RNA-Seq data analysis

Material

• Slides: http://genoweb.toulouse.inra.fr/~formation/LigneCmd/RNAseq/doc/

- pdf : one per page
- pdf : three per page with comment lines

• Memento:

- <u>http://genoweb.toulouse.inra.fr/~formation/LigneCmd/RNAseq/doc/MementoUNIX.pdf</u>
- <u>http://genoweb.toulouse.inra.fr/~formation/LigneCmd/RNAseq/doc/MementoCluster.pdf</u>

• Hands on:

- Data files: <u>http://genoweb.toulouse.inra.fr/~formation/LigneCmd/RNAseq/data/</u>
- Results files:

http://genoweb.toulouse.inra.fr/~formation/LigneCmd/RNAseq/data/correction_star_rsem/

The speakers

Sarah Maman

Céline Noirot

Christine Gaspin

Nathalie Villa-Vialaneix

Session organisation

Day 1 Morning (9h00 -12h30) :

- Prerequisite unix/format
- Biological reminds

Afternoon (14h-17h) :

- Sequence quality Theory + exercises
- Spliced read mapping

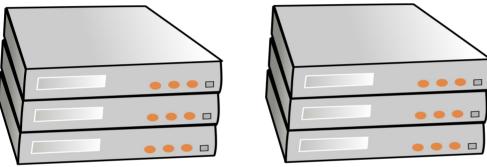
Day 2 Morning (9h00 -12h30) :

- Spliced read mapping Exercises and Visualisation
- Expression quantification Theory + exercises

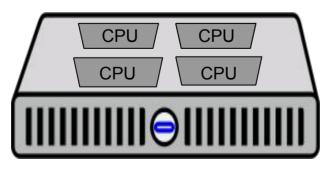
Afternoon (14h-17h) :

- mRNA calling Theory + exercises
- Models comparison Theory + exercises

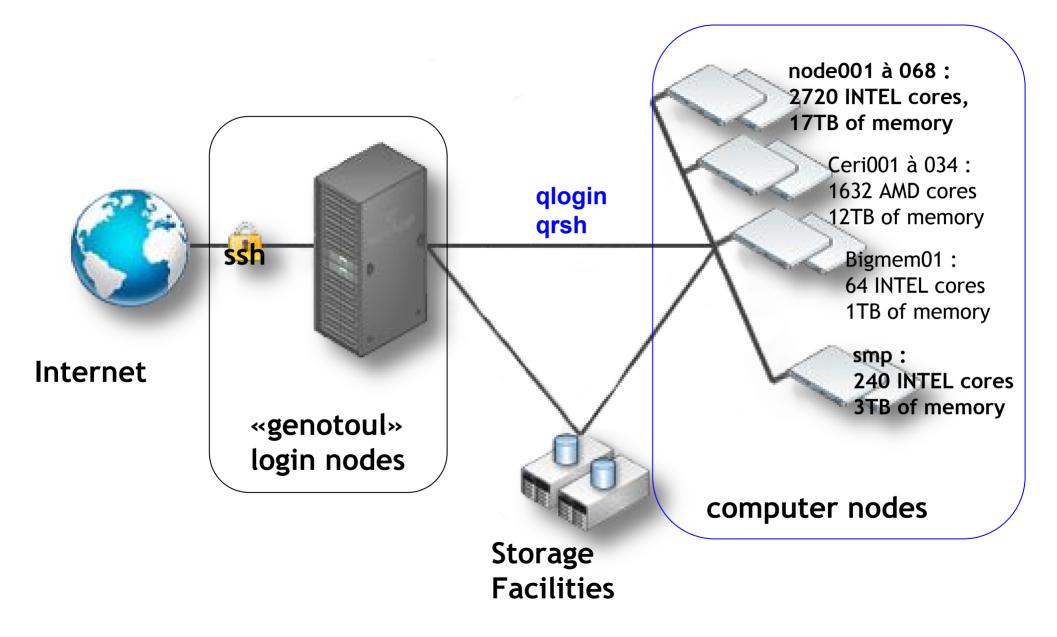
Prerequisite unix


Summary - Unix reminders

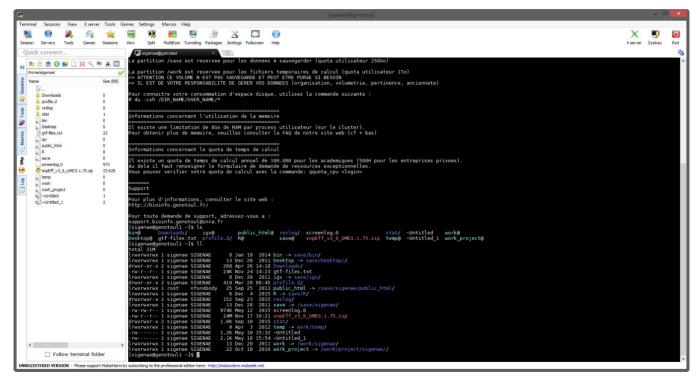
- . Genotoul infrastructure organisation
- How to connect to genotoul
- . How to transfer data
 - From the web to genotoul
 - From genotoul to your computer
- . How to launch jobs on the cluster


• • • • •

Vocabulary : Cluster / Node


• Cluster : set of nodes

• Node : Huge computer (with several CPUs)


« genotoul » cluster

How to connect to genotoul ?

14:13

- Xming (Windows graphic) + Putty (Connection)
- MobaXterm (Executable file)

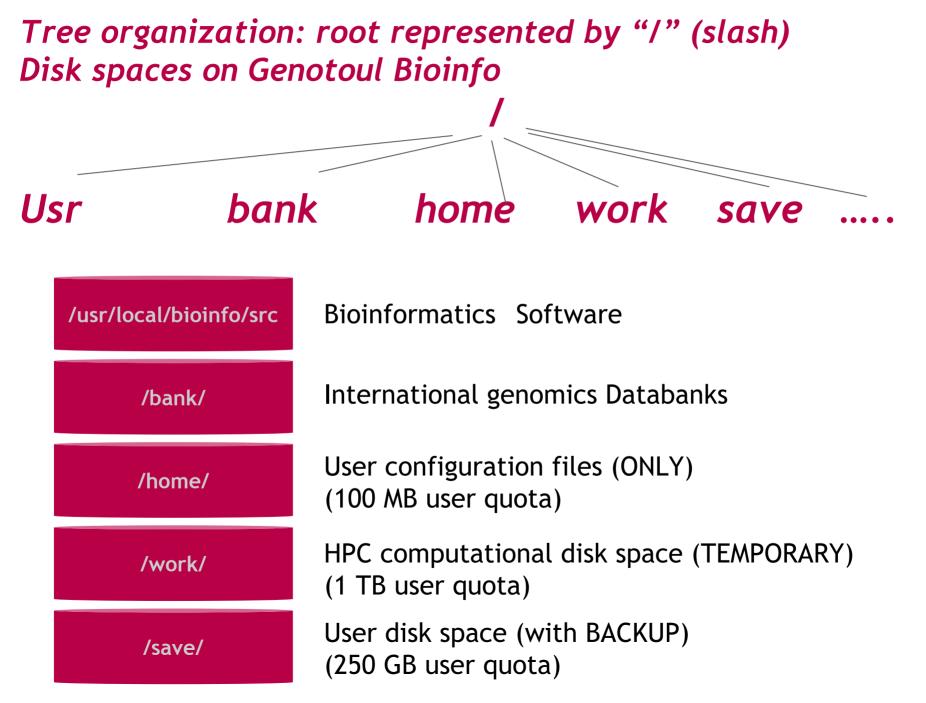
command line: in a Terminal windows
 ssh username@genotoul.toulouse.inra.fr

Linux account

Access to a work environment

- → Login + password
- → Share resources (Cpu, memory, disk)
- → Usage of software installed
- → Free access to computational cluster
- → Own space disk (/save & /work directory)

Which are the main unix/linux commands you know ?


Three standard fluxes are opened when you launch a command:

- Stdin : standard Input
- **Stdout:** standard output (default: screen)
- **Stderr:** standard error output (default: screen)

Redirections with specific operators

- >: redirection of standard output
 Ex: ls * > Liste_file
- < : redirection of standard input Ex: RNAfold < file.fa > Result.out
- >> : redirection of standard output with concatenation
- >& : redirection of standard error and output
- | (pipe) : redirection of standard output on standard input

Linux & Genotoul Bioinfo file organization

Essential commands

• Help pn commands man cmde

• Where I am in the tree ?

pwd

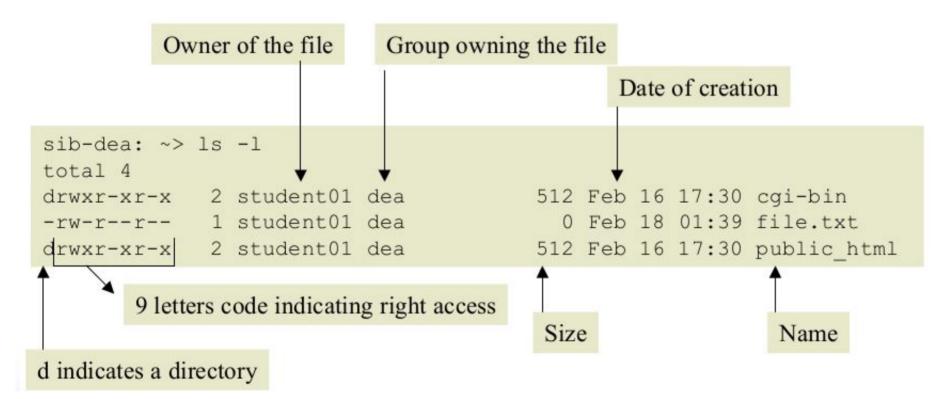
• Moving in the tree

cd dir_namemove to "dir_name" child directorycd ..move to parent directory

List directory content

ls list the content of current directory

Visualize file content


cat f_name, more f_name, head f_name, tail f_name

• Others

cp, mv, rm, mkdir, rmdir, which, grep, wc...

Access rights

Each file (and directory) has associated access rights, which may be found by typing **ls -l** :

- r (or '-'): indicates the presence (or absence) of permission to read and copy the file
- w (or '-'): indicates write permission (or absence of permission)
- x (or '-'): indicates execution permission (or absence of permission)

Very Important Tips

. Copy / Paste with the mouse

- Select a text (it is automatically copied)
- Click on the mouse wheel (the text is pasted where the cursor is located)

. Command and path completion :

- Use the TAB key
- Back to the previously used commands :
 - Use the « up » and « down » keys

How to use Genotoul Bioinfo resources ?

Queues availables for users

Queue	Access	Priority	Max time	Max slots
workq (default)	everyone	300	96H	4120
unlimitq	everyone	100	unlimited	680
smpq	on demand	0	unlimited	240
hypermemq	on demand	0	unlimited	96
Interq (qlogin)	everyone	100	48H	40
galaxyq	galaxy users	No node shared	unlimited	120

Characteristics of "work" working space

- Workq
 - 1 core
 - 8 GB memory maximum
 - Write only /work directory (temporary disk space)
- Work space
 - 1 TB quota disk per user (on /work directory)
 - \circ 120 days files without access automatic purged
- Time resource constraint
 - 100 000H annually computing time (more on demand)

qlogin (with display) / qrsh or qrsh -X

Connected —	<pre>[laborie@genotoul2 ~]\$ qlogin Your job 2470388 ("QLOGIN") has been submitted waiting for interactive job to be scheduled Your interactive job 2470388 has been successfully scheduled. Establishing /SGE/ogs/inra/tools/qlogin_wrapper.sh session to host node001 [laborie@node001 ~]\$</pre>
Disconnected —	[laborie@node001 ~]\$ exit logout /SGE/ogs/inra/tools/qlogin_wrapper.sh exited with exit code 0 [laborie@genotoul2 ~]\$

Job Submission : some examples

Script edition-

\$nedit myscript.sh

head of myscript.sh
!/bin/bash
#\$ -m a
#\$ -l mem=32G
#\$ -l h_vmem=36G

#Mon programme commence ici
ls
end of myscript.sh

qsub: batch Submission

1 - First write a script (ex: myscript.sh) with the command line as following: #\$ -N job_name to give a name to the job #\$ -o /work/.../output_file_name to redirect output standard #\$ -e /work/.../error_file_name *e*rror_file_name : to redirect error file #\$ -q workq queue_name : to specify the batch queue #\$ -m bea mail sending : (b:begin, a:abort, e:end) #\$ -l mem=8G to ask for 8GB of mem (minimum reservation) #\$ -l h_vmem=10G to fix the maximum consumption of memory # My command lines I want to run on the cluster blastall -d swissprot -p blastx -i /save/.../z72882.fa

2 - Then submit the job with the qsub command line as following:

\$qsub myscript.sh Your job 15660 ("mon_script.sh") has been submitted

Job Submission : some examples

Default (workq, 1 core, 8 GB memory max)

\$qsub myscript.sh Your job 15660 ("mon_script.sh") has been submitted

. More memory (workq, 1 core, 32 / 36 GB memory)

\$qsub -l mem=32G -l h_vmem=36G myscript.sh Your job 15661 ("mon_script.sh") has been submitted

. More cores (workq, 8 core, 8*8 GB memory)

\$qsub -l parallel smp 8 myscript.sh Your job 15662 ("mon_script.sh") has been submitted

Monitoring jobs : qstat

\$qstat	
job-ID prior name	user state submit/start queue slots ja-task-ID
Job-ID : prior : name : user : state : submit/start at : Queue : slots : ja-task-ID :	job identifier priority of job job name user name actual state of job (see follow) submit/start date batch queue name number of slots aked for the job job array task identifier (see follow)

qstat -u my_login | more

Monitoring jobs : qstat

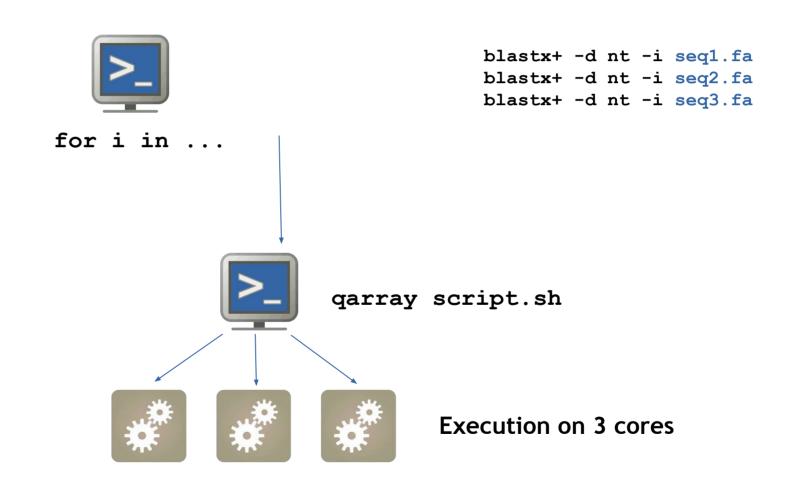
- state : actually state of job
 - d(eletion) : job is deleting
 - E(rror): job is in error state
 - h(old), w(waiting) : job is pending
 - t(ransferring) : job is about to be executed
 - r(unning) : job is running
- man qstat : to see all options of qstat command

Deleting a job : qdel

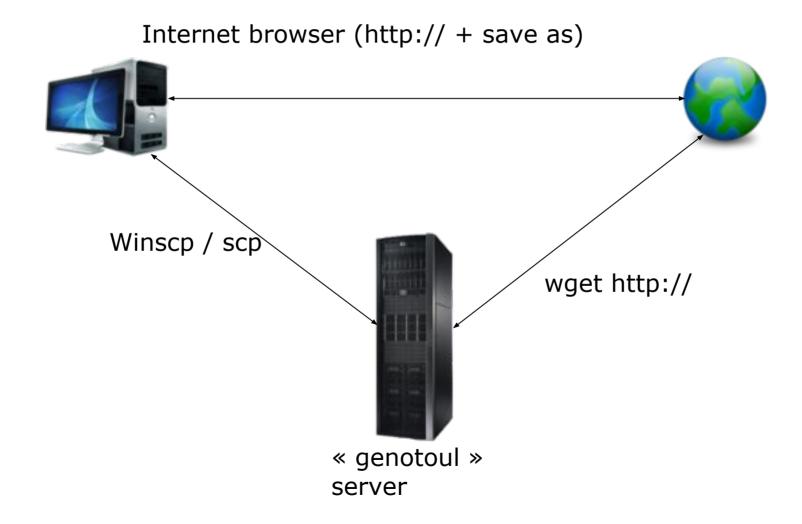
\$qstat -u laborie

job-ID prior name user state submit/start at queue slots ja-task-ID

3629151 512.54885 sleep laborie r 02/25/2015 16:23:03 workq@node002 1


\$ qdel 3629151 laborie has registered the job 3629151 for deletion

Array of jobs concept


- → Concept : segment a job into smaller atomic jobs
- → Improve the processing time very significantly (the calculation is performed on multiple processing cores)

blast in job array mode

Several possible cases

File download from Internet to « genotoul server »:

• Copy the URL of the file to download

wget http://url.a.telecharger/nom fichier

Transfer between genotoul and desktop computer

We recommend to use « scp » command (secure copy)

scp [user@host1:]file1 [user@host2:]file2 copy file from the network

Example copy from desktop to "genotoul":

scp source_name bleuet@genotoul:destination_name

WinSCP / FileZilla : copy via graphical interface

Local Mark Files ⊆ommands ♦ 🕅 🗊 + 🟦 📽 📀	-	1		🖉 🕜 Default 🗸 🚱		
	100 100					
🍛 C: Disque local 💉 🛛 💠 👻	· ⇒ •]	🖻 🖸 🚮 🛃	🔁 🔁	🔁 dlaborie 🛛 🖌 🗸 🖛	> - 🗈 🗖 🚮 🖯	3 '
NDocuments and SettingsNaborie	Mes doci	uments		/home/dlaborie		
Name 🍝 Ext	Size	Туре	Cha 📤	Name Ext -	Size Changed I	Righ
<u>)</u>		Parent directory	23/C	E	29/10/2007 17: r	WX
ArcSoft		Dossier de fichiers	03/C	etc	09/09/2005 10: r	wx
<u> didierlaborie</u>		Dossier de fichiers	19/1	🛅 instal_outils	28/09/2005 10: r	WX
🛓 Ma musique		Dossier de fichiers	25/C	MYSQL .	13/10/2005 17: r	wx
Mes images		Dossier de fichiers	21/1	i 🛅 mysql_dump	09/09/2005 10: r	wx
Mes vidéos		Dossier de fichiers	08/C	Compos-test	09/11/2006 11: r	WX
My Albums		Dossier de fichiers	03/C	i perl	09/09/2005 10: r	WX
My Pictures		Dossier de fichiers	04/C	pg_dump	09/09/2005 10: r	wx
🗋 my videos		Dossier de fichiers	15/C	i public_html	16/03/2007 14: r	wx
🛅 Turbo Lister		Dossier de fichiers	14/C	🚞 seq_membranes-pcr	25/10/2007 18: r	wx
🛅 Turbo Lister Backup		Dossier de fichiers	07/1	C TEST	04/05/2005 17: r	WX
🗃 Updater5		Dossier de fichiers	06/C	C TMHMM_12991	31/07/2006 13: r	wx
🖺 - Conseils de prise en m	183 808	Document Micro	29/C	🛅 tmp	09/09/2005 10: n	wx
Conso.xls	13 312	Feuille Microsoft	23/C	i 🗀 usr	09/09/2005 10: r	wx
💁 desktop i ini	79	Paramètres de	25/C	Cmpm_mysql4.1	09/09/2005 10: r	wx
Exemple - Dépenses do	25 088	Feuille Microsoft	14/C	impm_php4.1	09/09/2005 10: r	wx
Exemple - Golf et bien	36 864	Feuille Microsoft	14/C	C php-4.3.11	30/03/2005 16: r	wx
Exemple - Guide de voy	37 376	Document Micro	14/C	Crpm_mysql3.23	09/09/2005 10: r	wx
Exemple - Signer un co	74 752	Présentation Mi	22/C	🛅 XML-Parser-2.34	18/08/2003 22: r	WX
🗒 licenceXP.txt	45	Document texte	18/C	Crpm_postgresql7.4.8	09/09/2005 10: r	WX
	298 818	Archive WinRA	22/C	arb_prop	06/12/2006 11: r	WX
Duaranne vie	17 920	Fauilla Microsoft	nz/r	aconf	28/11/2006 18· · ·	MIV.
<u>] </u>			2	<		>
B of 4 578 KB in 0 of 21				0 B of 133 MB in 0 of 164		

Introduction to NGS formats

Summary - Format remind

Genome

Genome annotations

FASTA GFF/BED

fastq format

- Standard for storing outputs of HTS
- A text-based format for storing a read and its corresponding quality scores
- 1 read <-> 4 lines

