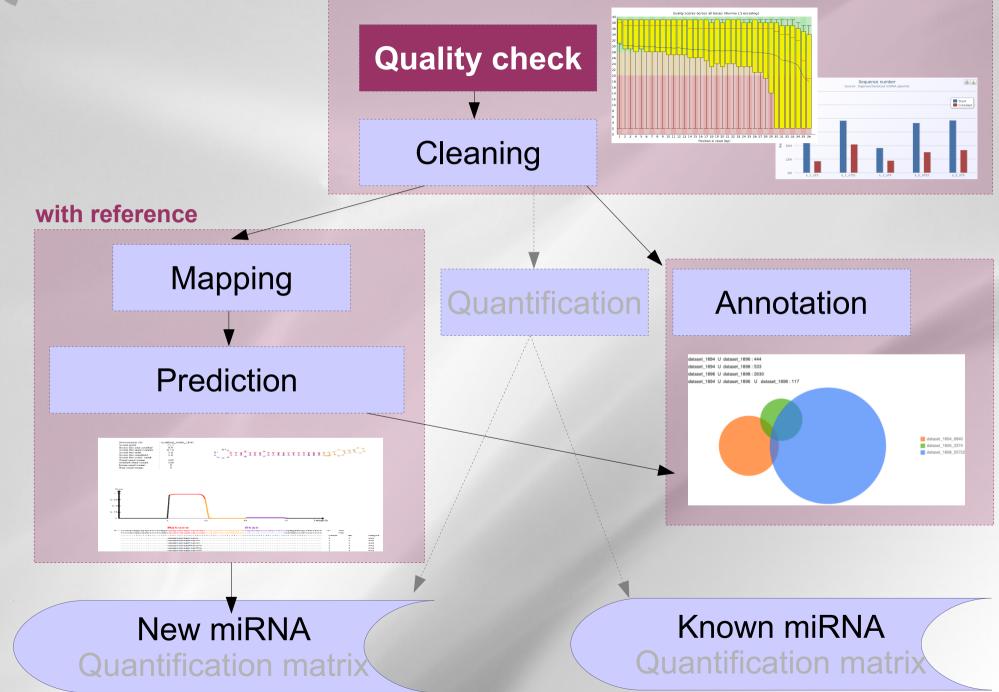

Information	Meaning
D61655M1_171	The unique instrument name
2	Flowcell lane45.156.426
1	Tile number within the flox cell lane
1192	'x'-coordinate of the cluster within the tile
1017	'y'-coordinate of the cluster within the tile
#0	index number for a multiplexed sample (0 for no indexing)
/1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only)

Line 2 Raw sequence of 36 nt (36 cycles in sequencing)

Line 3 starts with a '+' character and is optionally followed by the same sequence identifier (and any description) again.

Line 4 Line 4 encodes the quality values for the sequence in Line 2, and must contain the same number of symbols as letters in the sequence.


1 1 1


small RNAseq pipeline

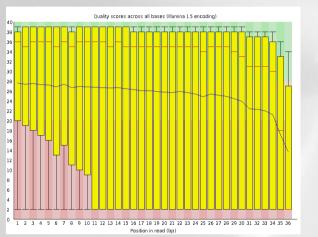
WF1 Qualité et nettoyage X n jeux

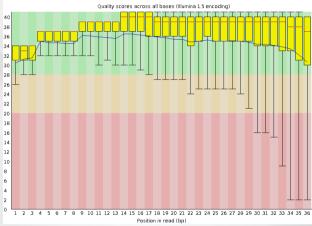
small RNAseq pipeline

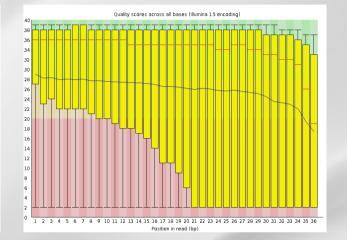
• FastQC (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/)

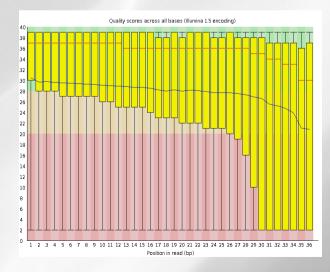
Function	A quality control tool for high throughput sequence data.	
Language	Java	
Doguiromonto	A <u>suitable Java Runtime Environment</u>	
Requirements	The Picard BAM/SAM Libraries (included in download)	
Code Maturity	Stable. Mature code, but feedback is appreciated.	
Code Released	Yes, under <u>GPL v3 or later</u> .	
Initial Contact	Simon Andrews	

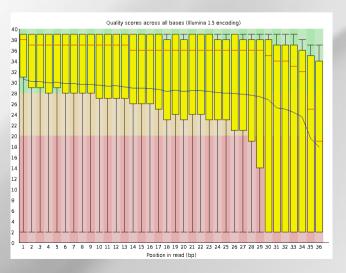
A simple way to do quality control. It provides a modular set of analyses to give a quick impression of whether data has any problems of which you should be aware before doing any further analysis. The main functions of FastQC are:

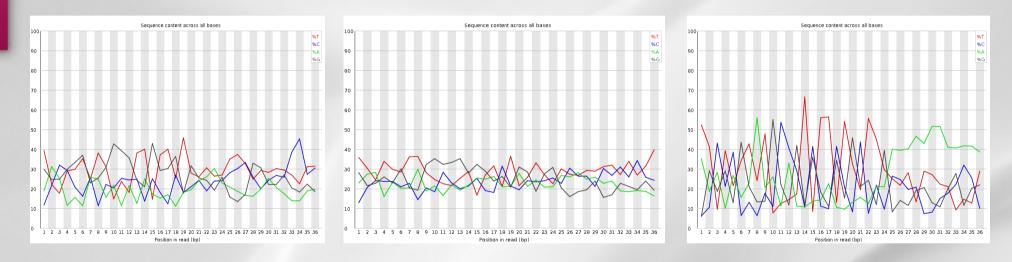

- Import of data from BAM, SAM or FastQ files (any variant)
- Provide a quick overview to tell you in which areas there may be problems
- Summary graphs and tables to quickly assess your data
- Export of results to an HTML based permanent report
- Offline operation to allow automated generation of reports without running the interactive application

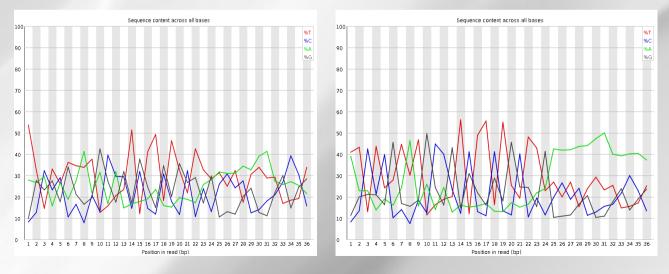

Fastqc -o nf.out nf_in.fastq

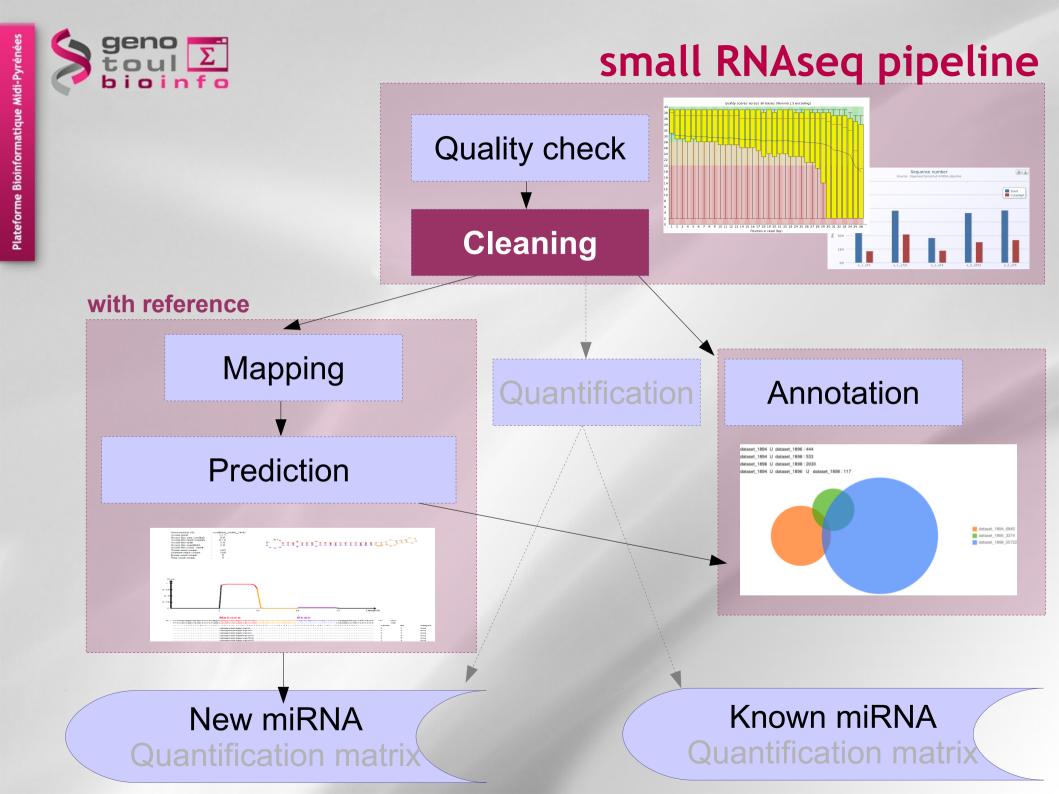



Quality control


Per base quality







Quality control

Sequences content in nucleotides

Output reads

Output reads

- Some sequences contain only adapters

Plateforme Bioinformatique Midi-Pyréné

Output reads

- Some sequences contain only adapters
- Some sequences contain sequences of interest flanked by the beginning of adapters:
 - Some of them are miRNA (yellow).

>Adapteur
ATCTCGTATGCCGTCTTCTGCTTG AAAAAAAAAAAAAA
>UT1-10-28S rRNA
GCATGTTTGTGGAGAACCTGGTGCTAAATCACTCGT
>Poly-N
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
>UT1-40-piRNA ou tRNA
GCATTGGTGGTTCAGTGGTAGAATTCTCGCCATCTC
>UT1-2-mir21
TAGCTTATCAGACTGGTGTTGGCATCTCGTATGCCG
>UT1-3-mir143
TGAGATGAAGCACTGTAGCTATCTCGTATGCCGTCT
>UT1-30-mir143
TGAGATGAAGCACTGTAGCTCTCGTATGCCGTCT

Output reads

- Some sequences contain only adapters

- Some sequences contain sequences of interest flanked by the beginning of adapters:
 - Some of them are miRNA (yellow).

- Some of them are other type of ncRNAs (green).

>Adapteur
ATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAAAAA
>UT1-10-28S rRNA
GCATGTTTGTGGAGAACCTGGTGCTAAATCACTCGT
>Poly-N
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
>UT1-40-piRNA ou tRNA
GCATTGGTGGTTCAGTGGTAGAATTCTCGCCATCTC
>UT1-2-mir21
TAGCTTATCAGACTGGTGTTGGC <mark>ATCTCGTATGCCG</mark>
>UT1-3-mir143
TGAGATGAAGCACTGTAGCTATCTCGTATGCCGTCT
>UT1-30-mir143 TGAGATGAAGCACTGTAGCTCTCGTATGCCGTCT

geno toulΣ bioinfo

Why cleaning ?

Output reads

- Some sequences contain only adapters

- Some sequences contain sequences of interest flanked by the beginning of adapters:
 - Some of them are miRNA (yellow).

- Some of them are other type of ncRNAs (green).

- Some adapters contain errors (blue).

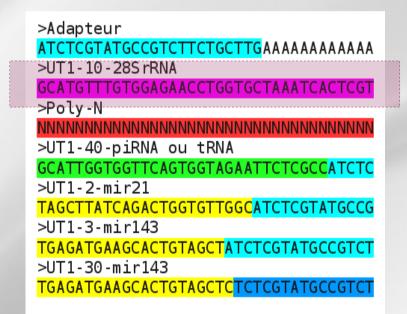
geno toulΣ bioinfo

Why cleaning ?

Output reads

- Some sequences contain only adapters

- Some sequences contain sequences of interest flanked by the beginning of adapters:
 - Some of them are miRNA (yellow).


- Some of them are other type of ncRNAs (green).

- Some adapters contain errors (blue).
- Some sequences contain polyN (red)

>Adapteur
ATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAAAAAA
>UT1-10-28S rRNA
GCATGTTTGTGGAGAACCTGGTGCTAAATCACTCGT
>Poly-N
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
>UT1-40-piRNA ou tRNA
GCATTGGTGGTTCAGTGGTAGAATTCTCGCC <mark>ATCTC</mark>
>UT1-2-mir21
TAGCTTATCAGACTGGTGTTGGC <mark>ATCTCGTATGCCG</mark>
>UT1-3-mir143
TGAGATGAAGCACTGTAGCT <mark>ATCTCGTATGCCGTCT</mark>
>UT1-30-mir143
TGAGATGAAGCACTGTAGCTC

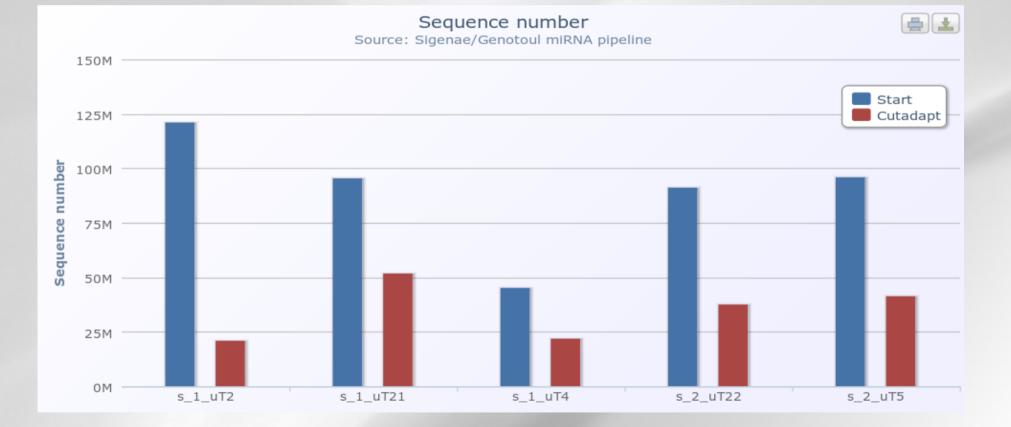
Output reads

- Some sequences contain only adapters
- Some sequences contain sequences of interest flanked by the beginning of adapters:
 - Some of them are miRNA (yellow).
- Some of them are other type of ncRNAs (green).
 - Some adapters contain errors (blue).
- Some sequences contain polyN (red)
- Some sequences contain other type of ncRNA (pink)

Adapters removing and length filtering

Cutadapt http://code.google.com/p/cutadapt/.

Cutadapt removes adapter sequences from high-throughput sequencing data. Indeed, reads are usually longer than the RNA, and therefore contain parts of the 3' adapter. It also allows to keep only sequences of desired length (15<length<29).


	Options -a and -b	Option -a	Option -b
Read	Read runs into adapter	Full adapter in the beginning	Full adapter in the beginning
Adapter Removed sequence	Adapter within read		Partial adapter in the beginning

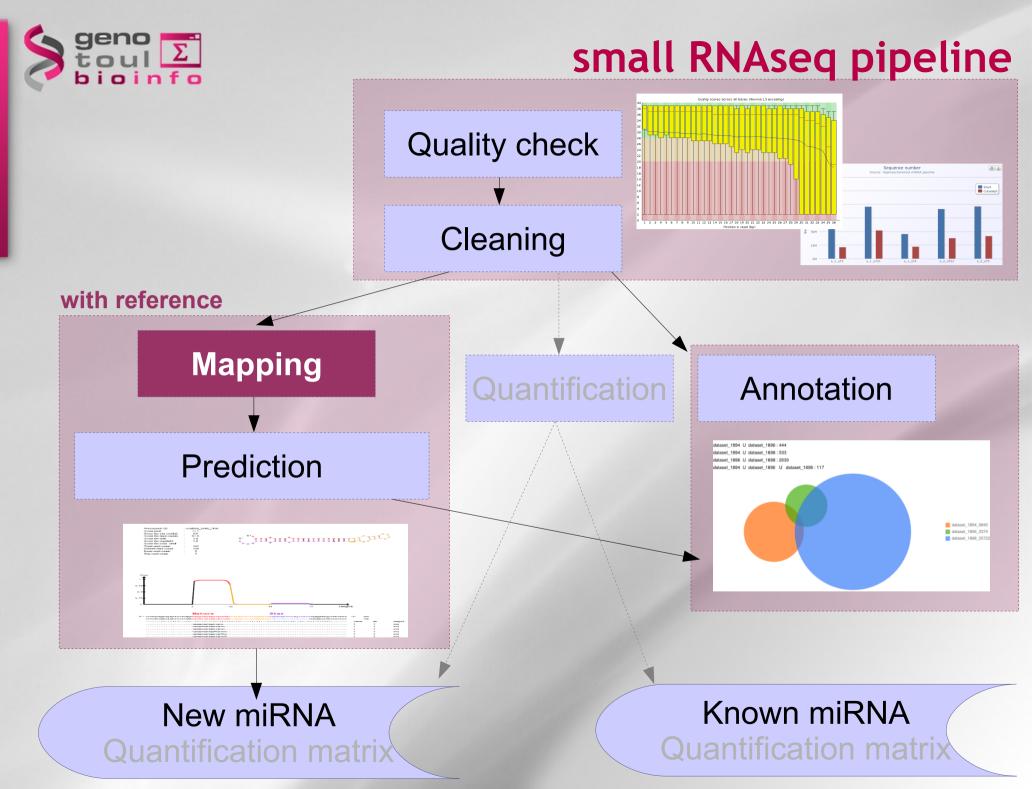
cutadapt -a ATCTCGTATGCCGTCTTCTGCTTG -m -M 29 -o nf_out.fg nf_in.fq

Cleaning


56 % of reads discarded

Cleaning

Size in between 18bp:24bp → miRNA ?