- 1. Begins with '@' character and is followed by a sequence identifier
- 2. The raw sequence
- 3. Begins with a '+' character and is optionally followed by the same sequence identifier
- 4. Encodes the quality values for th read, contains the same number of symbols as letters in the read

fastq format

• Sequence identifier

@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG

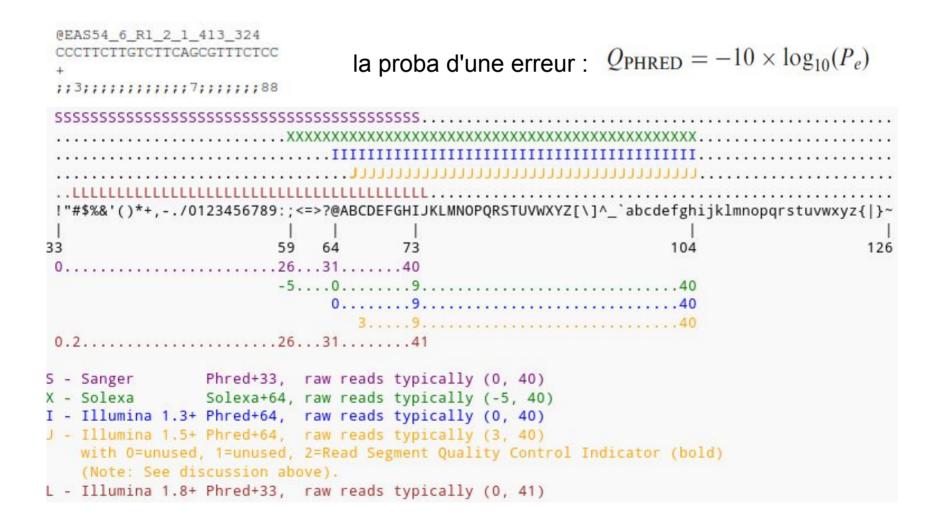
1. Begins with '@' character and is followed by a sequence identifier

EAS139	the unique instrument name					
136	the run id					
FC706VJ	he flowcell id					
2	flowcell lane					
2104	ile number within the flowcell lane					
15343	'x'-coordinate of the cluster within the tile					
197393	'y'-coordinate of the cluster within the tile					
1	the member of a pair, 1 or 2 (paired-end or mate-pair reads only)					
Y	Y if the read is filtered, N otherwise					
18	0 when none of the control bits are on, otherwise it is an even number					
ATCACG	index sequence					

fastq format

• Base quality (Sanger standard)

ASCII-encoded version of the PHRED quality given by $Q_{\text{PHRED}} = -10 \times \log_{10}(P_e)$ SANGER=PHRED+33 : H=ASCII(40+33) $Q = -10 \log_{10} P \Leftrightarrow P = 10^{\frac{-Q}{10}}$


Score de qualité phred	Probabilité d'une identification incorrecte	Précision de l'identification d'une base
10	1 pour 10	90 %
20	1 pour 100	99 %
30	1 pour 1000	99.9 %
40	1 pour 10000	99.99 %
50	1 pour 100000	99.999 %

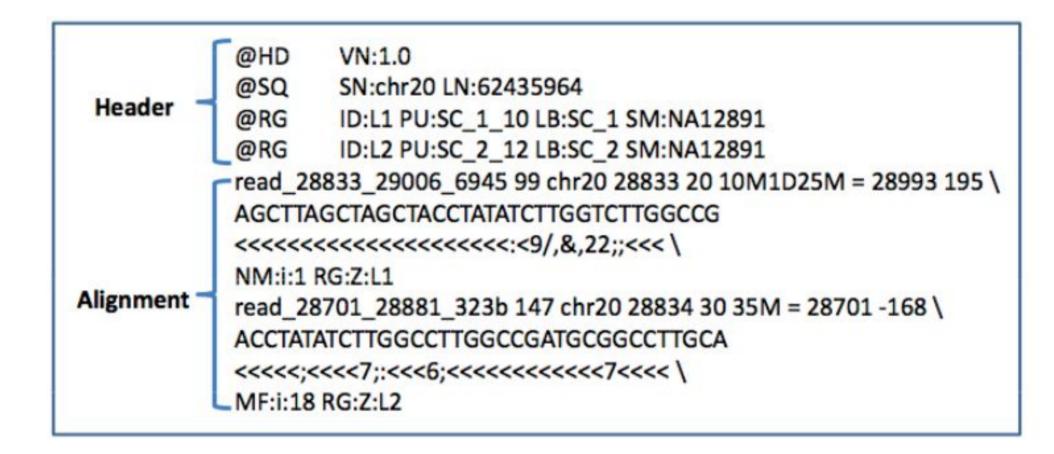
SURVEY AND SUMMARY

fastq format

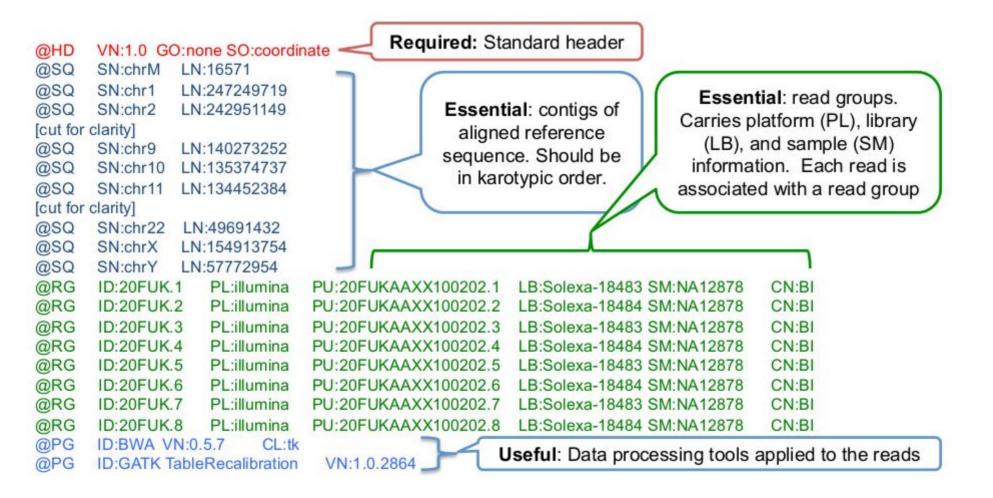
The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants

Peter J. A. Cock^{1,*}, Christopher J. Fields², Naohisa Goto³, Michael L. Heuer⁴ and Peter M. Rice⁵

- Data sharing was a major issue with the 1000 genomes
- Capture all of the critical information about NGS data in a single indexed and compressed file (bam)
- Generic alignment format
- Supports short and long reads (454 Solexa Solid)
- Flexible in style, compact in size, efficient in random access


Website :

http://samtools.sourceforge.net


Paper :

Li H.*, Handsaker B.*, Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. and 1000 Genome Project Data Processing Subgroup (2009) The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics, 25, 2078-9. [PMID: 19505943]

- Header file : generic information
- Body file : read alignments

Header file : generic information

- Header file: generic information
- Body file (alignment description)
 - 11 mandatory fields
 - Variable number of optional fields
 - Tab delimited fields

Col	Field	Description	
1	QNAME	Query template/pair NAME	
2	FLAG	bitwise FLAG	
3	RNAME	Reference sequence NAME	
4 POS 1-based leftmost POSition/coordinate of clipped s		1-based leftmost POSition/coordinate of clipped sequence	
5	MAPQ	MAPping Quality (Phred-scaled)	
6	CIAGR	extended CIGAR string	
7	MRNM	Mate Reference sequence NaMe ('=' if same as RNAME)	
8	MPOS	1-based Mate POSistion	
9 TLEN inferred Template LENgth (insert size)		inferred Template LENgth (insert size)	
10 SEQ query SEQuence on the same strand as the refere		query SEQuence on the same strand as the reference	
11	QUAL	query QUALity (ASCII-33 gives the Phred base quality)	
12+	OPT	variable OPTional fields in the format TAG:VTYPE:VALUE	

Header

				/									_
ERROO	00017_2.sar	n											
@SQ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	SN:ref 16 ref 16 ref 4 *	LN:483308 740202 740202 740202 740202 740202 740202 740202 740202 740202 740202 740202 740202 7402037 2919865 2995664 510805 740202 0	0 0 0 0 0 0 0 0 0 0 0 0 0 25 37 37 0 0	18M 18M 18M 18M 18M 18M 18M 18M 18M 18M	* * * * * * * * * * *				<pre>>>>>>7777777777 <>>>>>>777777777777 >>>>>>7777777777</pre>	>>> XT:A: ??? XT:A: >>> XT:A: >>> XT:A: >>> XT:A: \$>> XT:A: \$>>> XT:A: \$>>> XT:A:	R NM:1:2 R NM:1:2 R NM:1:2 R NM:1:2 R NM:1:2 R NM:1:2 R NM:1:2 R NM:1:2 J NM:1:2 J NM:1:2 J NM:1:0 J NM:1:0 R NM:1:2	MD:Z:5A5A6 MD:Z:5A5A6 MD:Z:5A5A6 MD:Z:5A5A6 MD:Z:5A5A6 MD:Z:5A5A6 MD:Z:5A5A6 MD:Z:5A5A6 MD:Z:5A5A6 MD:Z:5A5A6 MD:Z:5A5A6 MD:Z:18 MD:Z:18 MD:Z:18 MD:Z:5A5A6 MD:Z:5A5A6	Alignement
16 17	16 ref 0 ref	740202 1847349	0 37	18M 9M1I8M	* 1			mm	>>>>>>?????????????????????????????????	??? XT:A:			
<qna< td=""><td>AME> <fi< td=""><td>LAG> <f< td=""><td>RNAM</td><td>E> <po< td=""><td>S> -</td><td><ma< td=""><td>.PQ> <ciga< td=""><td>AR> <mr< td=""><td>NM> <mpos> <</mpos></td><td><isize> <se([<tag>: <v1< td=""><td></td><td></td><td>]</td></v1<></tag></se(</isize></td></mr<></td></ciga<></td></ma<></td></po<></td></f<></td></fi<></td></qna<>	AME> <fi< td=""><td>LAG> <f< td=""><td>RNAM</td><td>E> <po< td=""><td>S> -</td><td><ma< td=""><td>.PQ> <ciga< td=""><td>AR> <mr< td=""><td>NM> <mpos> <</mpos></td><td><isize> <se([<tag>: <v1< td=""><td></td><td></td><td>]</td></v1<></tag></se(</isize></td></mr<></td></ciga<></td></ma<></td></po<></td></f<></td></fi<>	LAG> <f< td=""><td>RNAM</td><td>E> <po< td=""><td>S> -</td><td><ma< td=""><td>.PQ> <ciga< td=""><td>AR> <mr< td=""><td>NM> <mpos> <</mpos></td><td><isize> <se([<tag>: <v1< td=""><td></td><td></td><td>]</td></v1<></tag></se(</isize></td></mr<></td></ciga<></td></ma<></td></po<></td></f<>	RNAM	E> <po< td=""><td>S> -</td><td><ma< td=""><td>.PQ> <ciga< td=""><td>AR> <mr< td=""><td>NM> <mpos> <</mpos></td><td><isize> <se([<tag>: <v1< td=""><td></td><td></td><td>]</td></v1<></tag></se(</isize></td></mr<></td></ciga<></td></ma<></td></po<>	S> -	<ma< td=""><td>.PQ> <ciga< td=""><td>AR> <mr< td=""><td>NM> <mpos> <</mpos></td><td><isize> <se([<tag>: <v1< td=""><td></td><td></td><td>]</td></v1<></tag></se(</isize></td></mr<></td></ciga<></td></ma<>	.PQ> <ciga< td=""><td>AR> <mr< td=""><td>NM> <mpos> <</mpos></td><td><isize> <se([<tag>: <v1< td=""><td></td><td></td><td>]</td></v1<></tag></se(</isize></td></mr<></td></ciga<>	AR> <mr< td=""><td>NM> <mpos> <</mpos></td><td><isize> <se([<tag>: <v1< td=""><td></td><td></td><td>]</td></v1<></tag></se(</isize></td></mr<>	NM> <mpos> <</mpos>	<isize> <se([<tag>: <v1< td=""><td></td><td></td><td>]</td></v1<></tag></se(</isize>]
	NM : MD :	Reserve Number String Read gr	of nu for m	c. Diff	ere		itions	i : Sig f : Sin Z : Pri	ntable charact ned 32-bit int gle-precision ntable string string (high	teger float numbe			

SAM format - Flag field

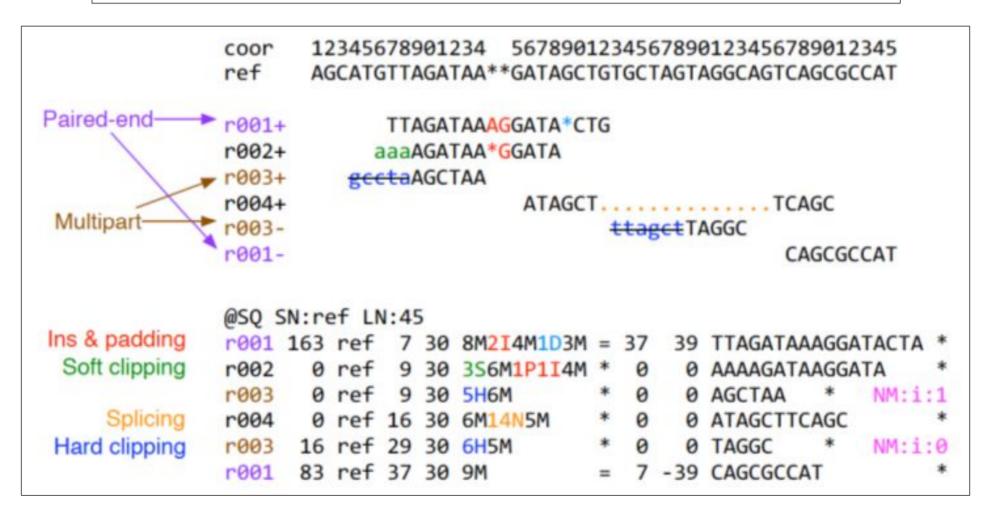
Decimal values in sam lines_

Examples

- 1 = 00000001 \rightarrow paired end read
- 2 = 00000010 \rightarrow mapped as proper pair
- 4 = 00000100 \rightarrow unmappable read
- 8 = 00001000 \rightarrow read mate unmapped
- 16 = 00010000 \rightarrow read mapped on reverse strand

The flag $11 \rightarrow 1 + 2 + 8 = 0001011$ (conditions 1, 2 and 8 satisfied)

Other examples 0=00000000 ??? 99=01100011 ??? 147=10010011 ???


Flag	Chr	Description			
0x0001	р	the read is paired in sequencing			
0x0002	Р	the read is mapped in a proper pair			
0x0004	u	the query sequence itself is unmapped			
0x0008	U	the mate is unmapped			
0x0010	r	strand of the query (1 for reverse)			
0x0020	R	strand of the mate			
0x0040	1	the read is the first read in a pair			
0x0080	2	the read is the second read in a pair			
0x0100	S	the alignment is not primary			
0x0200	f	the read fails platform/vendor quality checks			
0x0400	00 d the read is either a PCR or an optical duplica				

Picard tools

https://broadinstitute.github.io/picard/explain-flags.html

SAM format - cigar line

M: match/mismatch	I: insertion	D: deletion
S: softclip	H: hardclip	P: padding
N: skipp		

How to manipulate them ?

• Samtools

http://samtools.sourceforge.net/

• Picard tools

https://broadinstitute.github.io/picard/

• Bedtools

http://bedtools.readthedocs.io/en/latest/

Hands-on : unix & formats

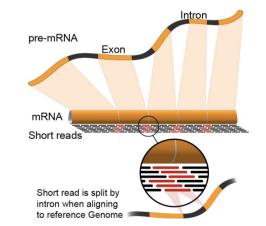
Training accounts :

anemone aster camelia chardon cobee cosmos dahlia geranium

arome bleuet capucine clematite coquelicot cyclamen digitale gerbera

Exercise 1 : using basic unix commands

Exercise 2 : format manipulation

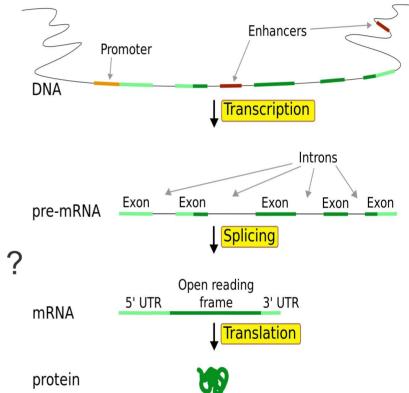

Summary - Biological reminders

- Context, vocabulary, transcriptome variability ...
- Methods to analyse transcriptomes
- What is RNAseq?
- High throughput sequencers
- Illumina protocol, paired-end library, directional library
- Retrieve public data and presentation of data for practical work

Different approaches :

Alignment to

- De novo
 - No reference genome, no transcriptome available
 - Very expensive computationally
 - Lots of variation in results depending on the software used
- Reference transcriptome
 - Most are incomplete
 - Computationally inexpensive
- Reference genome
 - When available
 - Allow reads to align to unannotated sites
 - Computationally expensive
 - Need a spliced aligner


Context

Prerequis :

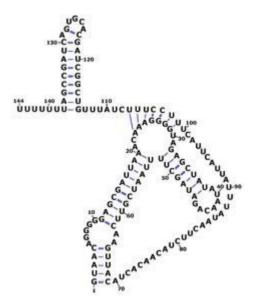
- Reference genome available
- RNAseq sequencing (sequence of transcript)

Try to answer to :

- . How to map transcript to the genome ?
- . How to discover new transcript?
- What are the alternative transcript?

Source : en.wikipedia.org/wiki/User:Forluvoft/sandbox

Gene : functional units of DNA that contain the instructions for generating a functional product.


Exon : coding region of mRNA included in the transcript **Intron** : non coding region **TSS** : Transcription Start Site $\neq 1^{st}$ amino acid **Transcript :** stretch of DNA transcribed into an RNA molecule

Transcription products

Protein coding gene: transcribed in mRNA ncRNA : highly abundant and functionally important RNA

- tRNA,
- rRNA,
- snoRNAs,
- microRNAs,
- siRNAs,
- piRNAs
- lincRNA

http://en.wikipedia.org/wiki/User:Amarchais/RsaOG_RNA

ENCODE

GENCODE Data Stats Browser

Statistics about the current GENCODE freeze (version 21)

Statistics of previous GENCODE freezes are found archived here.

* The statistics derive from the **gtf file** [©] that contains only the annotation of the main chromosomes.

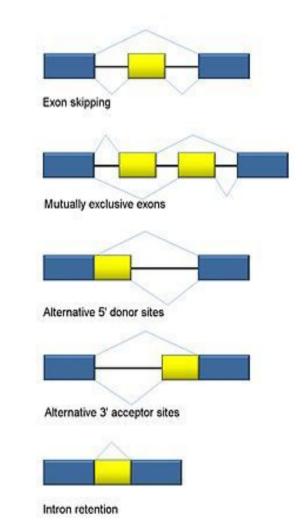
For details about the calculation of these statistics please see the **README_stats.txt** [©] file.

Version 21 (June 2014 freeze, GRCh38) - Ensembl 77

General stats

Total No of Genes	60155	Total No of Transcripts	196327
Protein-coding genes	19881	Protein-coding transcripts	79377
Long non-coding RNA genes	15877	- full length protein-coding:	54420
Small non-coding RNA genes	9534	- partial length protein-coding:	24957
Pseudogenes	14467	Nonsense mediated decay transcripts	13222
- processed pseudogenes:	10753	Long non-coding RNA loci transcripts	26414
- unprocessed pseudogenes:	3230		
- unitary pseudogenes:	170		
- polymorphic pseudogenes:	59		
- pseudogenes:	29	Total No of distinct translations	59512
Immunoglobulin/T-cell receptor gene segments		Genes that have more than one distinct	13526
- protein coding segments:	395	translations	
- pseudogenes:	226		

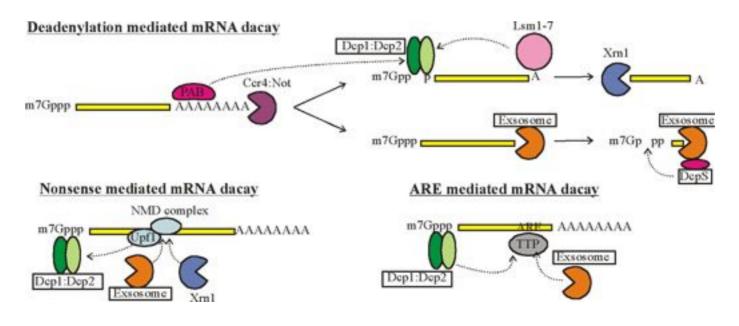
http://www.gencodegenes.org/stats.html


Alternative splicing

Alternative splicing (or differential splicing)

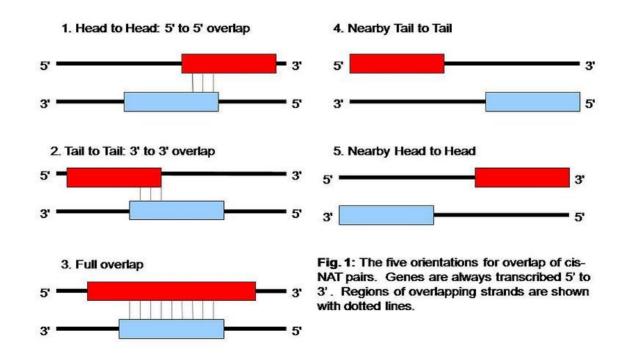
- the exons are reconnected in multiple ways during RNA splicing.
- different mRNAs translated into different protein isoforms
- a single gene may code for multiple proteins.

Intron Retention


Post-transcriptional modification (eukaryotic cells) eg: the conversion of precursor messenger RNA into mature mRNA (mRNA), editing...

http://en.wikipedia.org/wiki/Alternative_splicing

Transcript degradation


- . mRNA export to the cytoplasm,
- protected from degradation by a 5' cap structure and a 3' polyA tail.
- the polyA tail is gradually shortened by exonucleases
- the degradation machinery rapidly degrades the mRNA in both in directions.
- others mechanisms, bypass the need for deadenylation and can remove the mRNA from the transcriptional pool independently.

http://www.eb.tuebingen.mpg.de/research-groups/remco-sprangers

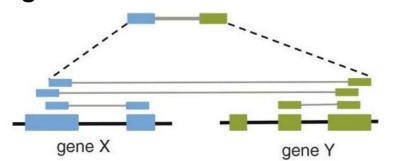
Cis-natural antisense transcript

 Natural antisense transcripts (NATs) are a group of RNAs encoded within a cell that have transcript complementarity to other RNA transcripts.

http://en.wikipedia.org/wiki/Cis-natural_antisense_transcript

Fusion genes

 A fusion gene is a hybrid gene formed from two previously separate genes. It can occur as the result of a translocation, interstitial deletion, or chromosomal inversion. Often, fusion genes are oncogenes.


Genome Biol. 2011 Jan 19;12(1):R6. [Epub ahead of print]

Identification of fusion genes in breast cancer by paired-end RNA-sequencing.

Edgren H, Murumagi A, Kangaspeska S, Nicorici D, Hongisto V, Kleivi K, Rye IH, Nyberg S, Wolf M, Borresen-Dale AL, Kallioniemi O. Institute for Molecular Medicine Finland (FIMM), Tukholmankatu 8, Helsinki, 00290, Finland. olli.kallioniemi@fimm.fi.

http://en.wikipedia.org/wiki/Fusion_gene

 They often come from trans-splicing : Trans-splicing is a special form of RNA processing in eukaryotes where exons from two different primary RNA transcripts are joined end to end and ligated.

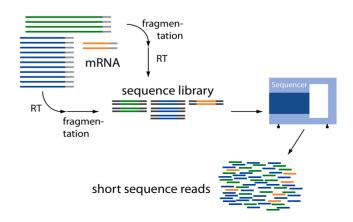
http://en.wikipedia.org/wiki/Trans-splicing

Transcriptome variability

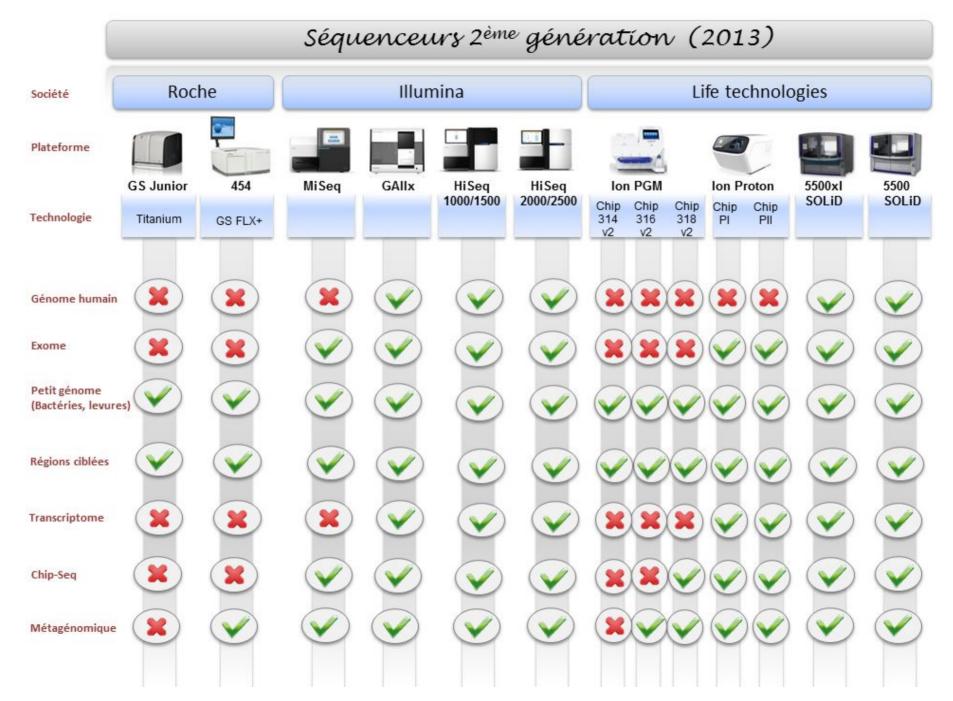
- Many types of transcripts (mRNA, ncRNA ...)
- Many isoform (non canonical splice sites, intron retention ...)
- Number of transcripts
 - possible variation factor between transcripts: 10⁶ or more,
 - expression variation between samples.
- Allele specific expression

How can we study the transcriptome?

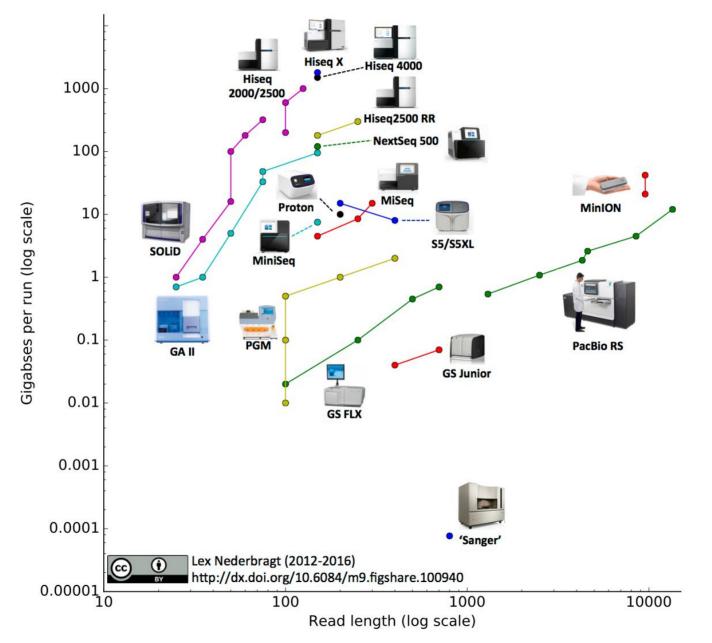
Techniques classification


EST	PCR/RT-QPCR	SAGE	MicroArrays
No quantification	Quantification	Quantification	Indirect quantification
Low throughput	Low throughput (up to hundreds)	C .	High throughput (up to millions)
Discovery (Yes)	No	No	Discovery (Yes)

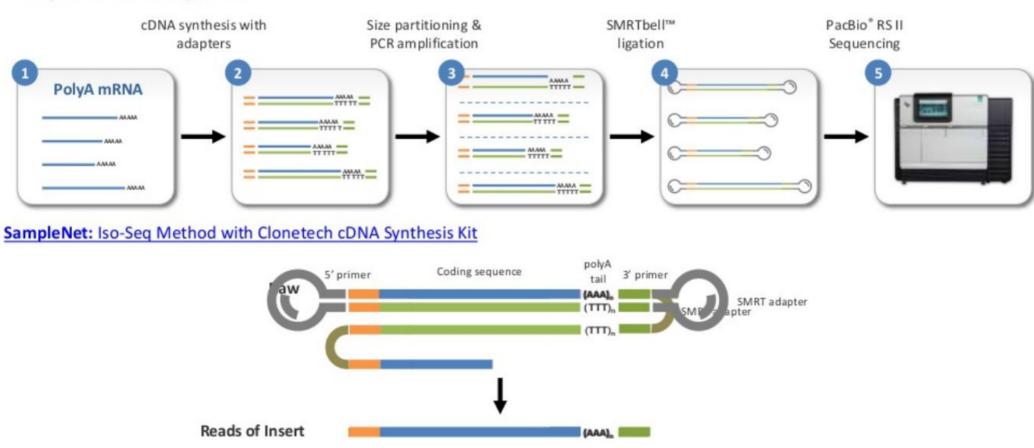
→ Need transcript sequence partially known


 \rightarrow Difficulties in discovering novels splice events

What is different with RNA-Seq ?


- No prior knowledge of sequence needed
- Specificity of what is measured
- Increased dynamic range of measure, more sensitive detection
- Direct quantification
- Good reproducibility
- Different levels : genes, transcripts, allele specificity, structure variations
- New feature discovery: transcripts, isoforms, ncRNA, structures (fusion...)
- Possible detection of SNPs, ...

SGS platforms

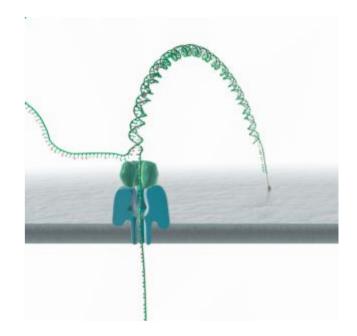

SGS platforms

https://flxlexblog.wordpress.com/2016/07/08/developments-in-high-throughput-sequencing-july-2016-edition/#more-790

PacBio : ISOseq

- Produce full-length transcripts without assembly (up to 10 kb in length)
- Discover isoform
- Can not be used for differential expression analysis

Experimental Pipeline


https://www.slideshare.net/adeslat/june-17-pacbio-user-group-meeting-presentation-how

MinION

Available now for sequencing cDNAs

- . Longest read length: 98kb
- . Median read length: 1kb
- . Mean read length: 2kb

http://dx.doi.org/10.1016/j.bdq.2015.02.001

Coming next: direct analysis of RNA

- RNA modifications
- PCR-free protocols
- Increased accuracy compared to using reverse transcriptases

https://www.slideshare.net/adeslat/june-17-pacbio-user-group-meeting-presentation-how

What are we looking for?

Identify genes

- List new genes

Identify transcripts

- List new alternative splice forms

Quantify these elements \rightarrow differential expression

Usual questions on RNA-Seq !

- How many replicates ?
 - Technical or/and biological replicates ?
- How many reads for each sample?
- How many conditions for a full transcriptome ?
- How long should my reads be ?
- Single-end or paired-end ?

Depth VS Replicates

https://www.encodeproject.org/documents/cede0cbe-d324-4ce7-ace4-f0c3eddf5972

- Encode (2016) : /@@download/attachment/ENCODE%20Best%20Practices%20for%20RNA_v2.pdf
 - Experiments should be performed with two or more biological replicates, unless there is a compelling reason why this is impractical or wasteful
 - Replicate concordance: the gene level quantification should have a Spearman correlation of >0.9 between isogenic (same donor) replicates and >0.8 between anisogenic (different donor) replicates.
- Between **30M and 100M reads** per sample depending on the study.
 - evaluate the similarity between the transcriptional profiles of two polyA+ samples ==> modest depths of sequencing.
 - discovery of novel transcribed elements and strong quantification of known transcript isoforms ==> more extensive sequencing.
- Zhang et al. 2014 : From 3 replicates improve DE detection and control false positive rate.

Depth VS Replicates

Gene expression

0.0

0.0

0.2

0.4

False Positive Rate

0.6

0.8

1.0

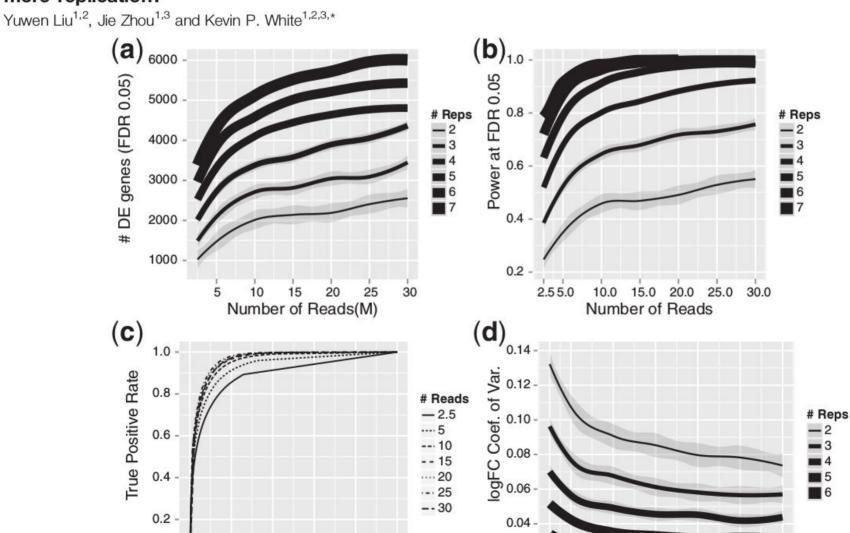
Advance Access publication December 6, 2013

0.02

2.5 5.0

10.0

15.0

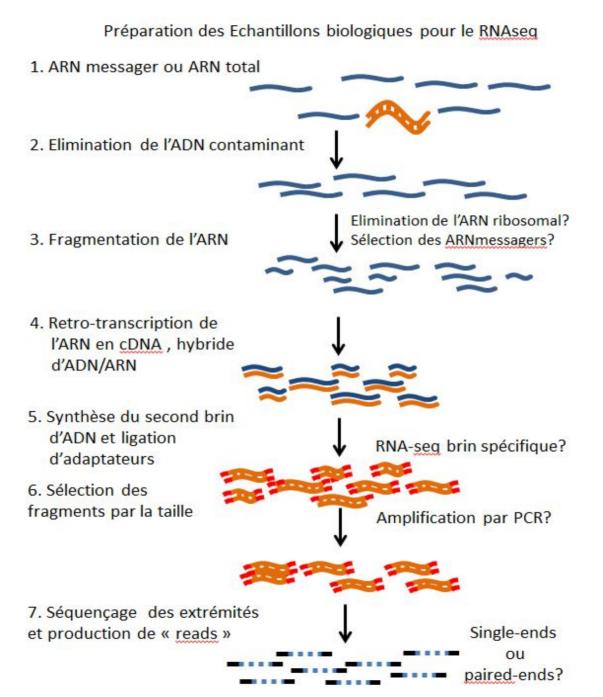

Number of Reads

20.0

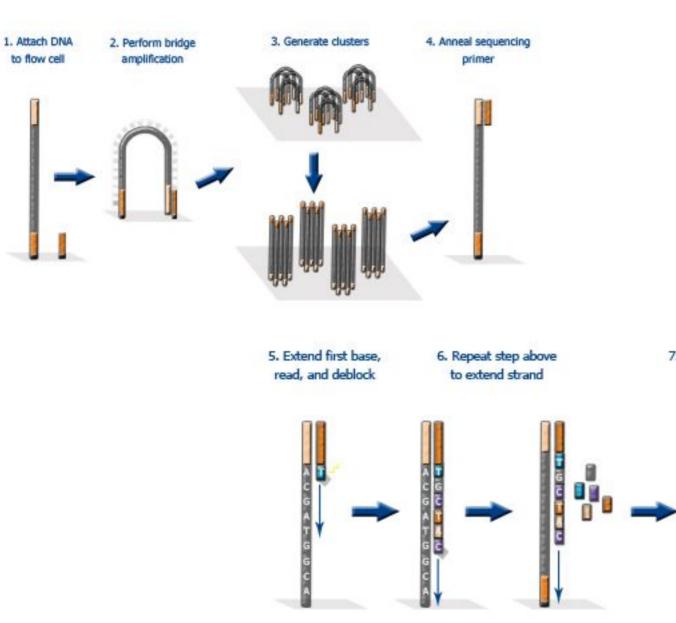
25.0

30.0

RNA-seq differential expression studies: more sequence or more replication?


Illumina RNA-Seq protocol

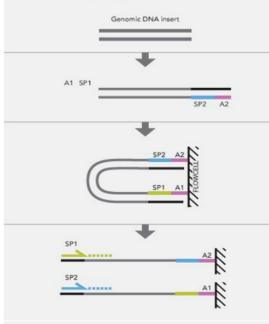
Library Preparation	Fragment DNA Repair ends Add A overhang Ligate adapters Purify
2 Cluster Generation	Hybridize to flow cell Extend hybridized template Perform bridge amplification Prepare flow cell for sequencing
3 Sequencing	Perform sequencing Generate base calls
4 Data Analysis	Images Intensities Reads Alignments

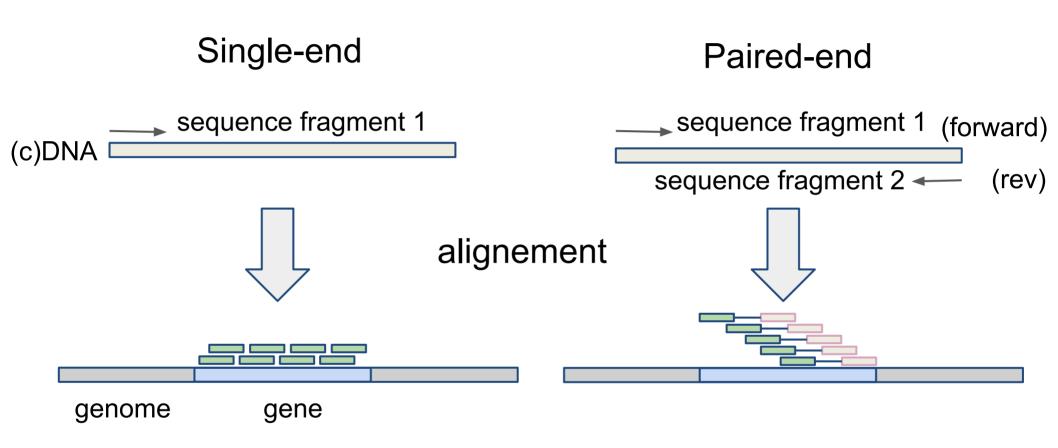

1 Flowcell:

- in general 1 run
- equivalent to 8 Lane
- ✤ Hiseq 2500: 2 Billion reads single or 4 Billion paired reads.

RNA-Seq library preparation

Clusters generation / Sequencing




Paired-end sequencing

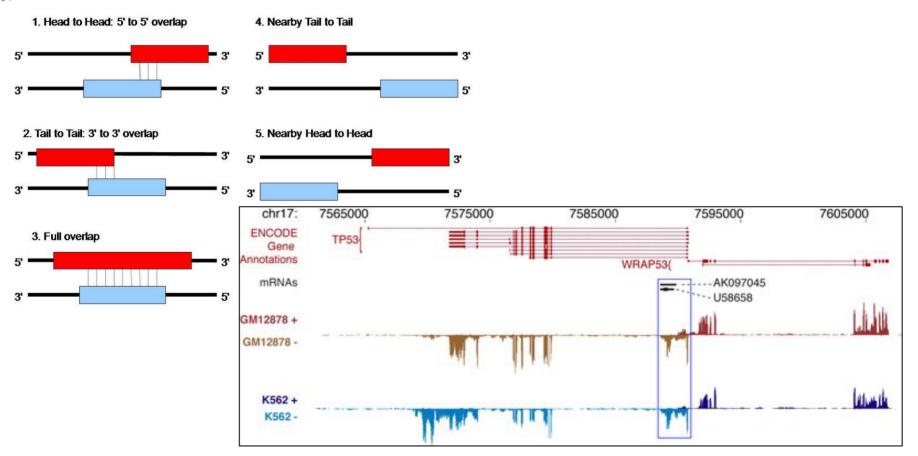
- Modification of the standard single-read DNA library preparation facilitates reading both ends of each fragment
- Improvement of mapping
- Help to detect structural variations in the genome like insertions or deletions, copy number variations and genome rearrangements

Adapter (A1 and A2) with sequencing primer sites (SP1 and SP2) are ligated onto DNA fragments. Template clusters are formed on the flow cell by bridge amplification and then sequenced by synthesis from the paired primers sequentially.

Paired-end VS single-end

- The cDNA size hive the insert size (ex. 200-500 pb).
- The fragment are usually forward-reverse.

Strand specific RNA-Seq protocol


Nat Methods. 2010 Sep;7(9):709-15. Epub 2010 Aug 15.

Comprehensive comparative analysis of strand-specific RNA sequencing methods.

Levin JZ, Yassour M, Adiconis X, Nusbaum C, Thompson DA, Friedman N, Gnirke A, Regev A.

Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA. jlevin@broadinstitute.org

Abstract

Why?

- Because there's a lot of public data that would be sufficient for your analysis
- The authors often use only part of the data to answer their own problems
- Perhaps you don't need your own data

Home Search & Browse Submit & Update Software About ENA Support

ENA > Search and browse

Searching ENA

ENA data can be searched and retrieved interactively and programmatically and visualized using the ENA Browser. Please refer to the following sections for more information about the ENA data access functionality with links to more detailed documentation.

Free text search

Free text search is provided from the search box in the header of all ENA web pages and through the search available at the top of all EMBL-EBI web pages. Advanced search options are available from the ENA Advanced Search page.

Sequence similarity search

Sequence similiary search is provided from the ENA home page. Advanced search options are available from the ENA Sequence Search page.

Programmatic data access

The main programmatic interface for accessing ENA data is through the <u>ENA Browser</u>. The ENA Browser is designed to be accessed through REST URLs for easy programmatic access to retrieve data and metadata in a variety of formats.

Bulk data download

Most ENA data can be downloaded in bulk through FTP and Aspera protocols ... more information.

Search & Browse

- Data formats
 - Genome assemblies
- Marker portal
- Taxon portal
- Programmatic access
 - Data retrieval
 - Taxon portal
 - Marker portal
 - Search
 - File reports
 - XREF service
- Genome assembly database
- Taxonomy Service
 - Translation tables
- Download

Fastq file 2

Fastq file 2

File 2

File 2

Experiment: ERX1604042

View:

XML

Illumina HiSeq 2500 paired end sequencing; Root transcriptome profiling in chilling-sensitive tomato (S. lycopersicum cv. Moneymaker) and the more cold-tolerant wild tomato S. less habrochaites LA1777 compared at optimal and suboptimal temperature.