Exercices:

- WF1:

- Quality control
- Cleaning

Mapping Before mapping : Remove redundancy

Removing identical reads

- save computational time
- useless to keep all the read
- Keep the number of occurrence for each read

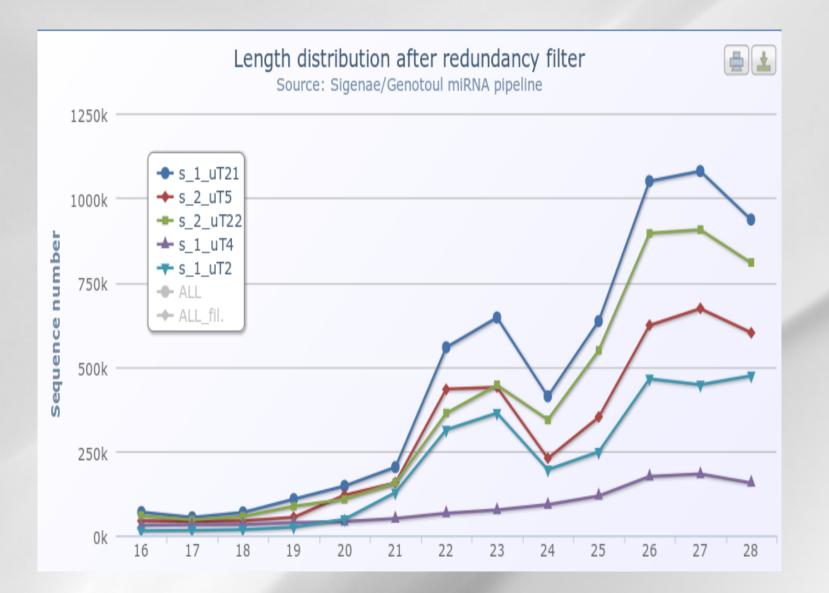
2

38

51

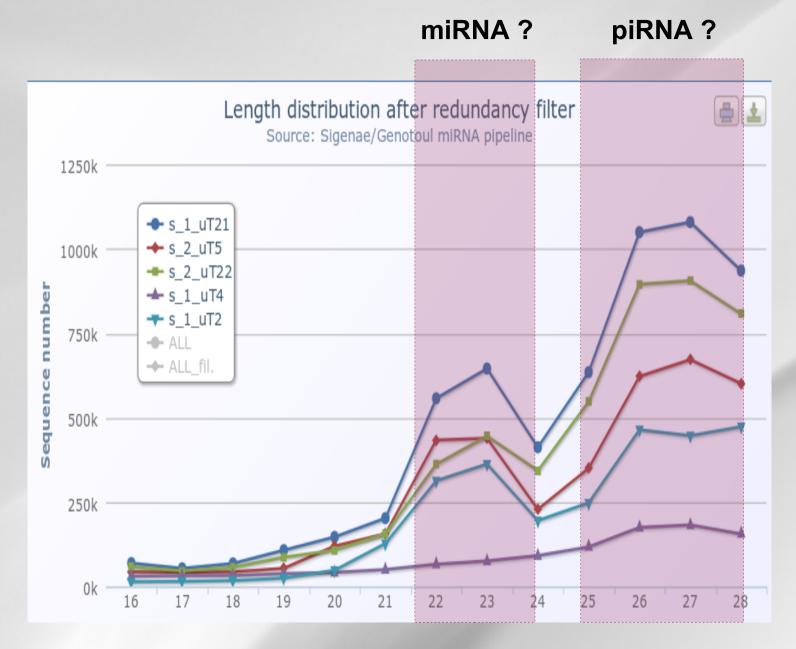
82

5 2


3 57

2

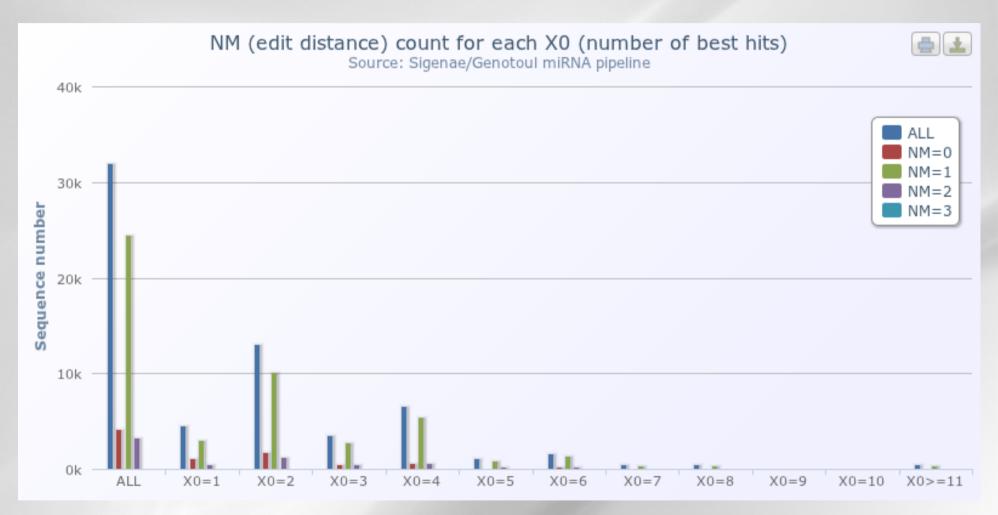
AAATGAATGATCTATGGACAGCA AAATGAATGATCTATGGACAGCAG AAATGAATGATCTATGGACAGCAGAAAG AAATGAATGATCTATGGACAGCAGCAGAAAG AAATGAATGATCTATGGACAGCAGCA AAATGAATGATCTATGGACAGCAGCAA AAATGAATGATCTATGGACAGCAGCAAA AAATGAATGATCTATGGACAGCAGCAAA AAATGAATGATCTATGGACAGCAGCAAC AAATGAATGATCTATGGACAGCAGCAAG AAATGAATGATCTATGGACAGCAGCAAG AAATGAATGATCTATGGACAGCAGCAG AAATGAATGATCTATGGACAGCAGCAG AAATGAATGATCTATGGACAGCCGC AAATGAATGATCTATGGACAGCCGC



Remove redundancy

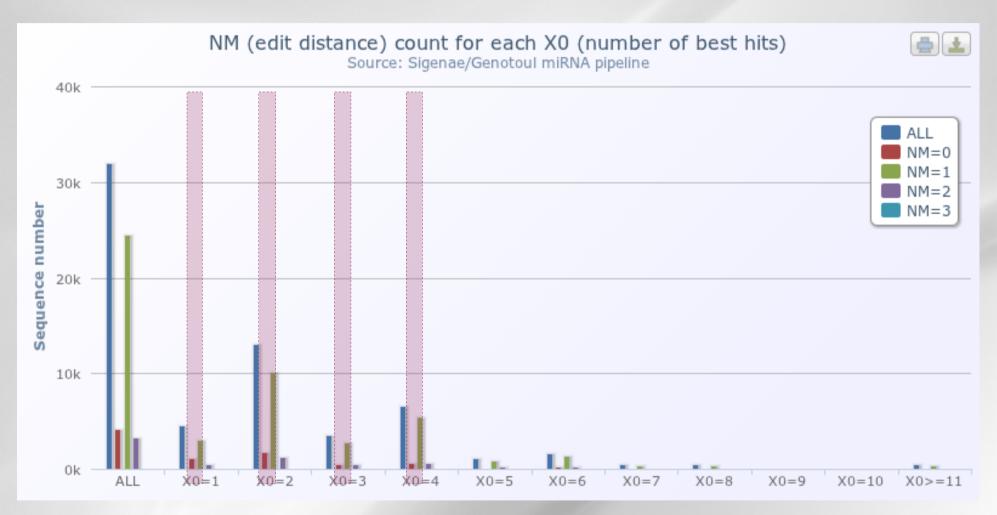
Remove redundancy

More differencies between piRNAs than with miRNAs ?