Submitting Centre Platform Model University of Groningen, Genomics ILLUMINA Illumina HiSeq 2500 Research in Ecology & Evolution in Nature (GREEN) - Plant Physiology, Groningen Institute for Evolutionary Life Sciences (GELIFES) Library Selection **Library Layout Library Strategy** Library Source **Library Name** PAIRED RNA-Seq TRANSCRIPTOMIC **cDNA** Sample 1 p Read Files Attributes Navigation This table contains the files for experiment ERX1604042 Bulk Download Files 1 of 1 results in Download: 1 TEXT Select columns Showing results 1 - 1 of 1 results Scientific **Instrument Library Read** FASTQ FASTQ Submitted Submitted NCBI NCBI CRAM CRA Study Sample Secondary **Experiment** Run Tax accession ID platform layout count files files files (FTP) files SRA SRA file Index Inde accession sample accession accession name (FTP) (Galaxy) accession (Galaxy) file (Galaxy) files files (FTP) (FTP) (Gal PRJEB14805 SAMEA4079218 ERS1250328 ERX1604042 ERR1533150 62890 ILLUMINA PAIRED 19,975,820 File 1 Fastq file 1 Fastq file 1 Solanum File 1 File 1 File 1

habrochaites

1. 1981

Contact Helpdesk

Download: XML

ro	pean Nucleotic	NA le Archive				Examples: BN000065, histone	Search Advanced Sequence
e	Search & Browse	Submit & Update	Software	About ENA	Support		
> 5	Search & Browse > [Download > Downloa	ding read da	ta			

Downloading read data

Sequencing reads are available for download through FTP and Aspara protocols in their original format and in an archive generated fastq formats described here.

Submitted data files

Eu

ENA

- Archive generated fastq files
- Downloading files using FTP
- Downloading files using Globus GridFTP
- Downloading files using ENA Browser
- Downloading files using Aspera

Submitted data files

Submitted data files are organised by submission accession number under vol1/ directory in ftp.sra.ebi.ac.uk: ftp://ftp.sra.ebi.ac.uk/vol1/<submission accession prefix>/<submission accession>

where <submission accession prefix> contains the first 6 letters and numbers of the SRA Submission accession. For example, the files submitted in the SRA Submission ERA007448 are available at: ftp://ftp.sra.ebi.ac.uk/vol1/ERA007/ERA007448/.

Archive generated fastq files

Archive generated fastq files are organised by run accession number under vol1/fastq directory in ftp.sra.ebi.ac.uk:

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/<dir1>[/<dir2>]/<run accession>

<dir1> is the first 6 letters and numbers of the run accession (e.g. ERR000 for ERR000916),

<dir2> does not exist if the run accession has six digits. For example, fastq files for run ERR000916 are in

Search & Browse

Data formats

- Genome assemblies
- Marker portal
- Taxon portal
- Programmatic access
 - Data retrieval
 - Taxon portal
 - Marker portal
 - Search
 - File reports
 - XREF service
- · Genome assembly database
- Taxonomy Service
 - Translation tables
- Download
 - Sequences
 - Feature level products
 - Reads
 - Taxonomy
- Sequence search

🔁 NCBI 🦷 Site map 🛛 All databases 📓 Search

III Sequence Read Archive

Main Browse Search Download Submit Documentation Software Trace Archive Trace Assembly Trace BLAST

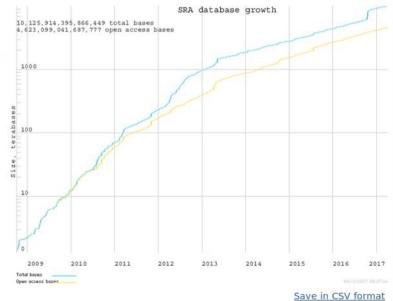
Overview

The Sequence Read Archive (SRA) stores raw sequence data from "next-generation" sequencing technologies including Illumina, 454, IonTorrent, Complete Genomics, PacBio and OxfordNanopores. In addition to raw sequence data, SRA now stores alignment information in the form of read placements on a reference sequence.

SRA is NIH's primary archive of high-throughput sequencing data and is part of the international partnership of archives (INSDC) at the NCBI, the European Bioinformatics Institute and the DNA Database of Japan. Data submitted to any of the three organizations are shared among them.

Please check SRA Overview for more information.

Submitting to SRA


Making data available to the research community enhances reproducibility and allows for new discovery by comparing data sets.

- Submission Quick Start
- Frequently Asked Questions
- Submitter Login

Using SRA Data with SRA Toolkit

Use SRA data to validate experimental results, increase sample sizes, determine variance and open up new avenues of research.

- Documentation
- Usage Guide
- Download
- Get sources code on <u>GitHub</u> (for developers using SRA)

NCBI Site map All databases 🔊 Search							
III) Sequence Read Archive							
Main Browse Search Download Submi	it Documentation Software Trace Archive Trace Assembly Trace BLAST						
Studies Samples Analyses Run Browser Run Selector Provisional SRA							
Search: tomato	Go						

What can be entered in this field?

List of Studies. 421 records found.

			<< < Page	1 / 17 > >>
#	Accession 1	Title	Project	Center
	DRP000312	Solanum lycopersicum strain:Micro-Tom Genome sequencing and assembly	<u>59759</u>	KAZUSA
2.	DRP001059	Resequencing data for tomato 'Ailsa Craig'	231443	KAZUSA
3.	DRP001060	Resequencing data for tomato 'Furikoma'	231443	KAZUSA
4.	DRP001061	Resequencing data for tomato 'M82'	231443	KAZUSA
5.	DRP001062	Resequencing data for tomato 'Tomato Chuukanbohon Nou 11'	231443	KAZUSA
6.	DRP001063	Resequencing data for tomato 'Ponderosa'	231443	KAZUSA
7.	DRP001064	Resequencing data for tomato 'Regina'	231443	KAZUSA
8.	DRP001954	Tomato genome sequence	259841	TSUKUBA
9.	DRP002514	Whole-genome sequencing of tomato muntants	275947	KAZUSA
10.	DRP002631	RNAseq in a sunlight-type plant factory	283367	OSAKA_PREF
11.	DRP002638	continuous light tomato RNAseq	283366	OSAKA_PREF
12.	DRP002905	Whole genome shotgun sequencing for 96 tomato cultivars	313365	KAZUSA
13.	DRP003058	RAD-Seq for tomato	315247	KAZUSA
14.	DRP003091	Time-course transcriptome data of Sly-Summer in sunlight-type plant factory	318884	OSAKA_PREF
15.	DRP003147	Strategic Innovation Promotion Program	324478	RIKEN_BRC
16.	DRP003540	Transcriptional profiling comparison during AM development between L. japonicus and tomato	380093	SHINSHU
17.	ERP001270	Carbon nanotubes as fertilizers: effects on tomato growth, reproductive system and soil microbial community	204399	NCTR
18.	ERP001999 🖾	Defining root colonization strategies in cucumber, tomato, maize and wheat plant species	204914	ARO-VOLCANI
19.	ERP002018	Bacterial communities associated with the surfaces of fresh fruits and vegetables	205672	CCME-COLORADO
20.	ERP002550	Resequencing Solanaceae (Potato and Tomato) 19th century samples	204997	MPI-TUEBINGEN
21.	ERP002552	Resequencing Phytophthora strains	204996	MPI-TUEBINGEN
22.	ERP002648 🖫	Using a perclinal chimera to determine layer-specific gene expression	225680	ICL-CFB

NCBI SRA Run Select	tor 🕕 🛈	elp 🗟 Perr	nalink						
earch: DRP002631									
Facets	€ ▼	Hide commo	n fields						
Run BioSample Sample name MBases MBytes Experiment sample name sample title	Avg Biol Cen Con Inse Inst Libr Libr Loa Org Plat Rele SR/ biop culti	ay Type: SpotLen: Project: iter Name: isent: ertSize: rument: aryLayout: arySelection: arySource: dDate: anism: form: easeDate: A Study: oroject id: ivar: ue type:	RNA-Seq 49 PRJDB389 OSAKA_P public 0 Illumina His SINGLE Hybrid Sele TRANSCR 2015-05-0 Solanum Iy ILLUMINA 2015-05-0 DRP00263 PRJDB389 Taian-kichij leaf						
			Runs E	Bytes B	Bases 🔚 Download				
		Total:	50	1.58 Gb	2.81 G	Runl	nfo Table	Accession	List
								The stresses are the	
	e 5	Selected:						Accession	List
		Selected: Runs foun	d						List
		Runs foun	id BioSample	Sample name	MBases M			sample name	
	50	Runs foun _{Run}			MBases M 53	MBytes		sample name	sample title
	50	Runs foun Run DRR034293	BioSample	DRS019544		MBytes 30	Experiment	sample name SunB30	sample title Sunlight tomato Bset Time
	50	Runs foun Run DRR034293 DRR034294	BioSample SAMD00029631	DRS019544 DRS019545	53	MBytes 30 34	Experiment DRX030926	sample name SunB30 SunB32	sample title Sunlight tomato Bset Time Sunlight tomato Bset Time
	50 I ©/@	Runs foun Run DRR034293 DRR034294 DRR034295	BioSample SAMD00029631 SAMD00029632	DRS019544 DRS019545 DRS019546	53 59	MBytes 30 34 44	Experiment DRX030926 DRX030927	sample name SunB30 SunB32 SunB34	sample title Sunlight tomato Bset Time Sunlight tomato Bset Time Sunlight tomato Bset Time
	50 I ©/⊚	Runs foun Run DRR034293 DRR034294 DRR034295 DRR034296	BioSample SAMD00029633 SAMD00029633 SAMD00029633	DRS019544 DRS019545 DRS019546 DRS019547	53 59 76	MBytes 30 34 44 32	Experiment DRX030926 DRX030927 DRX030928	sample name SunB30 SunB32 SunB34 SunB36	sample title Sunlight tomato Bset Time Sunlight tomato Bset Time Sunlight tomato Bset Time Sunlight tomato Bset Time
	50 I ⊘ <i>I</i> ⊘ □	Runs foun Run DRR034293 DRR034294 DRR034295 DRR034296 DRR034298	BioSample SAMD00029632 SAMD00029632 SAMD00029633 SAMD00029634	DRS019544 DRS019545 DRS019546 DRS019547 DRS019549	53 59 76 56	MBytes 30 34 44 32 32	Experiment DRX030926 DRX030927 DRX030928 DRX030929	sample name SunB30 SunB32 SunB34 SunB36 SunB4	sample title Sunlight tomato Bset Time Sunlight tomato Bset Time Sunlight tomato Bset Time Sunlight tomato Bset Time Sunlight tomato Bset Time
	50 I ©/@	Runs foun Run DRR034293 DRR034294 DRR034295 DRR034296 DRR034298 DRR034299	BioSample SAMD00029632 SAMD00029633 SAMD00029634 SAMD00029634	DRS019544 DRS019545 DRS019546 DRS019546 DRS019547 DRS019549 DRS019550	53 59 76 56 55	MBytes 30 34 44 32 32 40	Experiment DRX030926 DRX030927 DRX030928 DRX030929 DRX030931	sample name SunB30 SunB32 SunB34 SunB36 SunB4 SunB40	sample title Sunlight tomato Bset Time Sunlight tomato Bset Time Sunlight tomato Bset Time Sunlight tomato Bset Time Sunlight tomato Bset Time
	50 I ©/@ 	Runs foun Run DRR034293 DRR034294 DRR034295 DRR034296 DRR034298 DRR034299 DRR034300	BioSample SAMD00029632 SAMD00029633 SAMD00029633 SAMD00029636 SAMD00029636 SAMD00029637	 DRS019544 DRS019545 DRS019546 DRS019547 DRS019549 DRS019550 DRS019551 	53 59 76 56 55 70	MBytes 30 34 44 32 32 40 32	Experiment DRX030926 DRX030927 DRX030928 DRX030929 DRX030931 DRX030932	sample name SunB30 SunB32 SunB34 SunB36 SunB4 SunB40 SunB42	
	50 I ©/@ 	Runs foun Run DRR034293 DRR034294 DRR034295 DRR034296 DRR034298 DRR034299 DRR034300 DRR034300	BioSample SAMD00029632 SAMD00029633 SAMD00029634 SAMD00029634 SAMD00029637 SAMD00029638	 DRS019544 DRS019545 DRS019546 DRS019547 DRS019549 DRS019550 DRS019551 DRS019552 	53 59 76 56 55 70 56	MBytes 30 34 44 32 32 40 32 29	Experiment DRX030926 DRX030927 DRX030928 DRX030929 DRX030931 DRX030932 DRX030933	sample name SunB30 SunB32 SunB34 SunB36 SunB40 SunB40 SunB42 SunB42	sample title Sunlight tomato Bset Time Sunlight tomato Bset Time

응 NCBI SRA Run Selector	I H	elp 🗟 Pern	malink			SRR.	Acc_List.txt	t (/tmp/mozilla_choede	eO) – gedit	×	
Search: DRP002631		#			Fichier É			hercher Outils Docu			
▼ Facets		Hide commo	n fields		richief L		ichage Reci	nercher Outits Doct	inencs		
Run BioSample	Avg BioF	ay Type: SpotLen: Project: ter Name:	RNA-Sec 49 <u>PRJDB38</u> OSAKA	<u>892</u>		Ouvrir 🗸		trer 🗗 🥱 Anr	nuler 🧀 🔏	~	
Sample name Consent: MBases InsertSize: MBytes LibraryLayout: Experiment LibrarySelection:		public		SRR_	SRR_Acc_List.txt ×						
			0	10 2000	DRR03429	3					
		SINGLE	HiSeq 2000	DRR03429	94						
					DRR03429	95					
sample name		arySource:	TRANSCRIPTOMIC		DRR03429	96					
Sample title		dDate: anism:	2015-05-	01 lycopersicum	DRR03429	8				-	
		form:	ILLUMIN		DRR03429	9					
	1.10.200	easeDate:	2015-05-		DRR03430	00					
		Study:	DRP0026		DRR03430	01					
	culti	roject id: var:	PRJDB38 Taian-kic		DRR03428	37					
		ie type:	leaf	- IJICO	DRR03430)2					
					DRR03429						
			Runs		Bas DRR03430)5					
		Total:	50	1.58 Gb	2.DRR03429	90					
	O S	elected:			DRR03429 DRR03430						
	50 F	Runs foun	d		Texte br		eur <mark>d</mark> es tabu	lations : 8 🗸 🛛 L	ig 1, Col 1	INS	
	010		BioSample	Sample name	e MBases MByte	es Experiment	t sample name	sample title			
			SAMD000296	31 DRS019544		30 DRX030926		Sunlight tomato Bset Time30)		
		DRR034294	SAMD000296	32 DRS019545		34 DRX030927	SunB32	Sunlight tomato Bset Time32			
				33 DRS019546	76	44 DRX030928	SunB34	Sunlight tomato Bset Time34			
		DRR034296	SAMD000296	34 DRS019547	56 3	32 DRX030929	SunB36	Sunlight tomato Bset Time36			
	0			36 DRS019549		32 DRX030931		Sunlight tomato Bset Time4			
	0			37 DRS019550		40 DRX030932		Sunlight tomato Bset Time40)		
	0			38 DRS019551		32 DRX030933		Sunlight tomato Bset Time42			
	0			39 DRS019552		29 DRX030934		Sunlight tomato Bset Time44			
	0			25 DRS019538		35 DRX030920		Sunlight tomato Bset Time2			
	0			40 DRS019553		45 DRX030935		Sunlight tomato Bset Time46	3		
	\cup	5111004002	SAMD000230	10 DI 00 10000		10 DI 0000000	Juind to	Sumght tomato Doct milett			

Site map All databases 🔊 Search							
III) Sequence Read Archive							
Main Browse Search Download Submit Documentation Software Trace Archive Trace Assembly Trace BLAST							
Download Toolkit Documentation XML Schema							
SRA Toolkit Documentation	prefetch <sra_accession>max-size</sra_accession>						
SRA Toolkit Installation and Configuration Guide	(20G by default)						

Frequently Used Tools:

Protected Data Usage Guide

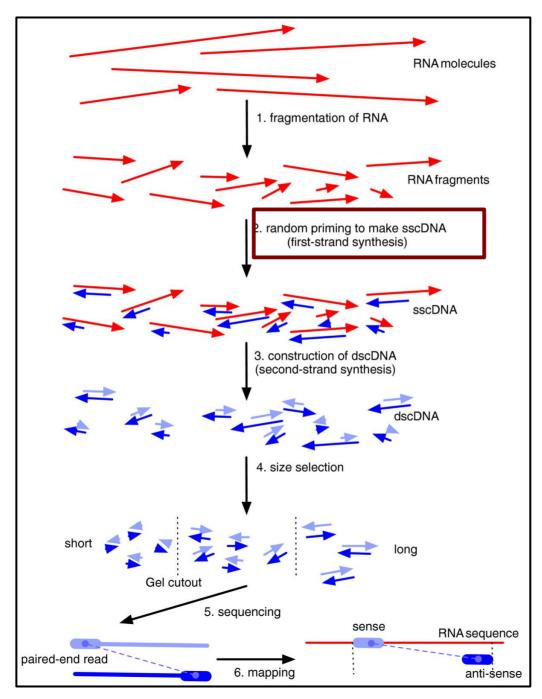
fastq-dump: Convert SRA data into fastq format

<u>prefetch</u>: Allows command-line downloading of SRA, dbGaP, and ADSP data <u>sam-dump</u>: Convert SRA data to sam format <u>sra-pileup</u>: Generate pileup statistics on aligned SRA data <u>vdb-config</u>: Display and modify VDB configuration information <u>vdb-decrypt</u>: Decrypt non-SRA dbGaP data ("phenotype data")

Additional Tools:

abi-dump: Convert SRA data into ABI format (csfasta / qual) illumina-dump: Convert SRA data into Illumina native formats (qseq, etc.) sff-dump: Convert SRA data to sff format sra-stat: Generate statistics about SRA data (quality distribution, etc.) vdb-dump: Output the native VDB format of SRA data. vdb-encrypt: Encrypt non-SRA dbGaP data ("phenotype data") vdb-validate: Validate the integrity of downloaded SRA data

fastq-dump sra_file.sra


Summary - Sequence quality

- . Known RNAseq biais
- . How to check the quality ?
- . How to clean the data ?

RNAseq specific bias

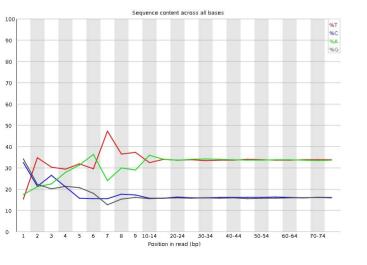
- Influence of the library preparation
- Random hexamer priming
- Positional bias and sequence specificity bias.
 * Robert et al. Genome Biology, 2011,12:R22
- Transcript length bias
- Some reads map to multiple locations (??)

Hexamer random priming bias

Hexamer random priming bias

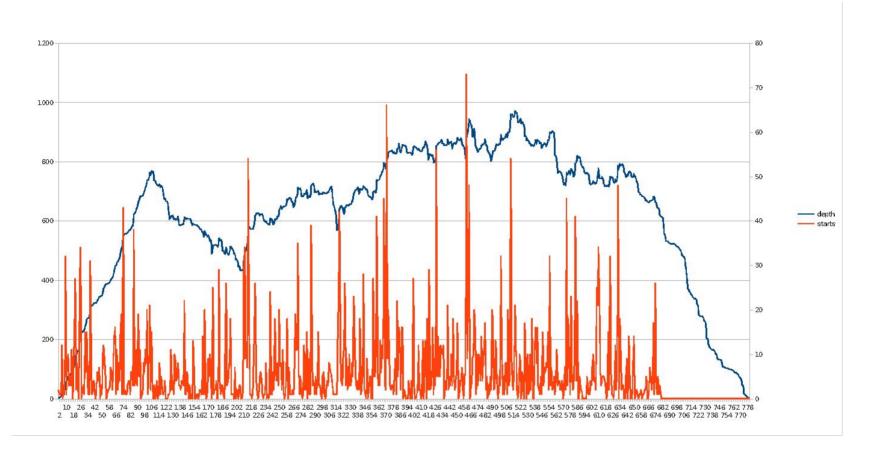
Published online 14 April 2010

Nucleic Acids Research, 2010, Vol. 38, No. 12 e131 doi:10.1093/nar/gkq224


Biases in Illumina transcriptome sequencing caused by random hexamer priming

Kasper D. Hansen^{1,*}, Steven E. Brenner² and Sandrine Dudoit^{1,3} ABSTRACT

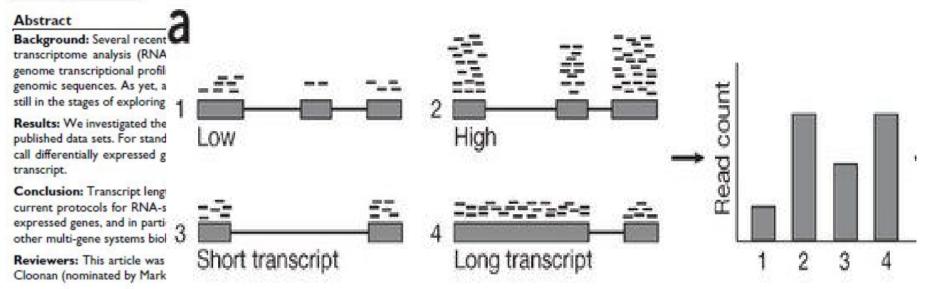
Generation of cDNA using random hexamer priming induces biases in the nucleotide composition at the beginning of transcriptome sequencing reads from the Illumina Genome Analyzer. The bias is independent of organism and laboratory and impacts the uniformity of the reads along the transcriptome. We provide a read count reweighting scheme, based on the nucleotide frequencies of the reads, that mitigates the impact of the bias.