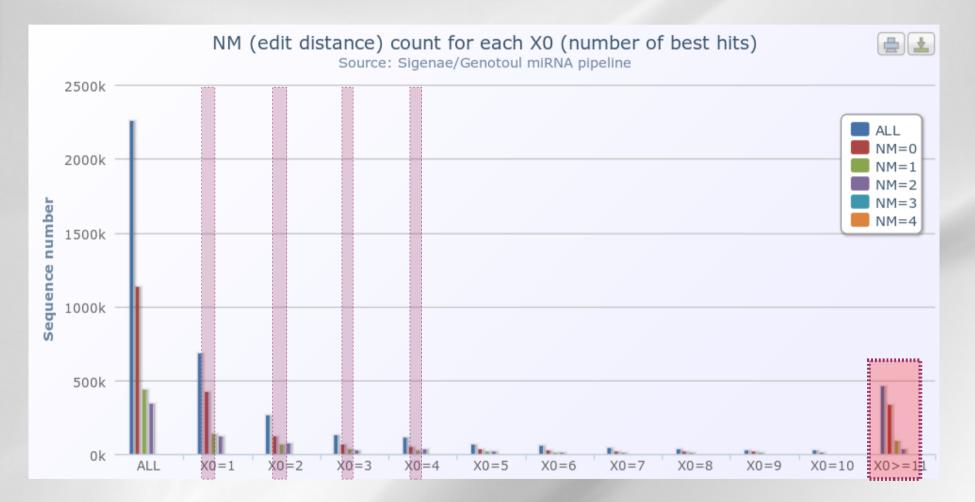

Mapping the reads

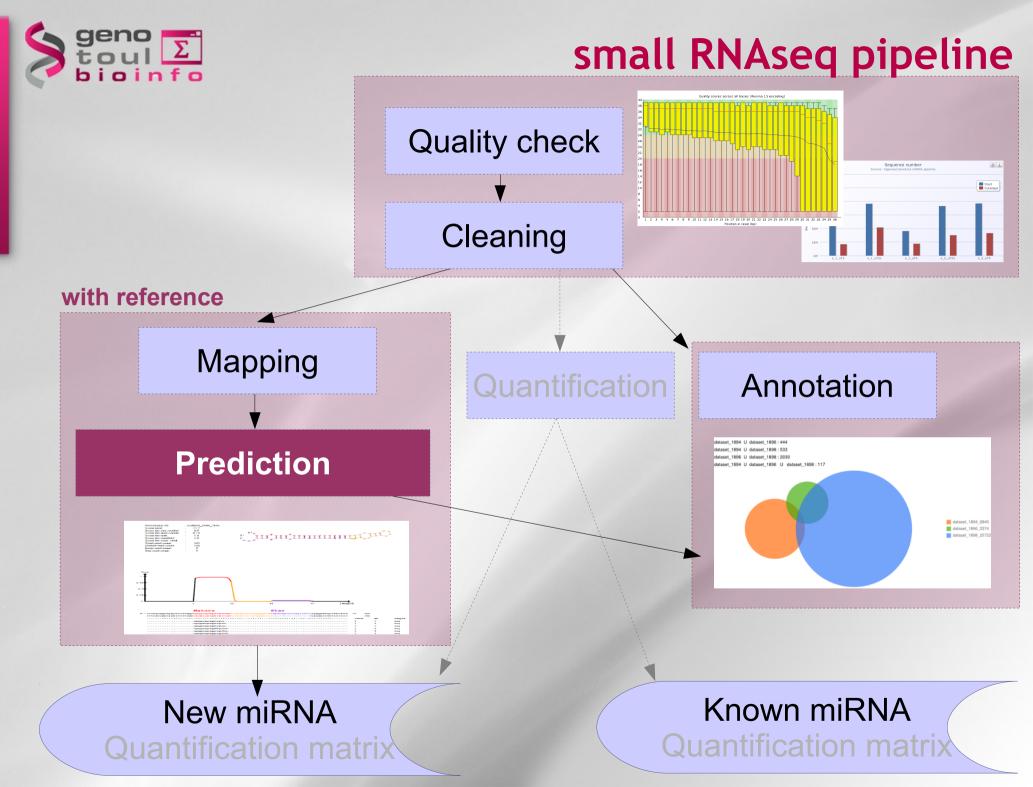
- Blat http://genome.ucsc.edu/cgi-bin/hgBlat
- Blast http://blast.ncbi.nlm.nih.gov/Blast.cgi
- Gmap http://www.gene.com/share/gmap/
- Bowtie http://bowtie-bio.sourceforge.net/index.shtml
- BWA http://bio-bwa.sourceforge.net

Mapping the reads


Alignement of annotated reads

Mapping the reads


Alignement of annotated reads


 \rightarrow keep reads aligned the most at 4 positions with 0 or 1 error

Alignement of all reads

→ keep reads aligned the most at 4 positions with 0 or 1 error

Plateforme Bioinformatique Midi-Pyrénée:


Exercices:

- Mapping the reads with miRDeep2
 - Using Bowtie for mapping
 - miRDeep2-core for miRNA identification

What should we retain for data analysis ?

Pre-miRNA information:

- Hairpin structure of the pre-miRNA
- Pre-miRNA localisation (coding/non coding TU intronic/exonic)
- Presence of cluster
- Size of the pre-miRNA
- miRNA-5p and miRNA-3p information:

- Existence of both miRNA-5p and miRNA-3p
- Sequence conservation
- Overhang (around 2 nt) related to Drosha and Dicer cuts
- Size of miRNA-5p and miRNA-3p
- Overexpression of one of the miRNA-5p and miRNA-3p
- Existence of other products in sRNAseq data

Prediction

Precise excision of a 21-22mer is typical of microRNA

 less represented reads are products of Dicer errors and sequencing/sample preparation artifacts

GAGAGTGGAGTGCAGCCAAGGATGACTTGCCGGAATTCACATATAGAGTGGAATGA		
CAGCCAAGGATGACTTGCCGG	675	
CAGCCAAGGATGACTTGCCG	26	
AGCCAAGGATGACTTGCCGG	8	
CAGCCAAGGATGACTTGCCGGAA	8	
CAGCCAAGGATGACTTG	2	
CAGCCAAGGATGACTTGCCGGA	2	
CAGCCAAGGATGACTTGC	1	

Prediction

Once the reads mapped

Prediction

Identify all contiguous read regions

Identify all contiguous read regions

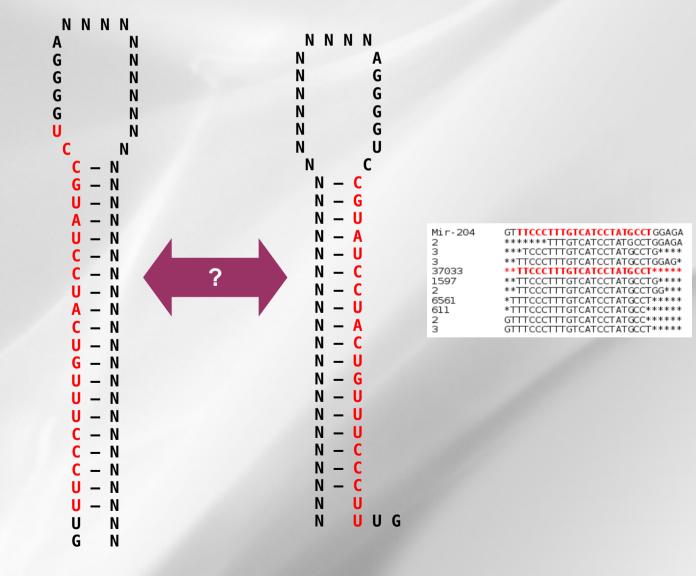
miRNA precursors have a characteristic secondary structure

 The detection of a microRNA* sequence, opposing the most frequent read in a stable hairpin (but shifted by 2 bases), is sufficient to diagnose a microRNA.

		N
Mir-30	CTGTAAACATCCTTGACTGGAAGCTGG*************	G
	((((((((((((((((((((((((((((((((())))))	0
	000000000111111111222222222333333333334444444444	C G -
	12345678901234567890123456789012345678901234567890123456789012345678	
2	**************************************	A -
60	**************************************	G -
8	***TAAACATCCTTGACTGGAAGCTGG*************	G -
10	***TAAACATCCTTGACTGGAAGCTG***** ************************	2-
89	***TAAACATCCTTGACTGGAAGCT*****	
297	**GTAAACATCCTTGACTGGAAGCT***************	G -
1677	**GTAAACATCCTTGACTGGAAGC****************	U
2	**GTAAACATCCTTGACTGGAAGCTG**************	<u> </u>
459435	*TGTAAACATCCTTGACTGGAAGC******	i či
30331	*TGTAAACATCCTTGACTGGAAG******	Ū -
40391	*TGTAAACATCCTTGACTGGAAGCT***************	A -
17	CTGTAAACATCCTTGACTGGAAGCT***************	C -
259	CTGTAAACATCCTTGACTGGAAGC******	- ÷ -
21	CTGTAAACATCCTTGACTGGAAG*****************	1 2 3
2	CTGTAAACATCCTTGACTGGAA******************	🗌 û 🤇
-	12345678901234567890123456789012345678901234567890123456789012345678	G -
	00000000011111111122222222233333333334444444444	U -
		C -

~ 100bp

- Stable hairpin structure shifted by 2 bases
- miRNA > miRNA*


• Extend and fold read regions

~ 100bp

- In the absence of reads corresponding to an expected miRNA*, additional checks on the structure are:
 - Degree of pairing in the miRNA region
 - Hairpin: around 70nt in length
 - The secondary structure is significantly more stable than randomly shuffled versions of the same sequence
 - miRNA cluster

• Which one should be used ?

W68-W76 Nucleic Acids Research, 2009, Vol. 37, Web Server issue doi:10.1093/nar/gkp347

Published online 11 May 2009

miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments

Michael Hackenberg¹, Martin Sturm², David Langenberger^{3,4}, Juan Manuel Falcón-Pérez⁵ and Ana M. Aransay^{1,*}

¹Functional Genomics Unit, CIC bioGUNE, CIBERehd, Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain, ²Institute for Bioinformatics and Systems Biology, German Research Center for Environmental Health, Ingolstädter Landstrasse 1 D-85764 Neuherberg ³Department of Genome-Oriented Bioinformatics Wissenschaftszentrum

Published online 16 May 2010

Nucleic Acids Research, 2010, Vol. 38, Web Ser

DSAP: deep-sequencing small RNA analys

Published online 12 September 2011

Nucleic Acids Research, 2012, Vol. 40, No. 1 37-52 doi:10.1093/nar/gkr688

miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades

Marc R. Friedländer¹. Sebastian D. Mackow

BIOINFORMATICS APPLICATIONS NO

Sequence analysis

CPSS: a computational platform for the ana deep sequencing data

Yuanwei Zhang^{1,†}, Bo Xu^{1,†}, Yifan Yang², Rongjun Ban³, H Howard J. Cooke^{1,4}, Yu Xue^{5,*} and Qinghua Shi^{1,*}

¹Hefei National Laboratory for Physical Sciences at Microscale and School of and Technology of China, Hefei 230027, China, ²Department of Statistics, Ur 40506, USA, ³Department of Computer Science & Technology, Nanjing Unive Genetics Unit, IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK, and ⁴ Huazhong University of Science and Technology, Wuhan 430074, China Associate Editor: Ivo Hofacker

Discovering microRNAs from deep sequencing data using miRDeep

Marc R Friedländer¹, Wei Chen², Catherine Adamidi¹, Jonas Maaskola¹, Ralf Einspanier³, Signe Knespel¹ & Nikolaus Rajewsky¹

The capacity of highly parallel sequencing technologies to detect small RNAs at unprecedented depth suggests their value in systematically identifying microRNAs (miRNAs). However, the identification of miRNAs from the large pool of sequenced transcripts from a single deep sequencing run remains a major challenge. Here, we present an algorithm, miRDeep, which uses a probabilistic model of miRNA

and 454 Life Sciences/Roche, can sequence DNA orders of magnitude faster and at lower cost than Sanger sequencing and are evolving so rapidly that increases in sequencing speed by at least another order of magnitude seem likely over the next few years. Although the Solexa/ Illumina system can produce -32 million sequencing reads in one run, read length is currently limited to 35 bp. In contrast, the current 454 platform yields reads up to 200 bases each, although the number of reads DOI 10.1007/s11103-012-9885-2

BioMod Centra

Software

miRExpress: Analyzing high-throughput sequencing data for profiling microRNA expression

Wei-Chi Wang¹, Feng-Mao Lin¹, Wen-Chi Chang^{1,5}, Kuan-Yu Lin^{2,3}, Hsien-Da Huang*1,4 and Na-Sheng Lin*2,3

Address: 1Institute of Bioinforma of Biotechnology, National Chen Sinica, Nankang, Taipei 11529, T Hstn-Chu 300, Tatwan, Republic of China

stnica edu t

Email: Wei-Chi Wang - canser.bl

Hendrix et al. Genome Biology 2010, 11:R39 http://genomebiology.com/2010/11/4/R39

Genome **Biology**

Open Access

METHOD

BMC Bioinformatics

Open Access

miRTRAP, a computational method for the systematic identification of miRNAs from high throughput sequencing data

NATURE BIOTECHNOLOGY VOLUME 26 NUMBER 4 APRIL 2008

Vol. 26 no. 20 2010, pages 2615-2616 NOTE doi:10.1093/bioinformatics/btg493

Advance Access publication August 27, 2010

ep sequencing analysis

vv², Gideon Dror², Eran Halperin^{3,4}

dicine, Tel Aviv University, ²The Academic ice Institute, Berkeley, CA, USA and ⁴School Biotechnology, George Wise Faculty of Life

shortran: A pipeline for small RNA-seq data analysis

Vikas Gupta^{1,2}, Katharina Markmann¹, Christian N. S. Pedersen², Jens Stougaard¹ a: Andersen¹

¹Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhu Gustav Wieds Vei 10, 8000 Aarhus C, Denmark and ²Bioinformatics Research Centre, Aarhus University, C 8, 8000 Aarhus C, Denmark

miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs

Fuliang Xie · Peng Xiao · Dongliang Chen · Lei Xu · Baohong Zhang

Basic features

- Availability (web/executable)
- Computing resources (time, memory)
- Reads pre-processing
- Mapping
- Identification

Briefings in Bioinformatics Advance Access published March 24, 2012 BRIEFINGS IN BIOINFORMATICS. page 1 of 10 doi:10.1093/bib/bbs010

Detecting miRNAs in deep-sequencing data: a software performance comparison and evaluation

Vernell Williamson, Albert Kim, Bin Xie, G. Omari McMichael, Yuan Gao and Vladimir Vladimirov Submitted: 9th December 2011; Received (in revised form): 2bst February 2012

 Table 2: Basic features of popular software used to predict miRNA from deep-sequencing data

Accessible	Read pre-processing	ad pre-processing Target genomes Mapping algorithm Functions Predictions base		Predictions based on	Location	Program	
Executable requires in-house computa- tional resources.	Provides script that eliminates redundancy. Tag removal/processing must be done by user prior to analysis.		Flexible, Oligomap (vl) Bowtie (v2).	Novel, known miRNA prediction. Status of predictions (novel/ known) must be determined by the user.	Bayesian probability, focus on traditional steps of biogenesis.	http://www.mdc- berlin.de/en/ research/research. teams/	MiRDeep/miRDeep2
Web based	Accepts two multifasta format and file with read and counts. Tag must be removed by user.	Seven genomes (human, fruit fly, rat, mouse, dog, nematode, and zebra fish), fixed choice over version.	Fixed, BowTie. User can set the number of acceptable mismatches (<2).	Novel, Known miRNA prediction.	Posterior probability (threshold > 0.95). Reads are mapped against target genome, mirBase, and other non-coding databases.	http://web.bioinfor- matics.cicbiogune .es/microRNA/ miRanalyser.php	MirAnalyzer
Web-based	Accepts read/counts format like miRAnalyzer. Adapter sequences can be left intact	Multiple genomes, fixed choice over version	Fixed, cluster approach, Uses SuperMatcher to increase speed	Known miRNA prediction, species distribution, expression level	Degree to which reads match known examples. Known miRNAs are compared to miRBase	http://dsap.cgu.edu .tw/	DSAP

- Reads pre-processing
 - Adaptators trimming
 - Redundancy
 - Repeats
 - Other ncRNA
 - Size of the mature miRNA (min/max)

- Mapping
 - Size and region of the read
 - Number of locations
 - Considered
 - Reported
 - Error(s) consideration in mapping
 - Quality of the read

- Precursor identification
 - Length and bounds of the theoretical sequence (folding)
 - Alignment of the read against known miRNA
- Post processing step: assessment of the potential miRNA
 - Different methods: SVM, bayesian statistics based score, combinatorial rules...
 - Location of the read on the precursor
 - 2 nt overhang of the mature miRNA/precursor
 - Accuracy of the folding (HP structure, energy, Z-score...)

NATURE BIOTECHNOLOGY VOLUME 26 NUMBER 4 APRIL 2008

Discovering microRNAs from deep sequencing data using miRDeep

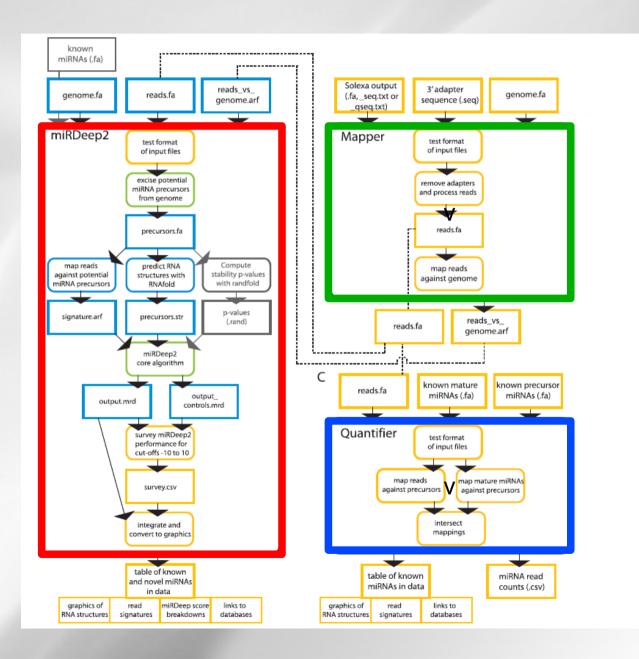
Marc R Friedländer¹, Wei Chen², Catherine Adamidi¹, Jonas Maaskola¹, Ralf Einspanier³, Signe Knespel¹ & Nikolaus Rajewsky¹