-A strong distinctive pattern in the nucleotide frequencies of the first 13 positions at the 5'-end :

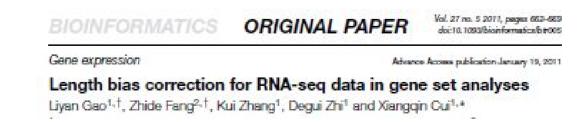
.sequence specificity of the polymerase.due to the end repair performed

-Reads beginning with a hexamer over-represented in the hexamer distribution at the beginning relative to the end are down-weighted

Hexamer random effect


- Orange = reads start sites
- Blue = coverage

Transcript length bias


Biol Direct. 2009 Apr 16;4:14.

Transcript length bias in RNA-seq data confounds systems biology.

Oshlack A, Wakefield MJ.

- the differential expression of longer transcripts is more likely to be identified than that of shorter transcripts

Bias "mappability"

- Quality of the reference genome influence results
 assembly
 - \circ finishing
- Sequence composition
- Repeated sequences
- Annotation quality

Verifying RNA-Seq quality

FastQC : <u>http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/</u>

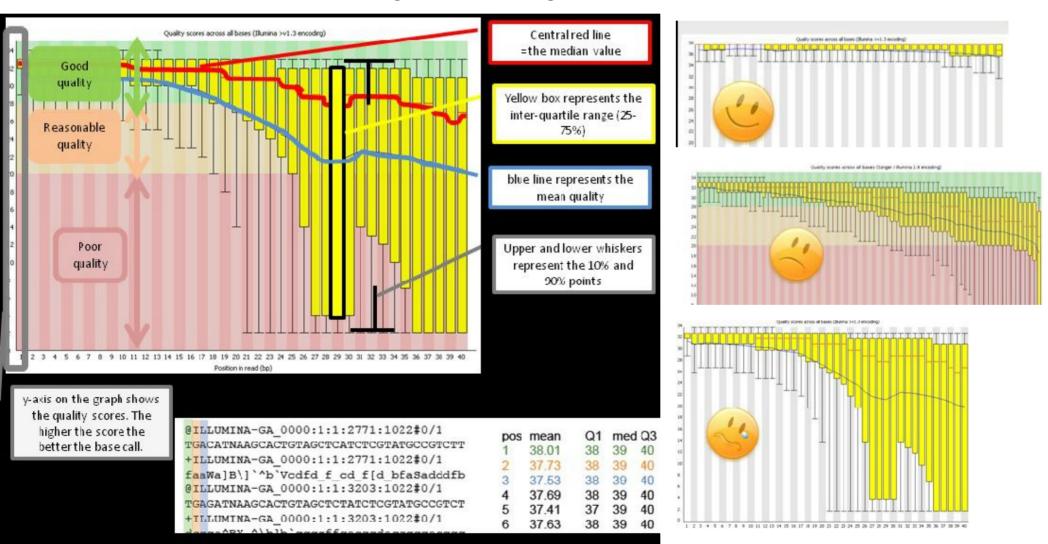
Has been developed for genomic data

Summary

Basic Statistics Per base sequence quality Per sequence quality scores Per base sequence content Per base GC content Per sequence GC content Per base N content Sequence Length Distribution Sequence Duplication Levels **Overrepresented sequences Kmer Content**

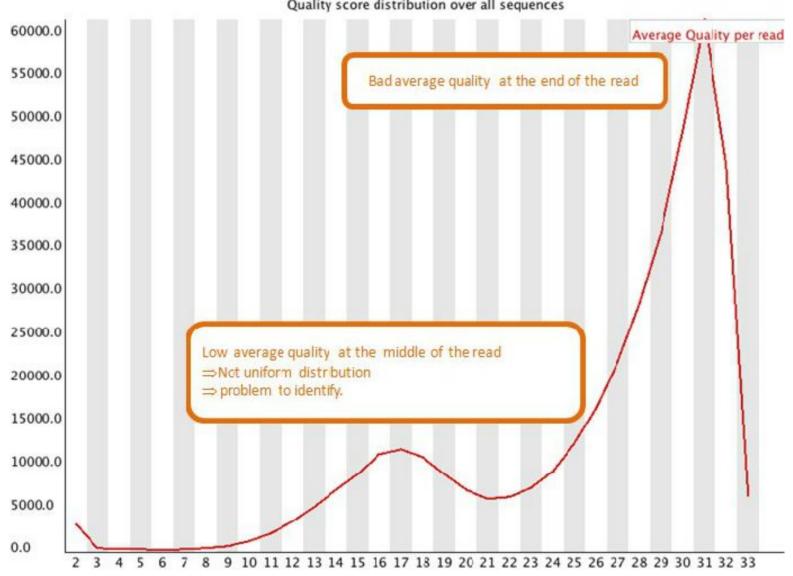
The analysis in FastQC is performed by a series of analysis modules.

Quick evaluation of whether the results of the module seem :


- entirely normal (green tick),
- slightly abnormal (orange triangle)
- or very unusual (red cross).

These evaluations must be taken in the context of what you expect from your library. A 'normal' sample as far as FastQC is concerned is random and diverse.

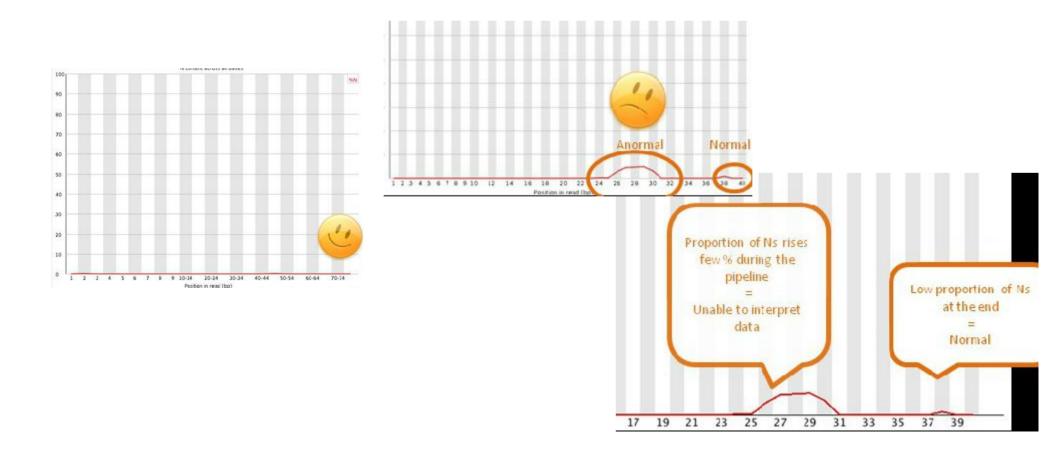
Statistics per Base Sequence Quality


This view shows an overview of the range of quality values across all bases at each position in the FastQ file.

Common to see base calls falling into the orange area towards the end of a read.

Statistics per Sequence Quality Score

See if a subset of your sequences have universally low quality values.

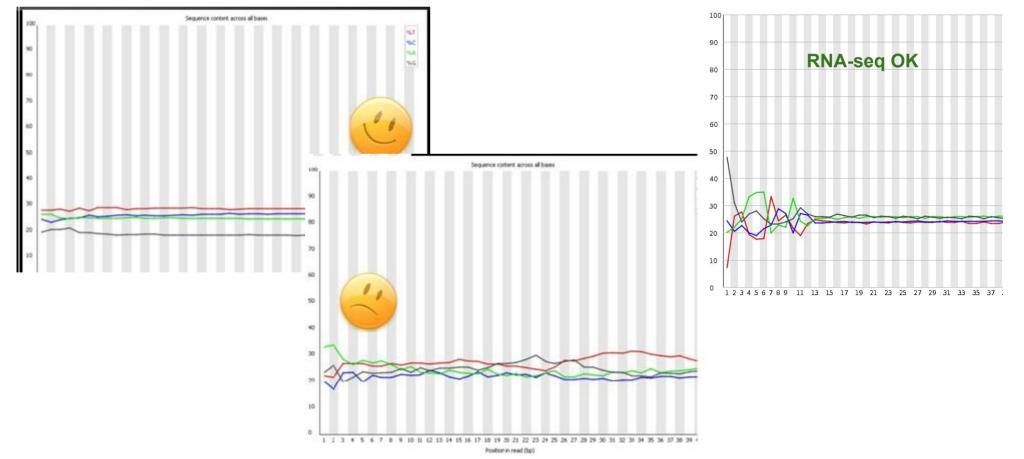


Quality score distribution over all sequences

Statistics per Base N Content

This module plots out the percentage of base calls at each position for which an N was called.

Usual to see a very low proportion of Ns appearing nearer the end of a sequence.



Statistics Per Base Sequence Content

Per Base Sequence Content plots out the proportion of each base position in a file for which each of the four normal DNA bases has been called.

In a random library : little/no difference between the different bases of a sequence run, so the lines in this plot should run parallel with each other.

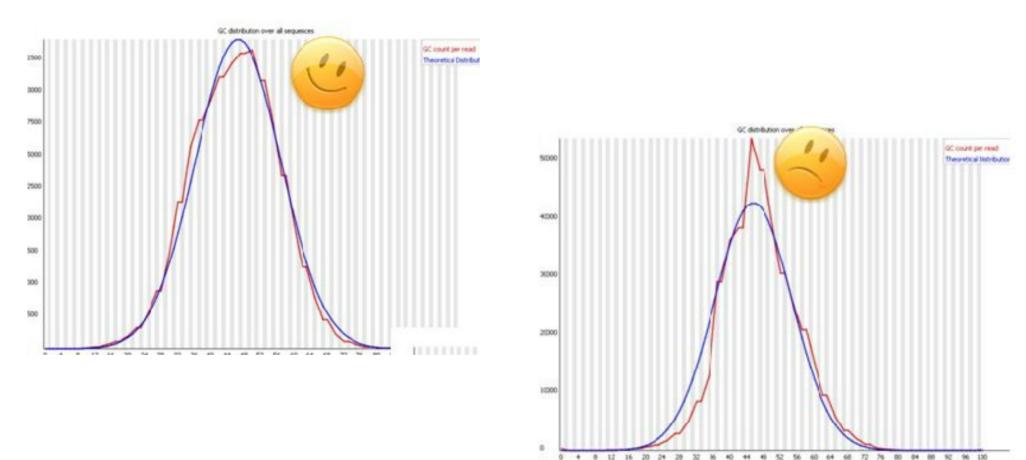
If strong biases which change : overrepresented sequence contaminating your library.

Statistics per Base GC Distribution

Per Base GC Content plots out the GC content of each base position in a file.

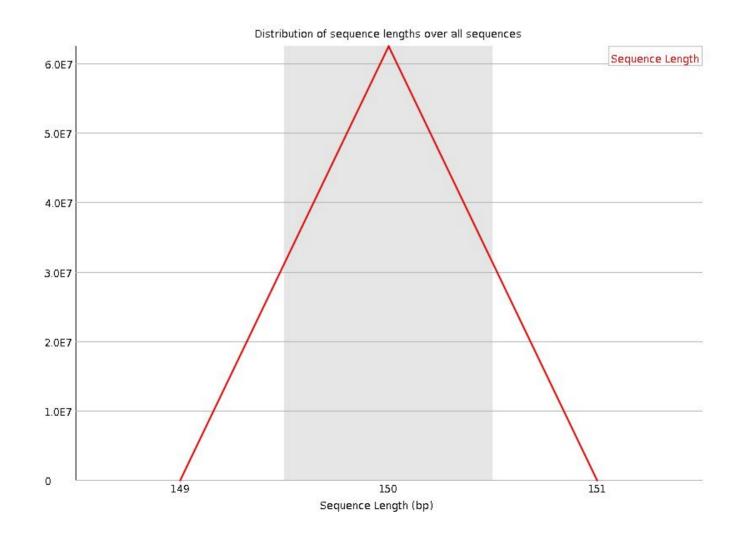
Random library : little/no difference between the different bases of a sequence run => plot horizontally.

The overall GC content should reflect the GC content of the underlying genome.

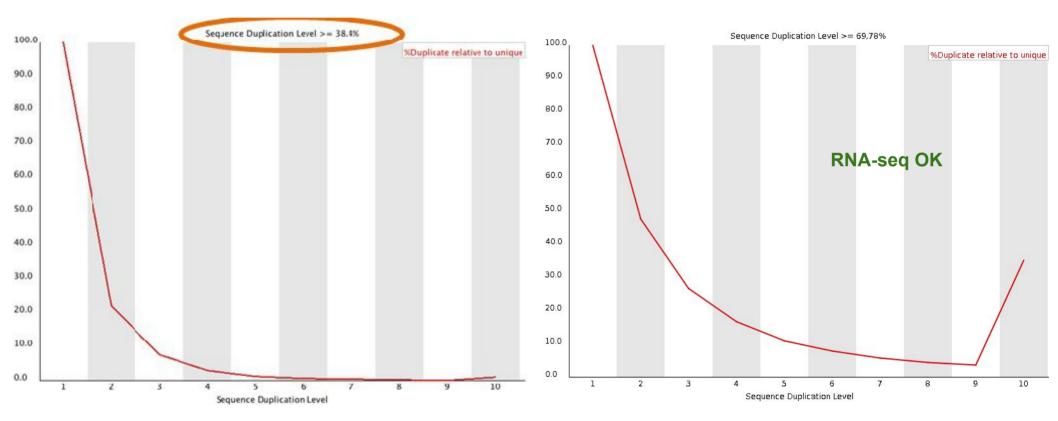

GC bias: changes in different bases, overrepresented sequence contaminating your library. => plot not horizontally.

Hearvill content (%)

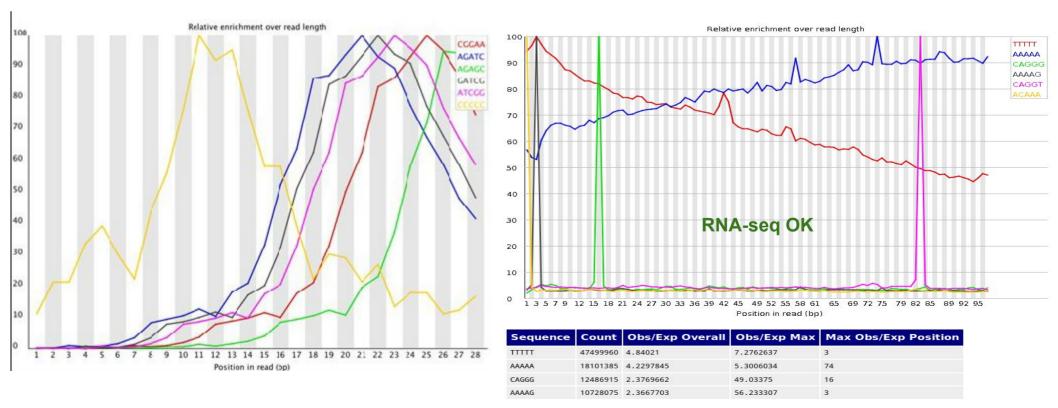
Statistics per Sequence GC Content


This module measures the GC content across the whole length of each sequence in a file and compares it to a modeled normal distribution of GC content.

Statistics per Sequence Length Distribution


Some sequence fragments contain reads of wildly varying lengths.

Even within uniform length libraries some pipelines will trim sequences to remove poor quality base calls from the end.


Statistics per Duplicate Sequences

High level of duplication indicate an enrichment biais.

Overrepresented Kmers

- A kmer is a subsequence of length k
- Should spot overrepresented sequences, give a good impression of any contamination.
- Kmers showing a rise towards the end of the library indicate progressive contamination with adapters.
- Check for adaptor sequence or poly-A sequence

Take home message on quality analysis

Elements to be checked :

- Random priming effect
- K-mer (polyA, polyT)
- Adaptor presence

Alignment on reference for the second quality check and filtering.

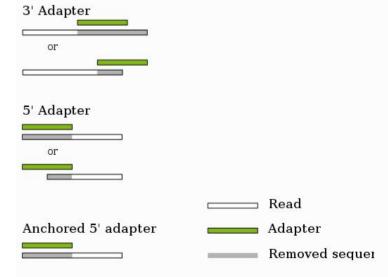
A good run?:

- Expected number of reads produced (2x 2 billions / flowcell),
- Length of the reads expected (150pb),
- Random selection of the nucleotides and the GC%,
- Good alignment: very few unmapped reads, pairs mapped on opposite strands.

Cleaning analysis

- Cleaning :
 - Low quality bases
 - Adaptors
- Software :
 - Trim_galore
 - Cutadapt
 - Trimmomatic
 - Sickle
 - PRINSEQ
 - ...

Cutadapt


- Searches & removes adapter & tag in all reads.
- Trim quality
- Filter too short or untrimmed reads (in a separate output file).

cutadapt -a ADAPTER [options] [-o output.fastq] input.fastq

Ex.: cutadapt -a AACCGGTT -o output.fastq input.fastq

(3' adapter, single read)

Input file : fasta, fastq or compressed (gz, bz2, xz).

Source : http://cutadapt.readthedocs.io/en/stable/guide.html

Cutadapt

Cutadapt supports trimming of paired-end reads, trimming both reads in a pair at the same time.

Processing both files at the same time is highly recommended.

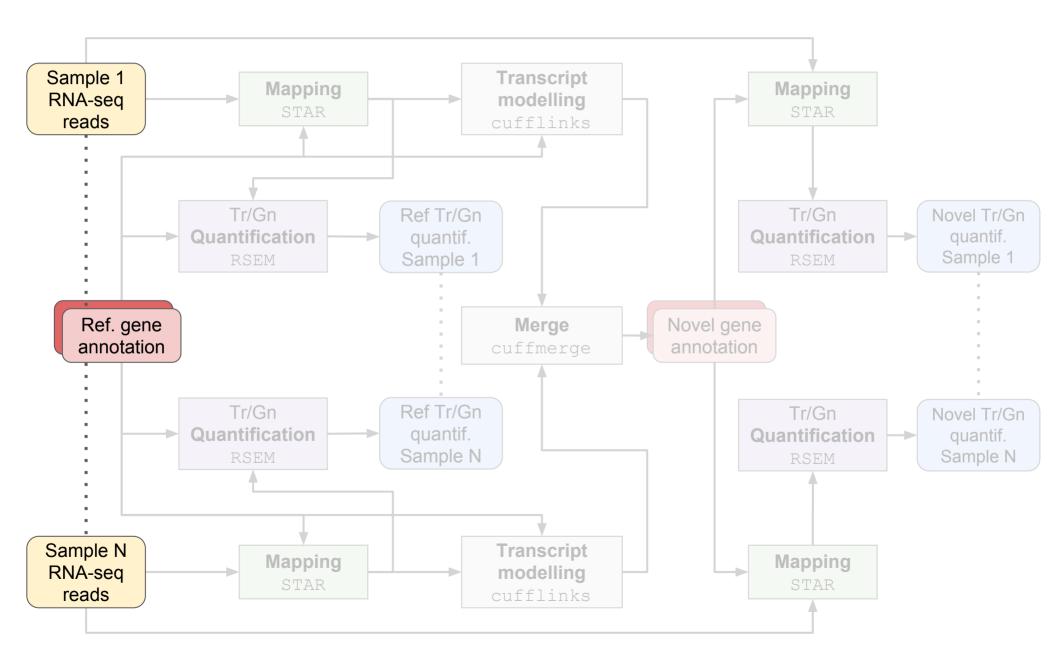
```
cutadapt -a ADAPTER_FWD -A ADAPTER_REV -o out.1.fastq -p out.2.fastq reads.1.fastq reads.2.fastq
```

```
Paired-end options.:
  The -A/-G/-B/-U options work like their -a/-b/-g/-u counterparts.
                      3' adapter to be removed from the second read in a
  - A ADAPTER
                      pair.
  -G ADAPTER
                      5' adapter to be removed from the second read in a
                      pair.
  -B ADAPTER
                      5'/3 adapter to be removed from the second read in a
                      pair.
  -U LENGTH
                      Remove LENGTH bases from the beginning or end of each
                      read (see --cut).
  -p FILE, --paired-output=FILE
                      Write second read in a pair to FILE.
  --untrimmed-paired-output=FILE
                      Write the second read in a pair to this FILE when no
                      adapter was found in the first read. Use this option
                      together with --untrimmed-output when trimming paired-
                      end reads. (Default: output to same file as trimmed
                      reads.)
```

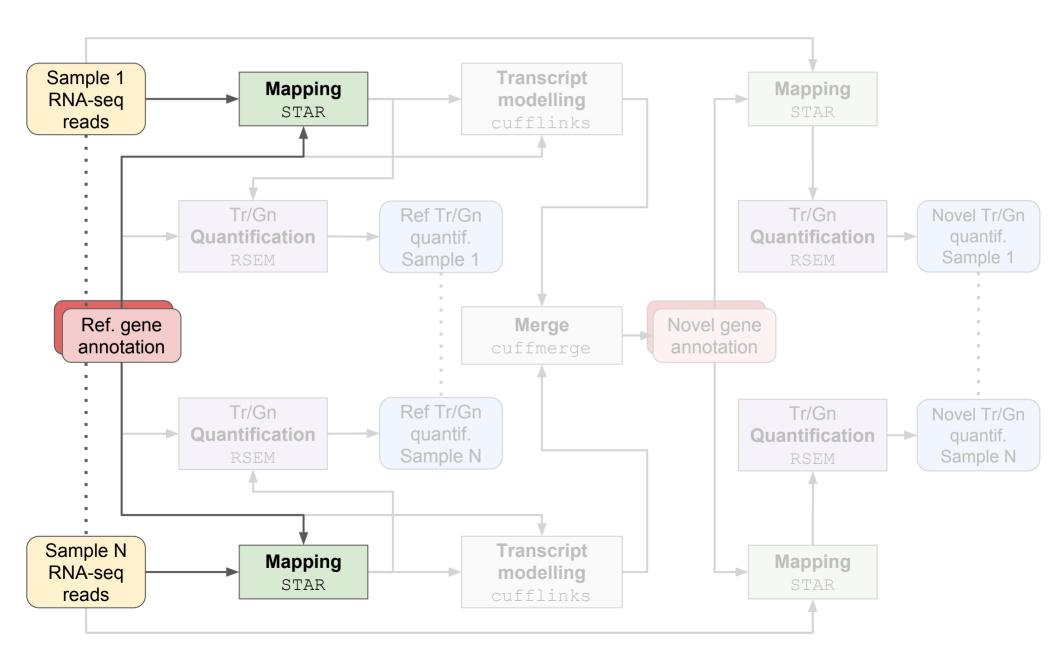
Sickle

- Sickle trims the ends of the reads having poor quality.
- It's using sliding window instead of brutal threshold like cutadapt.
- Window length is 0.1 times the length of the read.
- The window slides along the quality values until the average quality in the window rises above the threshold, at which point the algorithm determines where within the window the rise occurs and cuts the read and quality there for end cut.