The capacity of highly parallel sequencing technologies to detect small RNAs at unprecedented depth suggests their value in systematically identifying microRNAs (miRNAs). However, the identification of miRNAs from the large pool of sequenced transcripts from a single deep sequencing run remains a major challenge. Here, we present an algorithm, miRDeep, which uses a probabilistic model of miRNA and 454 Life Sciences/Roche, can sequence DNA orders of magnitude faster and at lower cost than Sanger sequencing and are evolving so rapidly that increases in sequencing speed by at least another order of magnitude seem likely over the next few years. Although the Solexa/ Illumina system can produce -32 million sequencing reads in one run, read length is currently limited to 35 bp. In contrast, the current 454 platform yields reads up to 200 bases each, although the number of reads

Published online 12 September 2011

Nucleic Acids Research, 2012, Vol. 40, No. 1 37–52 doi:10.1093/nar/gkr688

miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades


Marc R. Friedländer¹, Sebastian D. Mackowiak¹, Na Li², Wei Chen² and Nikolaus Rajewsky^{1,*}

¹Laboratory for Systems Biology of Gene Regulatory Elements and ²Laboratory for New Sequencing Technology, Berlin Institute for Medical Systems Biology at the Max-Delbrück-Center for Molecular Medicine, Berlin-Buch 13125, Germany

Three modules

- MiRDeep2
- Mapper
- Quantifier

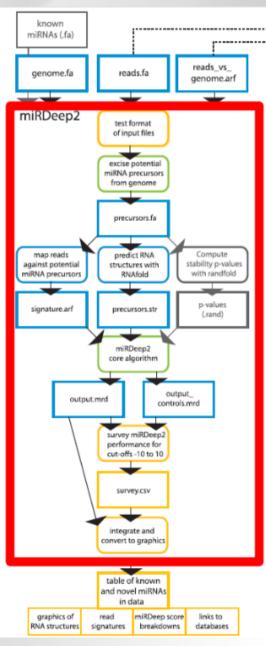


3'adapter

Solexa output

The Mapper module

- Reads processing
 - Remove redundancy and keep # occurrences

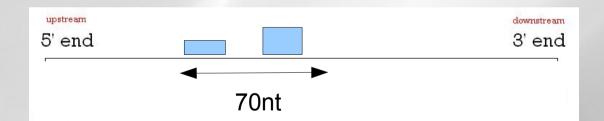

geno toul Σ bioinfo

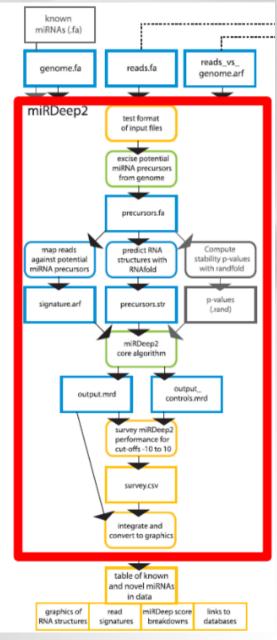
Existing software miRDeep2

The miRDeep2 module

Scan of both strands from 5' to 3'

upstream		downstream
5' end	_>	3' end
8 6		

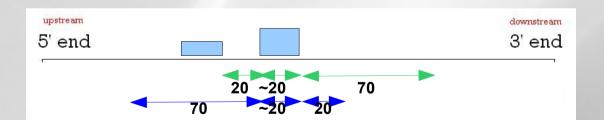


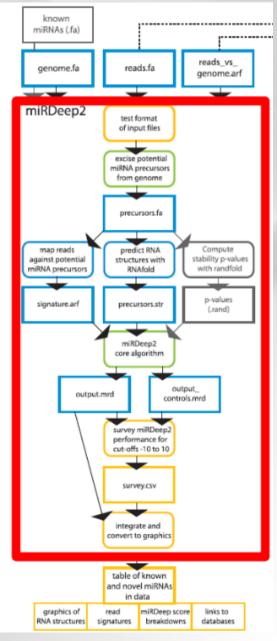

geno toul Σ bioinfo

Existing software miRDeep & miRDeep2

The miRDeep2 module

- Scan of both strands from 5' to 3
 - Search the best stack of reads (heigth 1 or more) in a distance of 70nt

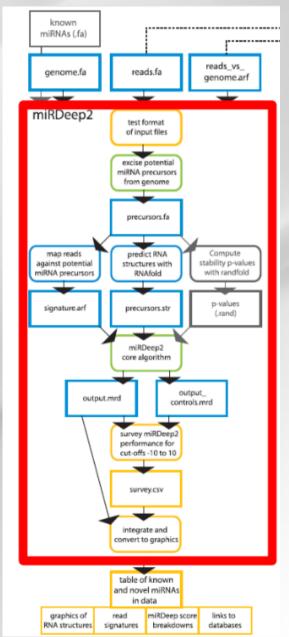



geno toulΣ bioinfo

Existing software miRDeep & miRDeep2

The miRDeep2 module

- Scan of both strands from 5' to 3
 - Search the best stack of reads (heigth 1 or more) in a distance of 70nt
 - Excise potential precursors on both sides

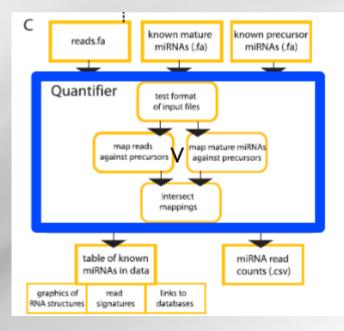


toul Σ bioinfo

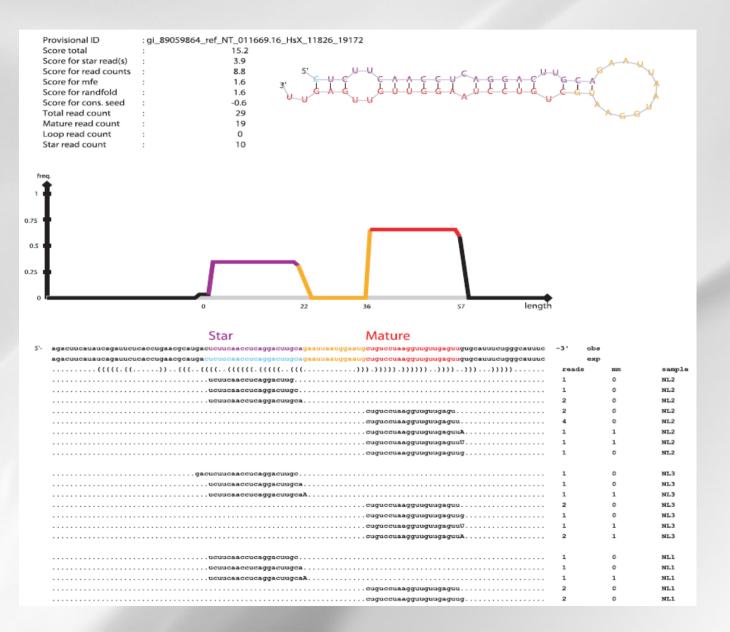
Existing software miRDeep2

The miRDeep2 module

- Scan of both strands from 5' to 3
 - Search the best stack of reads (heigth 1 or more) in a distance of 70nt
 - Excise potential precursors on both sides
 - Go on from 1 nt after the last position excised
- If the number of candidate precursor>50.000, repeat the process (height of stack=height of stack + 1)
- Prepare the file of precursor signature
 - Align reads against precursors (1 MM allowed)
 - Align known miRNA against precursors (0 MM allowed)
- Evaluation of candidate precursors
 - Fold candidate precursors (RNAfold + Randfold)
 - Unbifurcated hairpins
 - Score the candidates
 - Valid alignment of reads on the precursor
 - 60% of nt in the mature part paired