Hands-on: quality control


Data for the exercises:

- from Mohammed Zouine (ENSAT)
- tomato wild type and mutant type (without seeds) with the transcription factor SI-ARF8 (auxine response factor 8) overexpressed
- clonal lineage
- paired, 100 pb non stranded
- triplicated
- in the publication process
- subsampled on chromosome 6 for faster analysis


Use FastQC, cutadapt and sickle

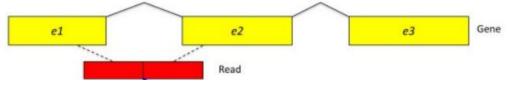
Exercise 3 : quality control of used datasets Exercise 4: cleaning used datasets

Analysis workflow

Analysis workflow

Spliced read mapping & Visualisation

- 1. What is a spliced aligner?
- 2. Reference genome & transcriptome files formats
- 3. Tophat principle
- 4. STAR principle and usage
- 5. BAM & Bed files formats
- 6. Visualisation with IGV

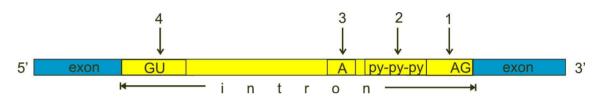

Aim -

Spliced read mapping & Visualisation

Aim: Discover the true location (origin) of each read on the reference.

Problems:

- Some features (repetitive regions, assembly errors, missing information) make it impossible for some reads.
- Reads may be split by potentially thousands of bases of intronic sequence.



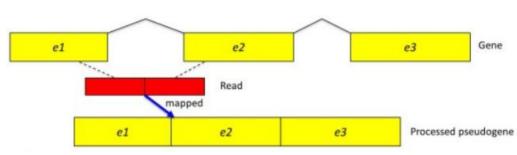
And:

Do it in/with reasonable time/resources.

Splice sites

- Canonical splice site:
- which accounts for more than 99% of splicing
- GT and AG for donor and acceptor sites

- Non-canonical site:


http://en.wikipedia.org/wiki/RNA_splicing

- GC-AG splice site pairs, AT-AC pairs
- Trans-splicing: Analysis of canonical and non-canonical splice sites in mammalian genomes. Splicing that joins two exons that are not within the same RNA transcript

Hard case

- Lot of variations (sequencing errors, mutations)
- Repeats
- Reads spanning 3+ exons
- Gene or pseudogene

Kim et al, Genome Biology, 2013

AG GTXX

e2

Incorrect mapping (non-gapped alignment)

e1

GTXX

- Unknown junction inside poorly rarely expressed gene

Most used tools

Tools for splice-mapping:

- Tophat:

BIOINFORMATICS ORIGINAL PAPER

Vol. 25 no. 9 2009, pages 1105–1111 dol:10.1093/bioinformatics/btp120

Sequence analysis

TopHat: discovering splice junctions with RNA-Seq Cole Trapnell^{1,*}, Lior Pachter² and Steven L. Salzberg¹

Genome Biol. 2013 Apr 25;14(4):R36. doi: 10.1186/gb-2013-14-4-r36.

TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions.

Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL.

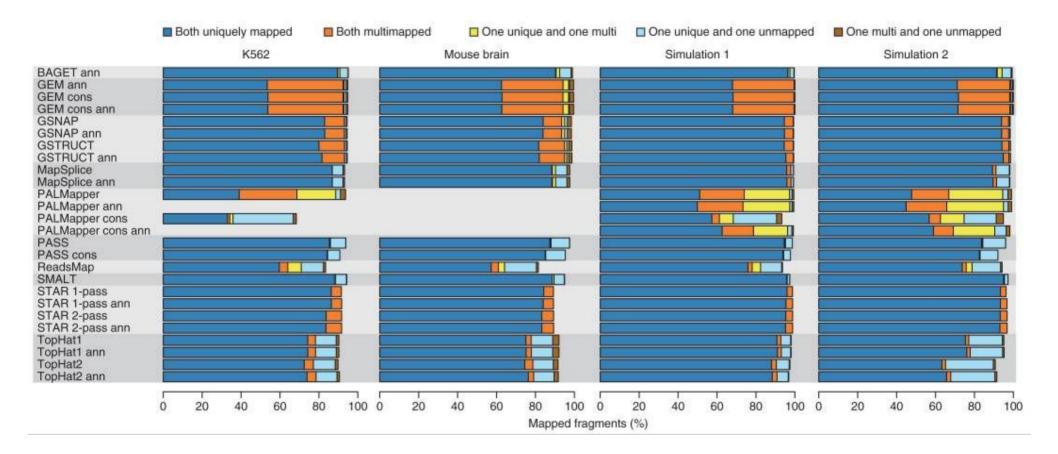
STAR: ultrafast universal RNA-seq aligner

Alexander Dobin^{1*}, Carrie A. Davis¹, Felix Schlesinger¹, Jorg Drenkow¹, Chris Zaleski¹, Sonali Jha¹, Philippe Batut¹, Mark Chaisson² and Thomas R. Gingeras¹

¹Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
²Pacific Biosciences, Menlo Park, California, USA.

Associate Editor: Dr. Inanc Birol

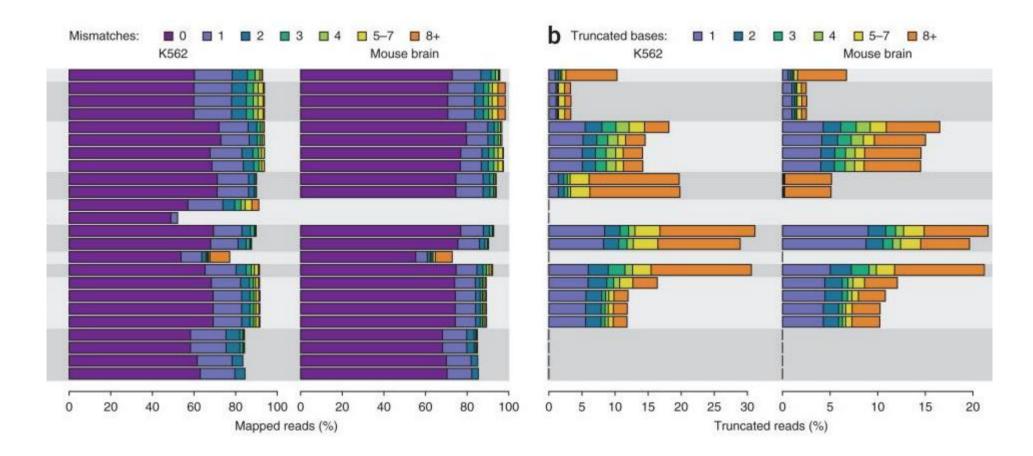
Comparing tools


How to compare tools ?

- sensibility (maximize #mapped reads)
- specificity (assign reads to the correct position)
- \rightarrow for reads and for junctions
- processing time
- memory requirement

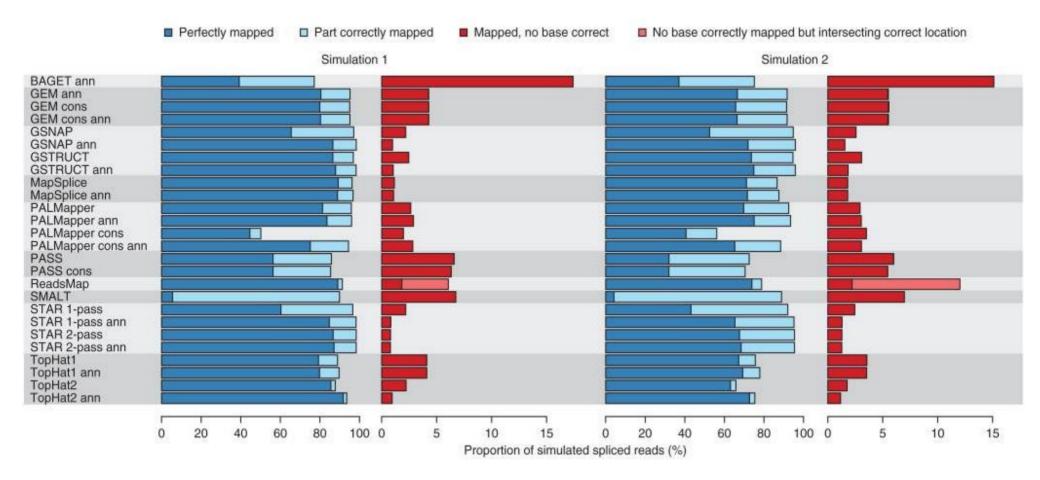
All of these are conflicting criteria ...

RGASP3


The RNA-seq Genome Annotation Assessment Project

Engström et al., Nature Methods, 2013

RGASP3


The RNA-seq Genome Annotation Assessment Project

Engström et al., Nature Methods, 2013

RGASP3

The RNA-seq Genome Annotation Assessment Project

Engström et al., Nature Methods, 2013

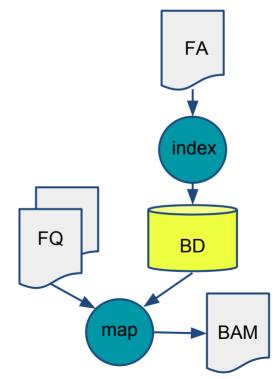
Other benchmark

Basically similar conclusions...

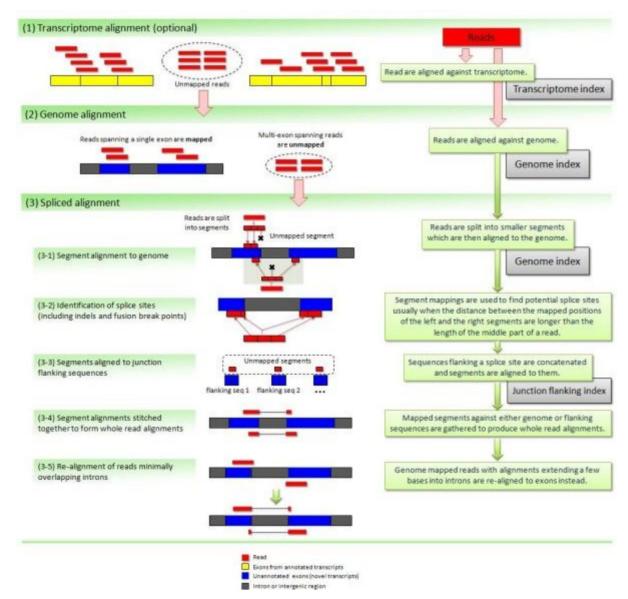
NATURE METHODS | ANALYSIS

< 🖶

Simulation-based comprehensive benchmarking of RNA-seq aligners


Giacomo Baruzzo, Katharina E Hayer, Eun Ji Kim, Barbara Di Camillo, Garret A FitzGerald & Gregory R Grant

Affiliations | Contributions | Corresponding author


Nature Methods 14, 135–139 (2017) | doi:10.1038/nmeth.4106 Received 18 April 2016 | Accepted 15 November 2016 | Published online 12 December 2016 | Corrected online 22 December 2016

Mapping steps

- . Indexing reference (only once)
- Mapping reads using index

TopHat pipeline

Numerous steps to resolve hard cases Each step uses of heuristics with parameters users have to define a value

<u>http://ccb.jhu.ed</u> <u>u/software/topha</u> t

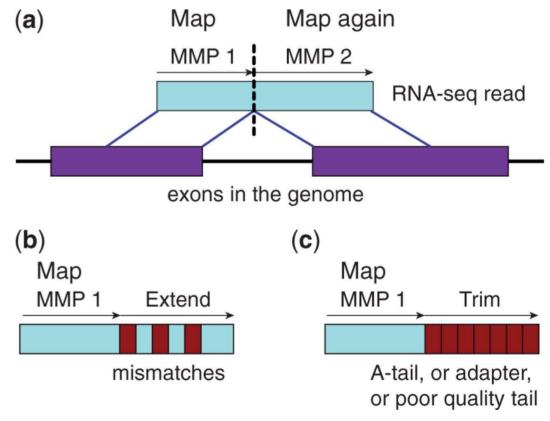
Kim et al, Genome Biology, 2013

An other aligner : STAR

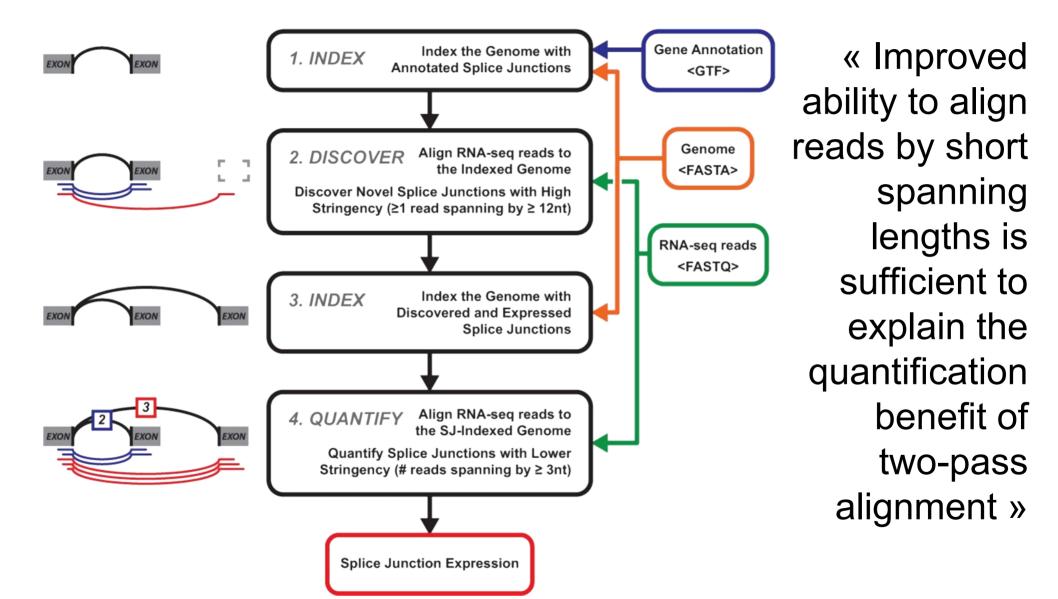
Bioinformatics. 2013 Jan; 29(1): 15–21. Published online 2012 Oct 25. doi: <u>10.1093/bioinformatics/bts635</u> PMCID: PMC3530905

STAR: ultrafast universal RNA-seq aligner

<u>Alexander Dobin</u>,^{1,*} <u>Carrie A. Davis</u>,¹ <u>Felix Schlesinger</u>,¹ <u>Jorg Drenkow</u>,¹ <u>Chris Zaleski</u>,¹ <u>Sonali Jha</u>,¹ <u>Philippe Batut</u>,¹ <u>Mark Chaisson</u>,² and <u>Thomas R. Gingeras</u>¹


- Spliced Transcripts Alignment to a Reference
- Outperforms other aligners by more than a factor of 50 in mapping speed

Another strategy:


- search for a MMP from the 1st base
- MMP search repeated for the unmapped portion next to the junction
- do it in both fwd and rev directions
- cluster seeds from the mates of paired-end RNA-seq reads

Soft-clipping is the main difference between Tophat and STAR

Dobin et al, Bioinformatics, 2011

Two passes strategy

Veeneman et al, Bioinformatics, 2016

STAR indexing

Hands-on: Type STAR and count the number of options.

"Core" command: STAR --runMode genomeGenerate --genomeDir genome_dir --genomeFastaFiles genome.fasta

To use N CPUs, add: --runThreadN N If you have an annotation: --sjdbGTFfile annot.gtf

Some precomputed indices are already available: http://labshare.cshl.edu/shares/gingeraslab/www-data/do bin/STAR/STARgenomes or on your preferred platform: /bank/STARdb

Where to find a reference genome?

Retrieving the genome file (fasta):

- The Genome Reference Consortium

http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/

NCBI chromosome naming with « | » not well supported by mapping software

- Prefer EMBL

http://www.ensembl.org/info/data/ftp/index.html

Reference transcriptome file

What is a GTF file ?

- An annotation file: loci of coding genes (transcripts, CDS, UTRs), non-coding genes, etc.
- Gene Transfer Format (derived from GFF): <u>http://genome.ucsc.edu/FAQ/FAQformat.html#format4</u>

chr	source	feature	start	end	score	strand	frame	[attribu	utes]					
1	ENSEMBL	exon	1000	2000	•	+	•	gene_id	"ENSG01";	transcript_	id "ENS	T01.1";	gene_name	"ABC";
1	ENSEMBL	exon	3000	4000	•	+	•	gene_id	"ENSG01";	transcript_	id "ENS	T01.1";	gene_name	"ABC";
1	ENSEMBL	exon	1000	4000	•	+	•	gene_id	"ENSG01";	transcript_	id "ENS	T01.2";	gene_name	"ABC";
1	ENSEMBL	exon	5000	6000	•	+	•	gene_id	"ENSG02";	transcript_	id "ENS	T02.1";	gene_name	"DEF";
	ENSTO						-					ENS	G02, ENSTO	2.1, DEF
	ENSTO)1.2												
ENSG01, ABC														

- gene_id value : unique identifier for the gene.
- transcript_id *value* : unique identifier for the transcript.

The chromosome names should be the same in the gtf file and fasta files (e.g. chr1 vs Chr1 vs 1).

Hands-on: STAR

Exercise n°5 A/

Create a directory for the genome and annotation files.

Get the FASTA and GTF files from: http://genoweb.toulouse.inra.fr/~formation/LigneCmd/RNA seq/data/reference/

Create the STAR index. <u>Tip</u>: you can allocate *N* CPUs with the qsub/qrsh option -pe parallel_smp *N*

STAR mapping

"Core" command:

STAR --genomeDir genome_dir --readFilesIn
reads1.fastq reads2.fastq [--sjdbGTFfile
annot.gtf --runThreadN n]

If the read files are gzipped (*reads1.fq.gz*):

--readFilesCommand zcat

Intron options: genomic gap is considered intron if

--alignIntronMin [21]

--alignIntronMax [500000]

Max. number of mismatches:

--outFilterMismatchNmax [10]

Default options are probably tuned for mammalian genomes.

SAM / BAM formats

Sequence Alignment/Map format:

• Each line stores an alignment/map Coor 12345678901234 5678901234567890123456789012345 ref AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT

+r001/1 TTAGATAAAGGATA*CTG +r002 aaaAGATAA*GGATA +r003 gcctaAGCTAA +r004 ATAGCT.....TCAGC -r003 ttagctTAGGC -r001/2 CAGCGGCAT

name flag chr start mapQ cigar nNext sNext tlen seq qual tags r001 99 ref 7 30 8M2I4M1D3M =**39 TTAGATAAAGGATACTG** 37 * r002 0 ref 9 30 3S6M1P1I4M * 0 **0** ΑΑΑΑGΑΤΑΑGGΑΤΑ * 30 r003 0 ref 9 5S6M * 0 **0** GCCTAAGCTAA SA:Z:ref,29,-,6H5M,17,0; 0 ref 16 * r004 30 0 Ø ATAGCTTCAGC 6M14N5M * 0 r003 2064 ref 29 17 6H5M * 0 TAGGC * SA:Z:ref,9,+,5S6M,30,1; r001 147 ref 37 7 -39 CAGCGGCAT * NM:i:1 30 9M =

• Header stores genome information

@HD VN:1.5 SO:coordinate
@SQ SN:ref LN:45

Fields

Coor ref			5789012 GTTAGA	-	5678901234 GATAGCTGTG						
+r001 +r002 +r003 +r004	2 3 4		TTAGA aaaAGA taAGC	TAA*G	ATAGCT			TCAG	2		
-r003	3				tt	agctT/	AGGC				
-r001	./2							CAG	CGGCAT		
name	flag	chr	start	mapQ) cigar	nNext	sNext	tler	n seq	qua	al tags
r001	99	ref	7	30	8M2I4M1D3M	=	37	39	TTAGATAAAGGATAC	TG *	
r002	0	ref	9	30	3S6M1P1I4M	*	0	0	AAAAGATAAGGATA	*	
r003	0	ref	9	30	5S6M	*	0	0	GCCTAAGCTAA	*	SA:Z:ref,29,-,6H5M,17,0;
r004	0	ref	16	30	6M14N5M	*	0	0	ATAGCTTCAGC	*	
r003	2064	ref	29	17	6H5M	*	0	0	TAGGC	*	SA:Z:ref,9,+,5S6M,30,1;
r001	147	ref	37	30	9M	=	7	-39	CAGCGGCAT		NM:i:1

- Flags: <u>https://broadinstitute.github.io/picard/explain-flags.html</u>
- MapQ: similar to a phred score
- nNext: = means same chr
- In general, * means NA

CIGAR

Coor ref			5789012 GTTAGAT	-	5678901234 GATAGCTGTG								
+r001 +r002 +r003 +r004	2 3 1		TTAGA1 aaaAGA1 ctaAGC1	TAA*@	ATAGCT			TCAG	2				
-r003	3				tt	agctTA	AGGC						
-r001	L/2							CAG	CGGCAT				
	•			•			sNext		•	qua	al t	ags	
r001	99	ref	7	30	8M2I4M1D3M	=	37	39	TTAGATAAAGGATACT	G *			
r002	0	ref	9	30	3S6M1P1I4M	*	0	0	AAAAGATAAGGATA	*			
r003	0	ref	9	30	5S6M	*	0	0	GCCTAAGCTAA	*	SA:Z:	ref,29,-,6H5M,17,0	;
r004	0	ref	16	30	6M14N5M	*	0	0	ATAGCTTCAGC	*			
r003	2064	ref	29	17	6H5M	*	0	0	TAGGC	*	SA:Z:	ref,9,+,5S6M,30,1;	
r001	147	ref	37	30	9M	=	7	-39	CAGCGGCAT	*	NM:i:	1	

- 30M means 30 matches or mismatches
- I and D: insertion/deletion
- S and H: soft/hard clipping

Tags

Coor 12345678901234 5678901234567890123456789012345

ref AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT

+r001/1 +r002 +r003			TTAGA aaaAGA ctaAGC	TAA*(
+r004	ŀ		ATAGCTTCAGC												
-r003	3		ttagctTAGGC												
-r001	L/2							CAG	CGGCAT						
name	flag	chr	start	map() cigar	nNext	sNext	tler	n seq	qu	al tags				
r001	99	ref	7	30	8M2I4M1D3M	=	37	39	TTAGATAAAGGATACT	G *					
r002	0	ref	9	30	3S6M1P1I4M	*	0	0	AAAAGATAAGGATA	*					
r003	0	ref	9	30	5S6M	*	0	0	GCCTAAGCTAA	*	SA:Z:ref,29,-,6H5M,17,0;				
r004	0	ref	16	30	6M14N5M	*	0	0	ATAGCTTCAGC	*					
r003	2064	ref	29	17	6H5M	*	0	0	TAGGC	*	SA:Z:ref,9,+,5S6M,30,1;				
r001	147	ref	37	30	9M	=	7	-39	CAGCGGCAT	*	NM:i:1				

- Format: 2-Letter name:format:value (many different)
- NM: # mismatches
- SA: chimeric reads
- NH, HI: # hits for this sequence, hit index
- AS: alignment score
- nM[•] # mismatches per fragment

SAM / BAM

BAM (Binary Alignment/Map) format:

- Compressed binary representation of SAM
- Greatly reduces storage space requirements to about 27% of original SAM
- samtools: reading, writing, and manipulating BAM files
- Most tools require a sorted and indexed BAM file.

STAR output options

Output format:

--outSAMtype BAM SortedByCoordinate [SAM]

Add more tags:

--outSAMattributes All

Default output file name: Aligned.bam Modify prefix: --outFileNamePrefix prefix

Infer strand using intron motifs (for Cufflinks)
--outSAMstrandField intronMotif [None]

Start IH at --outSAMattrIHstart 0 [1] (for Cufflinks)

STAR other options

Remove reads that did not pass the junction filter: --outFilterType BySJOut [Normal]

Filter out alignments with non-canonical intron motifs --outFilterIntronMotifs RemoveNoncanonical

Output SAM/BAM alignments to transcriptome into a separate file (for RSEM)

--quantMode TranscriptomeSAM

Two passes mode:

- STAR is run once and discover new junctions.
- STAR is run again, knowing the new junctions. (Probably most useful for poorly annotated genomes.)

STAR Outputs

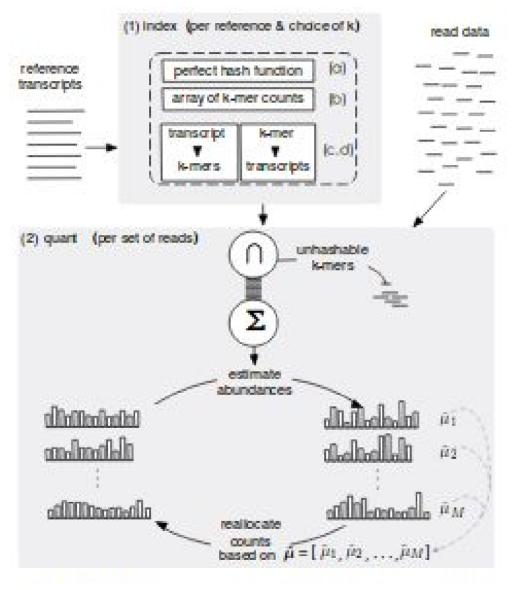
Outputs (w/o specific options except BAM SortedByCoordinate):

- •Aligned.sortedByCoord.out.bam: list of read alignments in SAM format compressed
- •Log.out: main log file with a lot of detailed information about the run (for troubleshooting)
- •Log.progress.out: reports job progress statistics
- •Log.final.out: summary mapping statistics after mapping job is complete, very useful for quality control.
- •SJ.out.tab: contains high confidence collapsed splice junctions in tab-delimited format

(chr, intron start, end, strand, intron motif, in database, # uniquely mapping reads, # multi, max. overhang)

STAR technical issues

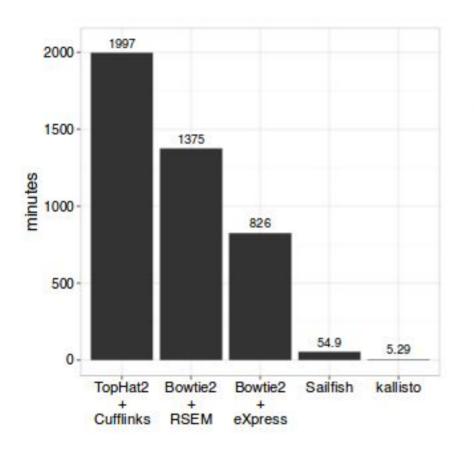
- Temporary disk space:
 - Indexing the mouse genome requires 128GB and 1 hour on 6 slots.
 - Mapping a 16M paired-end reads requires 110GB and 4 mins on 6 slots.
- New platform cluster:
 - 34 cluster nodes with 4×12 cores and 384 GB of ram per node: 1632 cores
 - 1 hypermem node (32 cores and 1024 GB of ram)
 - A scratch file system (157 To available, 6 Gbps bandwith)

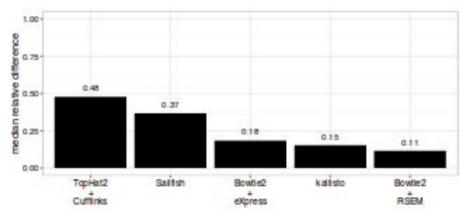

Hands-on: STAR

Exercise n°5 B/ Map the 2 FASTQ files. Do not forget to provide a different output file name for each set.

Index the output BAM files with:
samtools index file.bam

Get some stats with: samtools flagstat file.bam


Quasi-mapping: Sailfish



Patro et al, Nat. Biotech., 2014

- Reads are *not* mapped.
- Transcriptome is cut into small chunks of small *k*-mers.
- Same for reads.
- Take a *k*-mer from a transcript, counts how many times you find it in reads.
- "Average" the counts over a transcript.
- Resolve ambiguous counts.

Quasi-mapping: why?

Bray et al, Nat. Biotech., 2016

Other (most used) tool: kallisto, salmon

Quasi-mapping: limitations

Heavily relies on a good annotation:

• Unannotated genes will not be counted and may bias other genes counts.

Does not align reads:

• Cannot find variation (SNP) in the reads.

Visualizing alignments on IGV

http://www.broadinstitute.org/igv/home

NATURE BIOTECHNOLOGY | OPINION AND COMMENT | CORRESPONDENCE

Integrative genomics viewer

James T Robinson, Helga Thorvaldsdóttir, Wendy Winckler, Mitchell Guttman, Eric S Lander, Gad Getz & Jill P Mesirov

Affiliations | Corresponding authors

Nature Biotechnology 29, 24–26 (2011) | doi:10.1038/nbt.1754 Published online 10 January 2011

Step 1: set the genome

- Exercise n°5 C/
- Open the Genomes menu
- Choose Load Genome from File...
- Provide your FASTA file.

Some updated fields:

- Genome
- Chromosome
- Locus

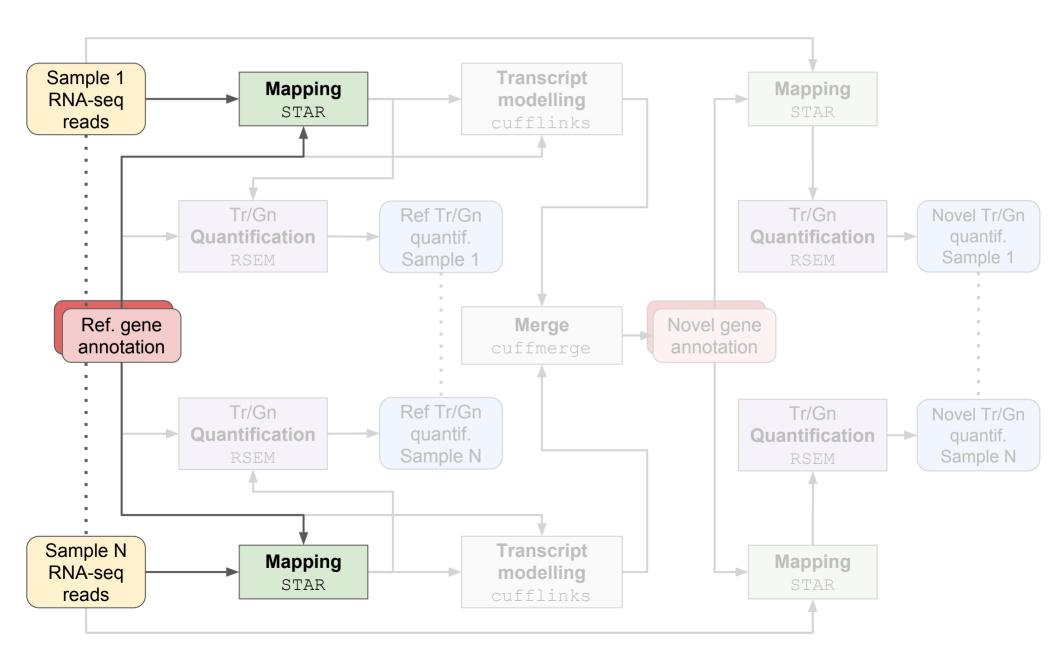
Tips:

- Some chromosomes are bundled with IGV (but they should have the same chromosome names).
- You can fetch some others through the server.

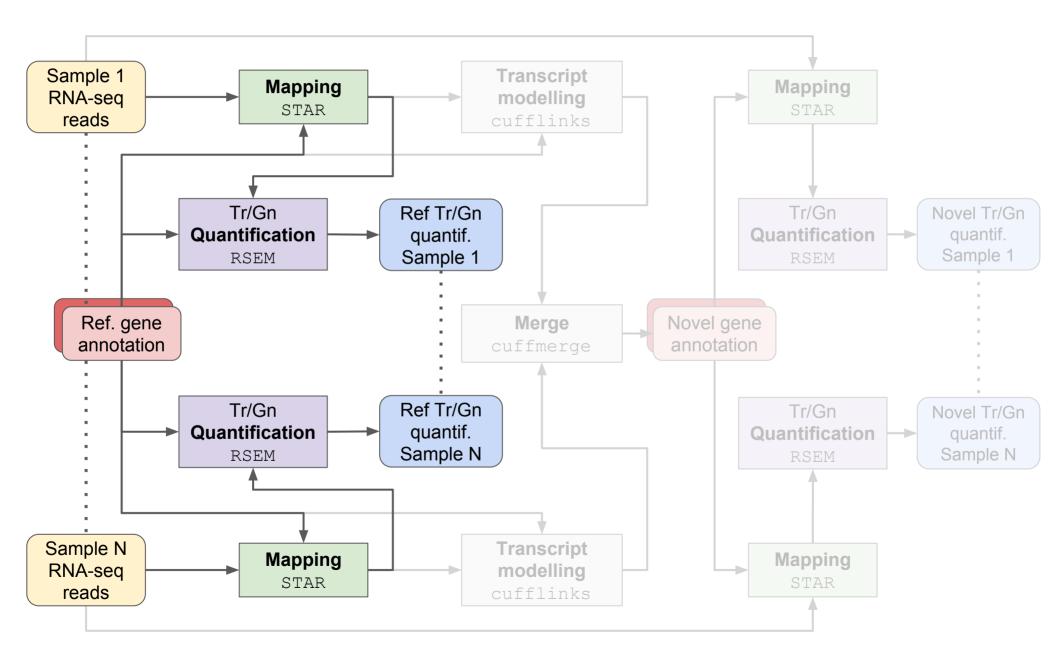
Step 2: add the tracks

- Open the File menu
- Choose Load from File...
- Provide your GTF file.
- Provide your BAM files (the BAI file should be also present).

Some interesting loci:

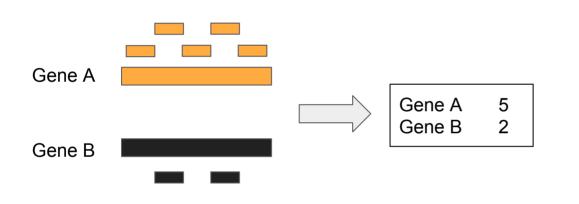

- Go to locus: SL2.40ch06:34,298,666-34,306,292
- Thin lines indicate introns. Notice that gene introns match with read introns. Notice that the first and last exons seems longer than annotation. It's probably not annotated UTR.

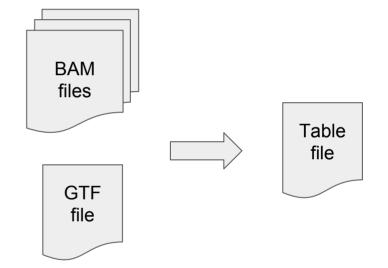
Explore IGV


- Zoom in/out
- Go right/left
- Hover over the reads and get some info.
- Notice (colored) genome variations.
- Change panel height.
- Go to next TSS with Ctrl+F (Ctrl+B for previous TSS)

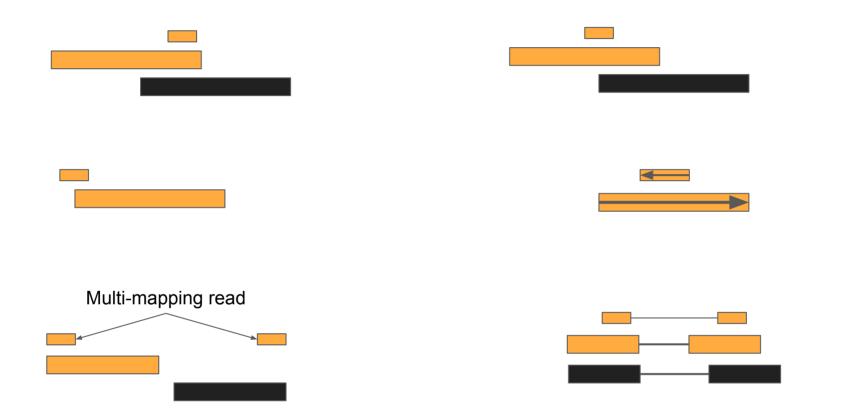
- Go to SL2.40ch06:34,209,900-34,260,000
- Look at the strand of the gene.
- Expand the gene track.
- Do you think the annotation is complete here?
- Which condition is more expressed?

Analysis workflow



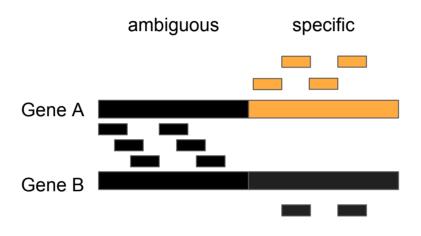

Analysis workflow

Quantification: estimation of expression based on a read count.



Estimation of:

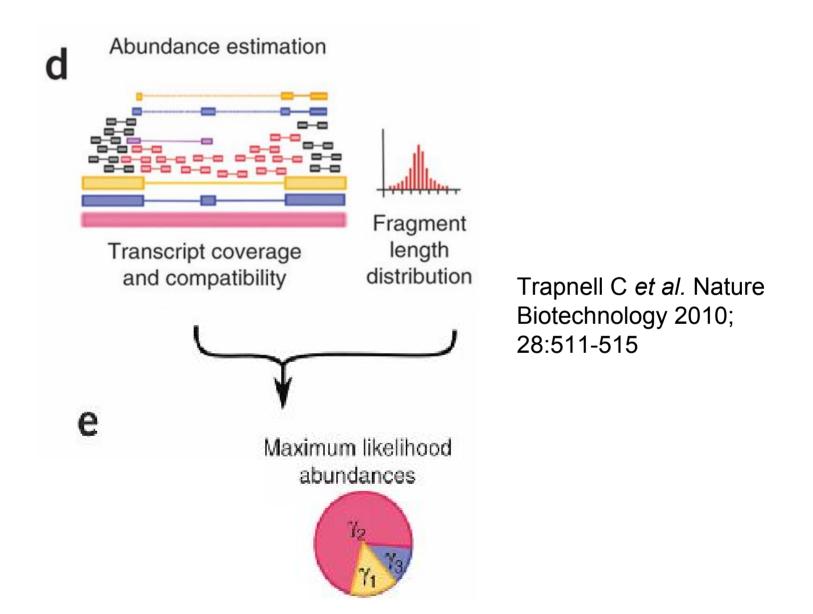
- gene expression
- transcript expression
- exon expression


Difficult cases

Every quantification tools uses its own rules!

Raw counts vs estimation

Raw count vs estimation: what to do with ambiguous reads?


Pros estimation:

- Use more reads.
- More accurate?

Cons estimation:

- Underlying model inaccurate.
- Raw counts for differential expression does not matter much.

Transcript expression

Raw counts tool: featureCounts

featureCounts: an efficient general purpose program for assigning sequence reads to genomic features

Yang Liao^{1,2}, Gordon K. Smyth^{1,3} and Wei Shi^{1,2,*}

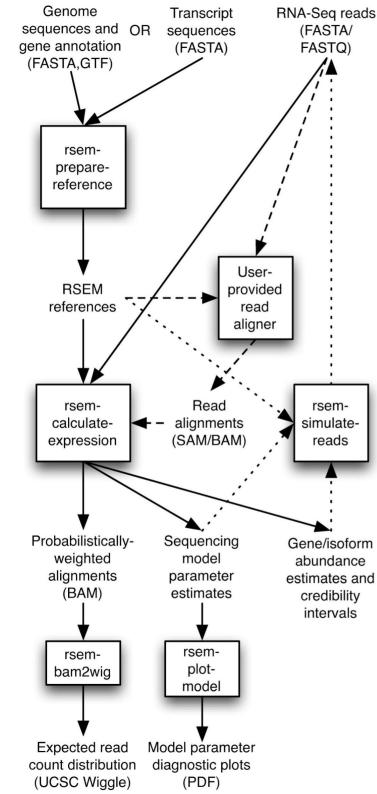
¹Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, ²Department of Computing and Information Systems and ³Department of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia

Associate Editor: Martin Bishop

- Levels : exon, transcript, gene
- Multiple option for :
 - Paired reads
 - Assignation of reads
 - Oriented library
- Also exists: HTseq-Count

Estimation tool: RSEM

RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome


Bo Li and Colin N Dewey 🖾

 BMC Bioinformatics
 2011
 12:323
 DOI: 10.1186/1471-2105-12-323
 © Li and Dewey; licensee BioMed Central Ltd. 2011

 Received:
 10 May 2011
 Accepted:
 4 August 2011
 Published:
 4 August 2011

- Exhaustive tool
- Levels : transcript, gene
- May be used without reference genome (RNA-Seq *de* novo)

• Also exists: cufflinks

RSEM workflow

Two main steps:

- rsem-prepare-reference
- rsem-calculate-expression

In default use case, RSEM maps the reads (with Bowtie).