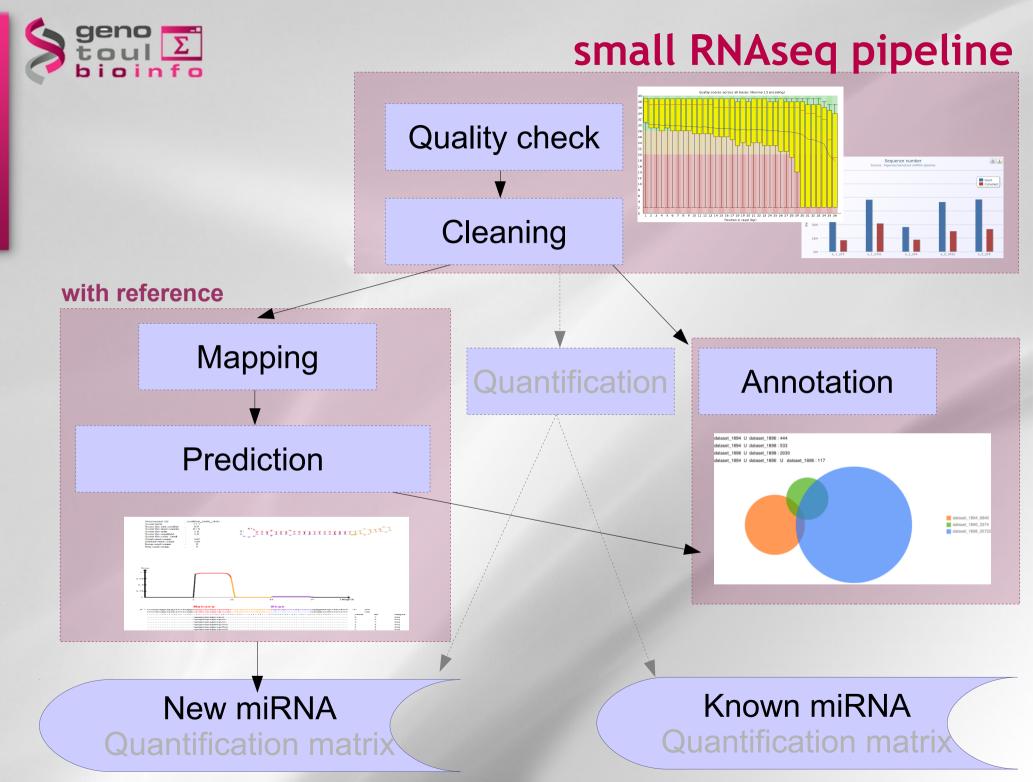


The **Quantifier** module


Identifies and quantifies known mature miRNA given

- Know mature miRNA
- Know miRNA precursors

Use Bowtie for miRNA/reads alignment



Exercice:

 Back to miRdeep2-core results

- Useful databases:
 - miRbase (http://microrna.sanger.ac.uk/)

- miRBase::Registry provides names to novel miRNA genes prior to their publication.
- miRBase::Sequences provides miRNA sequence data, annotation, references and links to other resources for all published miRNAs.
- miRBase::Targets provides an automated pipeline for the
 prediction of targets for all published animal miRNAs.

D152–D157 Nucleic Acids Research, 2011, Vol. 39, Database issue doi:10.1093/nar/gkq1027

Published online 30 October 2010

miRBase: integrating microRNA annotation and deep-sequencing data

Ana Kozomara and Sam Griffiths-Jones*

Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK

- Useful databases:
 - miRbase (http://microrna.sanger.ac.uk/)

- Rfam (http://rfam.sanger.ac.uk/)
 - A collection of RNA families
 - Rfam 10.1, June 2011, 1973 families
 - A track now included in the UCSC genome browser
 - Be careful: also contains (not all) miRNA families

D136–D140 Nucleic Acids Research, 2009, Vol. 37, Database issue doi: 10.1093/nar/gkn766

Published online 25 October 2008

Rfam: updates to the RNA families database

Paul P. Gardner^{1,*}, Jennifer Daub¹, John G. Tate¹, Eric P. Nawrocki², Diana L. Kolbe², Stinus Lindgreen³, Adam C. Wilkinson¹, Robert D. Finn¹, Sam Griffiths-Jones⁴, Sean R. Eddy² and Alex Bateman¹

¹Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK, ²Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia, USA, ³Center for Bioinformatics, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark and ⁴Faculty of Life Sciences, The University of Manchester, Manchester M13 9PL, UK

- Useful databases:
 - miRbase (http://microrna.sanger.ac.uk/)

- Rfam (http://rfam.sanger.ac.uk/)
- Silva (http://www.arb-silva.de/) silva
 - A comprehensive on-line resource for quality checked and aligned ribosomal RNA sequence data.
 - SSU (16S rRNA, 18S rRNA)
 - LSU (23S rRNA, 28S rRNA)

7188–7196 Nucleic Acids Research, 2007, Vol. 35, No. 21 doi:10.1093/nar/gkm864

Published online 18 October 2007

SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB

Elmar Pruesse^{1,2}, Christian Quast^{1,3}, Katrin Knittel⁴, Bernhard M. Fuchs⁴, Wolfgang Ludwig⁵, Jörg Peplies⁶ and Frank Oliver Glöckner^{1,3,*}

¹Microbial Genomics Group, Max Planck Institute for Marine Microbiology, ²University Bremen, Center for Computing Technologies, D-28359, ³Jacobs University Bremen gGmbH, D-28759, ⁴Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, D-28359 Bremen, ⁵Department for Microbiology, Technical University Munich, D-85354 Freising and ⁶Ribocon GmbH, D-28359 Bremen

- Useful databases:
 - miRbase (http://microrna.sanger.ac.uk/)
 - Rfam (http://rfam.sanger.ac.uk/)
 - Silva (http://www.arb-silva.de/)
 - GtRNAdb(http://gtrnadb.ucsc.edu/)
 - Contains tRNA gene predictions made by the program tRNAscan-SE (Lowe & Eddy, Nucl Acids Res 25: 955-964, 1997) on complete or nearly complete genomes.
 - All annotation is automated and has not been inspected for agreement with published literature.

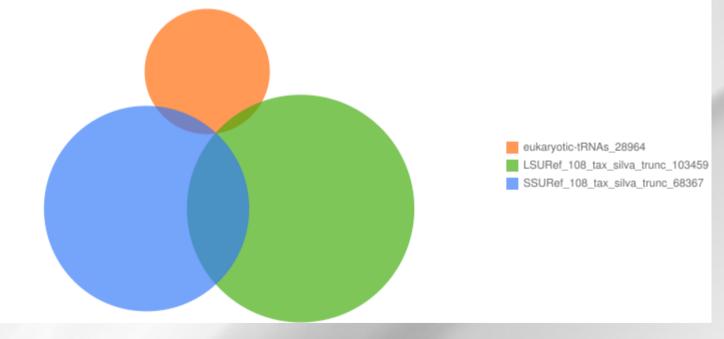
Published online 4 November 2008

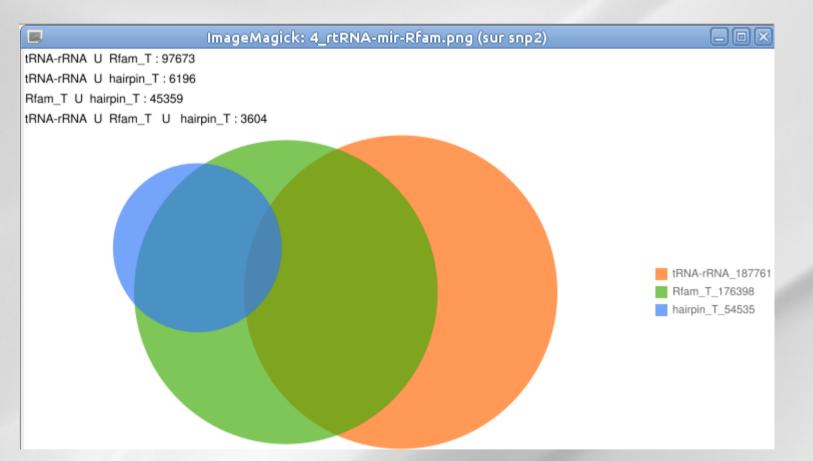
Nucleic Acids Research, 2009, Vol. 37, Database issue D93–D97 doi:10.1093/nar/gkn787

GtRNAdb: a database of transfer RNA genes detected in genomic sequence

Patricia P. Chan and Todd M. Lowe*

Department of Biomolecular Engineering, University of California, Santa Cruz, 1156 High Street, SOE-2, Santa Cruz, CA 95064, USA


Genomic tRNA Database


Reads with multiple annotation

eukaryotic-tRNAs U LSURef_108_tax_silva_trunc : 707 eukaryotic-tRNAs U SSURef_108_tax_silva_trunc : 1230 LSURef_108_tax_silva_trunc U SSURef_108_tax_silva_trunc : 11385 eukaryotic-tRNAs U LSURef_108_tax_silva_trunc U SSURef_108_tax_silva_trunc : 293

Reads with multiple annotation

 \rightarrow A lot of reads annotated with mirBase but also with tRNA and rRNA database

•

rRNA present in miRBase

Mir-739 or 28S rRNA?

bioinfo

GOCTA OGTGA A GATCTT OGTGGT AGTA GCAA AT ATTCA A A CGA GA ACTTT GA A OG CCGA A GTGGA GA ****************************GT AGTAGCAA AT ATTCAA ACGAGA ACTT ******************* з з

)		mi	RNA Search R	esults-Mozill	a Firefox					_ D X		
chier Éditio <u>n A</u> f	fichage <u>H</u> istori	que <u>M</u> arque	-pages <u>O</u> utils	Aid <u>e</u>								
• •> • @ (🔍 🏠 🔂	tp://www.mir	base.org/cgi-b	in/blast.pl	☆ ✔ (©!∨ mirl	base			0		
Most Visited 👻 📋	RNAsim 🗸 🕶	WebMail k	Koders Code S	earch: 🛞	sRNAMap: Sm	all Non	🔧 Bio	Informat	ique des	>>		
oogle		- 3	Rechercher 🗸	+ 🖻 🗸 🛞 I	M ~ 🔶 ~ 🙋	Partager	~ »		🦴 🛩 🥚 Ca	onnexion 🗸		
miRNA Search Res	sults	+								~		
Cette page e	est en anglais 🗸	. La traduir	e à l'aide de la	barre d'outils	Google ?				Optio	ns Y X		
	raduire <u>N</u> or	n merci Ne	jamais traduir	e les pages er	nanglais				optio			
miRBase			mi	RBase	e				MANCH	ESTER 1824		
ome Search Bro	owse Help De	ownload Blo	g Submit							Search		
			Sequence ches for yo		results de sequenc	e			₽			
Accession	ID	Query start	Query end	Subject start	Subject end	Strand	Score	Evalue	Alignment			
MI0012527	mdo-mir-739	6	73	18	85	+	331	1e-21	Align	=		
<u>MI0015608</u>		12	36	29	53	-	89	0.18	Align			
MI0001408		25	57	76	108	-	84	0.47	Align			
	pvu-MIR166a dme-mir-2491	13 16	51 64	184 17	222 65	-	78 74	1.5 3.2	Align Align			
MI0001408		38	73	29	64	+	72	4.7	Align			
		Alia	nment of O	uery to bai	rpin miRNA	e						
Query: 6-73	mdo n	nir-739 : 18-8		score: 331	-	alue: 1e-2	54					
UserSeq mdo-mir-	6	ggugaagaucuu	ggugguaguagcaa	auauucaaacgag: 	aacuuugaaggccg 	aaguggaga; 	aggguu					
Query: 12-36	<u>cin-mi</u>	r-4057 : 29-5	3	score: 89	eva	alue: 0.18	3					
UserSeq	36		aguagcaaauauu	12								
cin-mir-	4057 29	gaucuuggugaa	aguagcaaacacu	53								
Query: 25-57	<u>cbr-mi</u>	<u>r-240</u> : 76-10	8	score: 84	eva	alue: 0.47						
UserSeq	57	ÎU Î U UL	caaacgagaacuuu 	Î TÎÎH								
cbr-mir-	240 76	guaacuaaaauu	caaagcgaaaauuu	ggaggcc 108								
Query: 13-51	pvu-M	IR166a : 184		score: 78		alue: 1.5						
UserSeq	51		guagcaaauauuca 	1 1 1000								
pvu-MIR1 rminé	66a 184	auuuugguguua	gaggguaaauuucc	auuggaaacuuug	222					v		
										di.	1	
>□ <u>ref NR (</u> Length=507	0	-			-					2851),	ribos	omal
<u>GENE ID:</u> (10 or fe w	<u>10000858</u> er PubMe	d Links	5)	A, 285	ribosoma	al 1	[Hom	o sap	piens]			

Score = 122 bits (66), Expect = 6e-28 Identities = 68/69 (99%), Gaps = 0/69 (0%) Strand=Plus/Plus AGGTGAAGATCTTGGTGGTAGTAGCAAATATTCAAACGAGAACTTTGAAGGCCGAAGTGG Query Sbjct 2341 AGAAGGGTT Query 65 Sbjct 2401

з

G

з

Annotation

.....

occurences

Show 100 🗘 entries										Search all colu	umns:
#seq <	eı	karyotic-tRNAs 🗘	hairpin_T 🗘	LSURef_108_tax_silva_trunc 🔹	Rfam_T	SSURef_108_tax_silva_trunc	SupportedBy ≎	Total 🗘	s_1_uT21 <	s_1_uT2 ≎	s_1_uT4
seq681297#1#189	0		oan-mir-20a-1	X54512.4749.8508	RF00051;mir-17;AAPN01282049.1/1987-2067	0	1	189	0	0	189
seq299078#2#304	0		mmu-mir-5105	V01270.3862.8647	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	2	304	165	0	0
seq610618#2#267	0		sha-mir-5105	V01270.3862.8647	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	2	267	102	0	0
seq1353575#4#218	0		mmu-mir-5105	U34342.1.3663	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	4	218	95	0	17
seq1353596#4#550	0		mmu-mir-5105	U34342.1.3663	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	4	550	161	0	183
seq2060361#3#113	0		mmu-mir-5105	U34342.1.3663	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	3	113	55	0	15
seq2060376#4#266	0		mmu-mir-5105	U34342.1.3663	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	4	266	97	3	56
seq1163251#5#342	0		mmu-mir-5105	U34341.1.3576	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	5	342	96	2	116
seq1353595#5#239	0		mmu-mir-5105	U34341.1.3576	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	5	239	57	4	111
seq1353600#5#759	0		mmu-mir-5105	U34341.1.3576	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	5	759	170	29	247
seq2060374#4#113	0		mmu-mir-5105	U34341.1.3576	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	4	113	25	0	62
seq401616#3#139	0		mmu-mir-5105	U34341.1.3576	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	3	139	54	0	0
seq577112#4#524	0		mmu-mir-5105	U34341.1.3576	RF01960;SSU_rRNA_eukarya;AAYZ01438197.1/1-1685	0	4	524	146	0	203
seq1748431#4#548	0		cfa-mir-195	U34340.1.3432	RF00177;SSU_rRNA_bacteria;EU328070.1/1-1479	EU328070.1.1479	4	548	232	0	92
seq345104#4#102	0		gga-mir-1617	HQ856851.1.2611	RF00090;SNORA74;CAAE01008763.1/14090-14288	0	4	102	25	0	20
seq41650#5#523	0		sha-mir-716a	HQ856851.1.2611	RF00001;5S_rRNA;ABIM01036847.1/2163-2281	0	5	523	258	2	34
seq709529#5#160	0		hsa-mir-4792	GU372691.11134.15878	RF00100;7SK;AANN01516090.1/17881-17571	0	5	160	23	1	80
seq257457#2#119	0		sha-mir-716b	GQ424316.1.1993	RF00001;5S_rRNA;AARH01008767.1/1334-1421	0	2	119	0	0	106
seq718037#4#193	0		mmu-mir-5102	FP929060.89.2972	RF00028;Intron_gpI;EU352794.1/2419-2809	0	4	193	39	0	86
seq53378#5#144	0		mmu-mir-677	FP565809.564563.566970	RF01960;SSU_rRNA_eukarya;AAQR01407656.1/1-1561	AF198113.1.1740	5	144	43	3	56
seq1328312#4#393	0		ata-MIR172	FJ966040.1.2409	RF00100;7SK;AAQQ01276673.1/1502-1765	CABZ01109011.107.1605	4	393	155	24	0
seq1328326#4#142	0		ata-MIR172	FJ966040.1.2409	RF00306;snoZ178;AAZX01013617.1/1306-1470	CABZ01109011.107.1605	4	142	52	8	0
seq487403#4#645	0		ata-MIR172	FJ966040.1.2409	RF00306;snoZ178;AAZX01015218.1/4829-4668	U94741.1.2950	4	645	226	4	0
seq487443#4#169	0		sbi-MIR396c	FJ966040.1.2409	RF00100;7SK;AAKN02002849.1/102766-102498	CABZ01109011.107.1605	4	169	69	2	0
seq1328328#5#144	0		smo-MIR1082a	FJ966040.1.2409	RF00306;snoZ178;AC114644.10/51094-51230	CABZ01109011.107.1605	5	144	52	11	5
seq653494#4#168	0		mmu-mir-5102	FJ605292.1.3569	RF01960;SSU_rRNA_eukarya;CABB01000342.1/31007-29320	0 0	4	168	53	0	34
seq686909#5#164	0		rlcv-mir-rL1-8	FJ424422.1.2497	RF01960;SSU_rRNA_eukarya;Z83748.1/1-1822	GQ352554.1.1846	5	164	6	4	140
eq1328311#5#316	0		ata-MIR172	FJ360703.1.2869	RF00009;RNaseP_nuc;AC102108.12/162476-162168	CABZ01109011.107.1605	5	316	80	24	6
eq667010#4#118	0		mmu-mir-5102	FJ040535.1.4142	RF00028;Intron_gpI;EU352794.1/2419-2809	0	4	118	42	0	8
eq1328321#4#323	0		osa-MIR408	EU921138.1.2387	RF00306;snoZ178;AAZX01015218.1/4829-4668	CABZ01109011.107.1605	4	323	91	23	0
eq487405#4#315	0		smo-MIR1082a	EU921138.1.2387	RF00306;snoZ178;AASC02015737.1/1625-1475	CABZ01109011.107.1605	4	315	124	3	0
seq1461535#5#1418	0		hsa-mir-4700	EU875589.109747.113671	RF00002;5_8S_rRNA;AJ270036.1/1-105	DM486508.4754.6504	5	1418	412	45	476
seq1861043#4#142	0		hsa-mir-4700	EU875589.109747.113671	RF00002;5_8S_rRNA;AF342795.1/144-297	AC211391.79568.81654	4	142	61	0	8

Exercice: – Annotation