Using a different mapping tool (STAR) requires:

- Extra parameters for STAR
- Extra parameters for RSEM

Hands-in: prepare reference

Exercise n°6
Command line:
/usr/local/bioinfo/src/RSEM/RSEM-1.3.0/rsem-p
repare-reference --gtf annot.gtf genome.fasta
rsem_lib

Output files:

- rsem_lib.grp, rsem_lib.ti, rsem_lib.seq, and rsem_lib.chrlist are for internal use.
- rsem_lib.idx.fa: the transcript sequences
- rsem_lib.n2g.idx.fa: same, with $N \rightarrow G$

Hands-in: calculate expression

Command line: /usr/local/bioinfo/src/RSEM/RSEM-1.3.0/rsem-c alculate-expression --alignments alignment.bam rsem_lib quant

Outputs:

- quant.isoforms.results: isoform level expression estimates
- quant.genes.results: same for genes
- quant.stat: directory with stats on various aspects of this step

Hands-in: calculate expression

Other parameters:

- --paired-end: specify paired-end reads
- -p N: use N CPUs
- --seed *N*: seed for random number generators
- --calc-ci: calculate 95% credibility intervals and posterior mean estimates.
- --ci-memory 30000: size in MB of the buffer used for computing CIs
- --estimate-rspd: estimate the read start position distribution
- --no-bam-output: do not output any BAM file (produced by internal mapper)

Output file format

- effective_length: # positions that can generate a fragment
- expected_count: read count, with mapping prob. and read qual
- TPM: Transcripts Per Million, relative transcript abundance, see *infra*
- FPKM: Fragments Per Kilobase of transcript per Million mapped reads, see *infra*
- IsoPct: isoform percentage
- posterior_mean_count, posterior_standard_deviation_of_count, pme_TPM, pme_FPKM: estimates calculated Gibbs sampler

Output file format

- IsoPct_from_pme_TPM: isoform percentage calculated from pme_TPM values
- TPM_ci_lower_bound, TPM_ci_upper_bound, FPKM_ci_lower_bound, FPKM_ci_upper_bound: bounds of 95% credibility intervals
- TPM_coefficient_of_quartile_variation, RPKM_coefficient_of_quartile_variation: coefficients of quartile variation, a robust way of measuring the ratio between the standard deviation and the mean

RPKM *vs* **FPKM** *vs* **TPM**

RPKM: Reads Per Kb of transcript per Million mapped

- *r* = # reads on a gene
- *k* = size of the gene (in kb)
- *m* = # reads in the sample (in millions)
- RKPM = r / (k m)

FPKM: Fragments Per Kilobase...

• Same with *f* = # fragments (2 reads in PE) on a gene

Meaning:

If you sequence at depth 10^6 , you will have x = FPKM fragments of a 1kb-gene.

RPKM vs FPKM vs TPM

TMP:

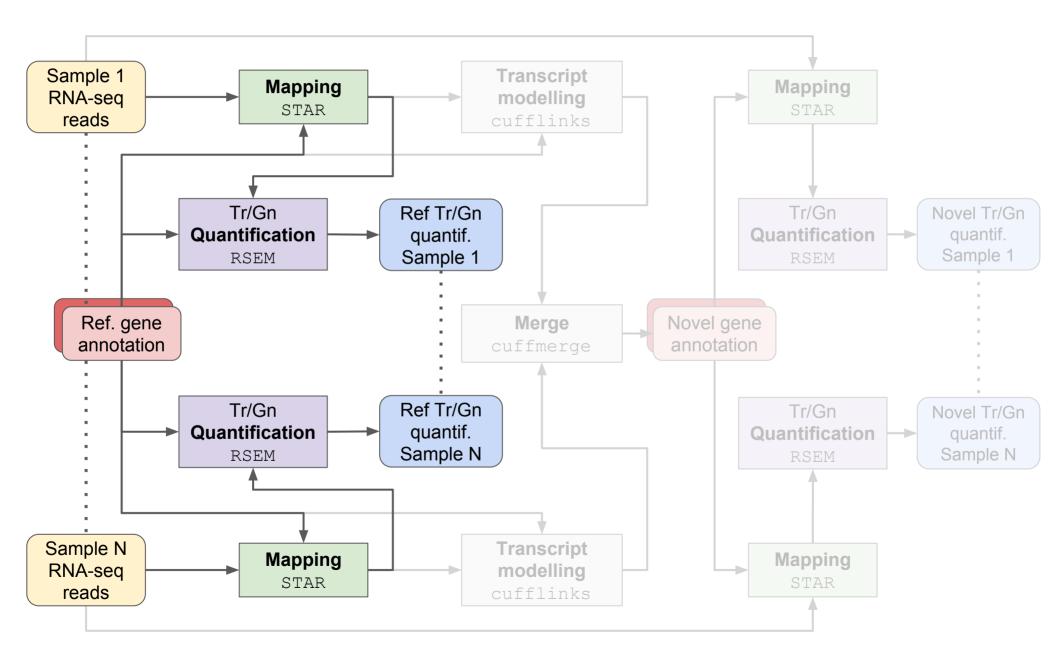
- $r_i = \#$ reads on a gene *i*
- $\dot{s_i}$ = size of the gene *i*
- $cpb_i = r_i / s_i$
- $cpb = \sum cpb_i$

•
$$\mathsf{TMP}_i = cpb_i / cpb \times 10^6$$

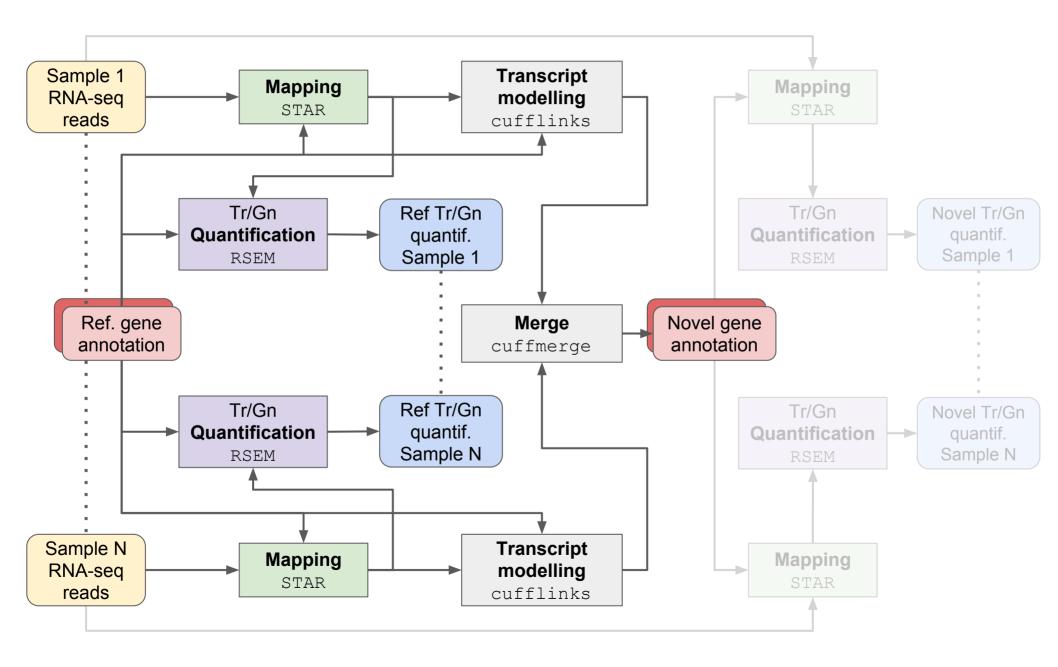
Remark:

• $\text{TMP}_i = \text{FPKM}_i / (\sum \text{FPKM}_j) \times 10^6$

Meaning:


If you have 10^6 transcripts, $x = \text{TMP}_i$ will originate from gene *i*.

RPKM *vs* **FPKM** *vs* **TPM**


- These are refinement of library size normalization, with gene length effect.
- RPKM should not be used for PE reads.
- TMP tend to be favored now w.r.t. R/FPKM.
- None of them should be used for differential expression: only raw counts.

Ask your questions to the stats guys.

Analysis workflow

Analysis workflow

New transcriptome: why?

Ensembl Release 88 (March 2017)

Homo sapiens

Coding genes	20,310 (incl 556 readthrough)		
Non coding genes	22,529		
Pseudogenes	14,589 (incl 6 readthrough)		
Gene transcripts	199,234		

Rattus norvegicus

Coding genes	22,250 (incl 12 readthrough)		
Non coding genes	8,934		
Pseudogenes	1,668		
Gene transcripts	41,078		

Oryctolagus cuniculus

Coding genes	19,293	
Non coding genes	3,375	
Pseudogenes	1,001	
Gene transcripts	24,964	

Gallus gallus

Coding genes	18,346	
Non coding genes	6,492	
Pseudogenes	43	
Gene transcripts	38,118	

Mus musculus

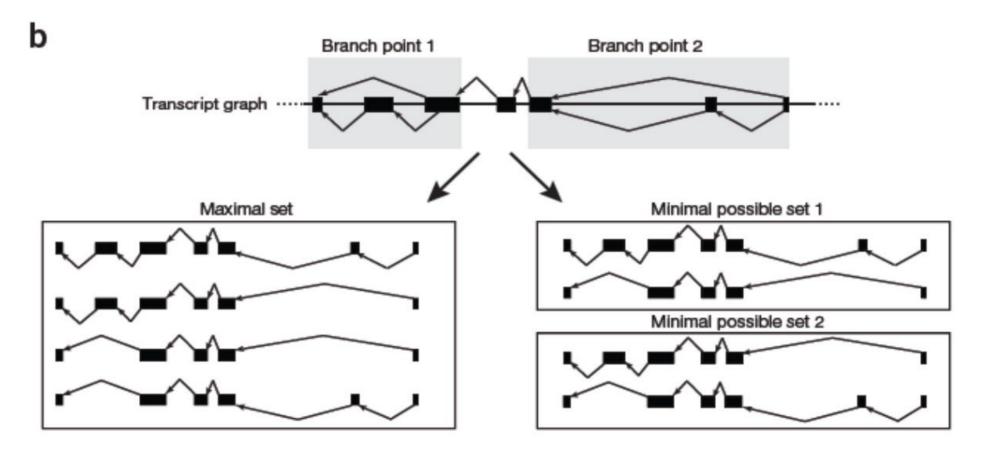
Coding genes	22,615 (incl 226 readthrough)
Non coding genes	14,299
Pseudogenes	10,937 (incl 6 readthrough)
Gene transcripts	125,665

Bos taurus

Coding genes	19,994	
Non coding genes	3,825	
Pseudogenes	797	
Gene transcripts	26,740	

Sus scrofa

Coding genes	21,630 (incl 10 readthrough)			
Non coding genes	3,124			
Pseudogenes	568			
Gene transcripts	30,585			


Transcript reconstruction

- Gene location _____ Exon location _____ Junctions :
- between read pair junction
- \checkmark

- within read junction

Model building strategies

REVIEW

Computational methods for transcriptome annotation and quantification using RNA-seq

Manuel Garber¹, Manfred G Grabherr¹, Mitchell Guttman^{1,2} & Cole Trapnell^{1,3}

NATURE BIOTECHNOLOGY | RESEARCH | LETTER

< 🖨

日本語要約

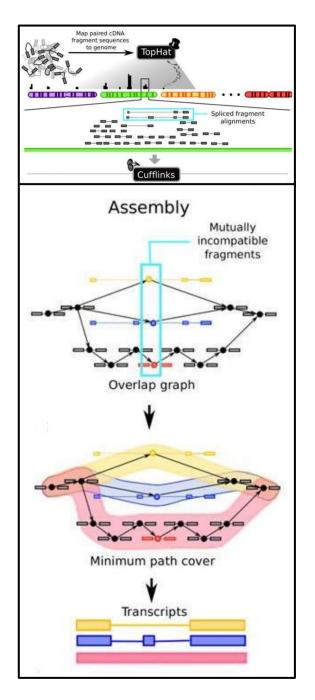
Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation

Cole Trapnell, Brian A Williams, Geo Pertea, Ali Mortazavi, Gordon Kwan, Marijke J van Baren, Steven L Salzberg, Barbara J Wold & Lior Pachter

Affiliations | Contributions | Corresponding author

Nature Biotechnology 28, 511–515 (2010) | doi:10.1038/nbt.1621 Received 02 February 2010 | Accepted 22 March 2010 | Published online 02 May 2010

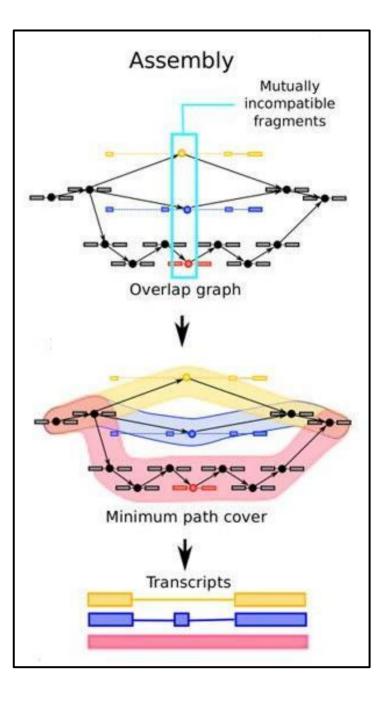
http://cole-trapnell-lab.github.io/cufflinks/


- assembles transcripts

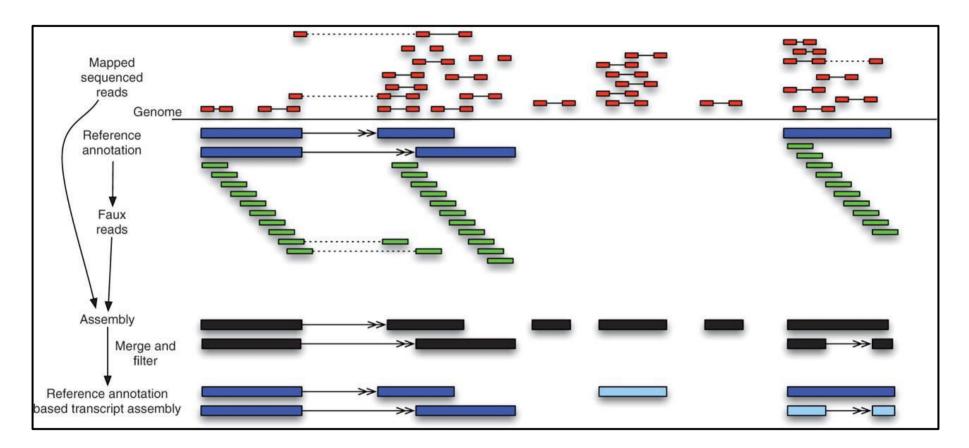
- estimates their abundances: based on how many reads support each one
- last version: cufflinks 2.2.1, released May 05, 2014

Cufflinks

Cufflinks transcript assembly


- Transcripts assembly:
 - fragments are divided into non-overlapping loci
 - each locus is assembled independently
- Cufflinks assembler
 - find the mini nb of transcripts that explain the reads
 - find a minimum path cover (Dilworth's theorem):
 - nb incompatible read = mini nb of transcripts needed
 - each path = set of mutually compatible fragments overlapping each other

Cufflinks transcript assembly


Transcripts assembly:

- identification of incompatible fragments originated from distinct isoforms
- connection of compatible fragments in an overlap graph
- assembling isoforms from the overlap graph: here minimally 'covered' by three paths, each representing a different isoform

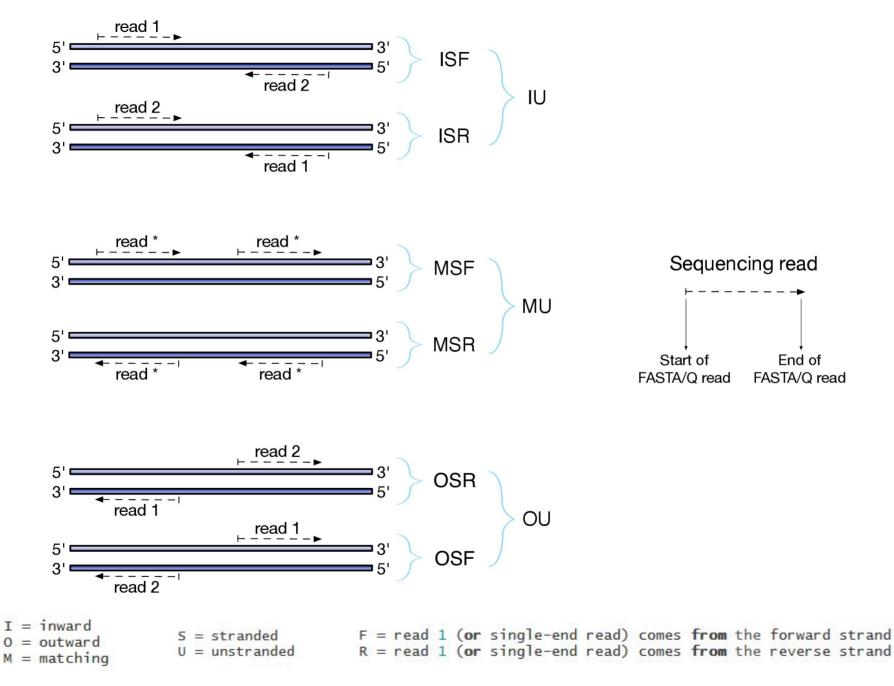
Cufflinks transcript assembly

Reference Annotation Based Transcripts Assembly

Assembling novel transcripts in the context of an existing annotation

Roberts et al. Bioinformatics 2011

Cufflinks inputs and options


- Command line:

cufflinks [options] <aligned_reads.(sam/bam)>

- Some options:
 - -h/--help
 - -o/--output-dir
 - -p/--num-threads
 - -G/--GTF <reference_annotation.(gtf/gff)>
 estimate isoform expression, no novel transcripts
 - -g/--GTF-guide <reference_annotation.(gtf/gff)>
 use reference transcript annotation to guide assembly
 - --max-bundle-length [3,500,000]
 - --max-bundle-frags [500,000]
 - --library-type

library prep used for input reads

Cufflinks library types

Cufflinks library types

Library Type	Examples	Description	read 2				
(default) Illumina coordinates) map to the transcri		Reads from the left-most end of the fragment (in transcript coordinates) map to the transcript strand, and the right-most end maps to the opposite strand.	3'				
fr-firststrand	dutp, NSR, NNSR		TopHat	Salmon (and Sailfish)			
		end of the fragment (in transcript coordinates) is the first sequenced (or only sequenced for single-end reads). Equivalently, it is assumed that only the strand generated		Paired-end	Single-end		
		during first strand synthesis is sequenced.	-fr-unstranded	-1 IU	-1 U		
fr-secondstrand	Directional Illumina	Same as above except we enforce the rule that the left-most end of the fragment (in transcript coordinates) is the first	-fr-firststrand	-1 ISR	-1 SR		
	(Ligation), Standard SOLiD	sequenced (or only sequenced for single-end reads). Equivalently, it is assumed that only the strand generated during second strand synthesis is sequenced.	-fr-secondstrand	-1 ISF	-1 SF		

http://cole-trapnell-lab.github.io/cufflinks/cuffdiff/#library-types

Library Type

In the analysis of RNA-seq data, both TopHat and Cufflinks can take into account the nature of the sample preparation. Specifically, the analysis can specify that the sequenced fragments are either:

- Unstranded
- · Correspond to the first strand
- Correspond to the second strand

For the TruSeq RNA Sample Prep Kit, the appropriate library type is "fr-unstranded". For TruSeq stranded sample prep kits, the library type is specified as "fr-firststrand".

Cufflinks outputs

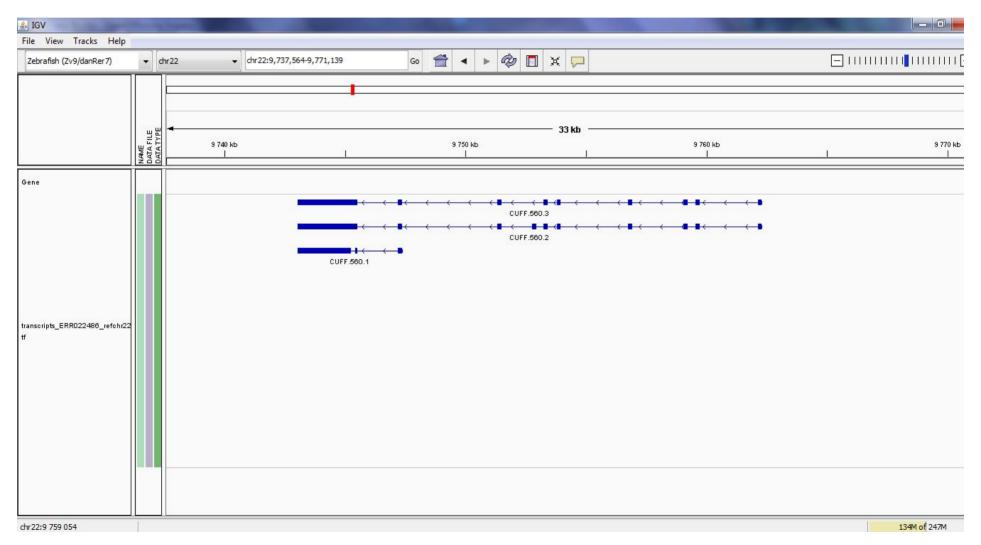
- transcripts.gtf
 - contains assembled isoforms (coordinates and abundances)
- genes.fpkm_tracking contains the genes FPKM
- **isoforms.fpkm_tracking** contains the isoforms FPKM
- skipped.gtf

contains skipped loci (too many fragments)

Cufflinks GTF description

transcripts.gtf (coordinates and abundances):

- contains assembled isoforms
- can be visualized with a genome viewer
- attributes: ids, FPKM, confidence interval, read coverage & support
 - score: most abundant isoform = 1000 minor isoforms = minor FPKM/major FPKM
 - cov: estimate for depth across the transcript


1	Cufflinks	transcript	459812	460830	1	-	8.
1	Cufflinks	exon	459812	460830	1	-	33
1	Cufflinks	transcript	463572	478996	1000	-	
1	Cufflinks	exon	463572	463746	1000	-	÷.
1	Cufflinks	exon	466228	466405	1000	_	

gene_id "ENSBTAG00000013841"; transcript_id "ENSBTAT00000018387"; FPKM "0.0000000000"; frac "0.0000000"; gene_id "ENSBTAG00000013841"; transcript_id "ENSBTAT00000018387"; exon_number "1"; FPKM "0.00000000000"; frac "0.000000"; gene_id "CUFF.2"; transcript_id "ENSBTAT00000015319"; FPKM "25.4745974237"; frac "1.000000"; gene_id "CUFF.2"; transcript_id "ENSBTAT00000015319"; exon_number "1"; FPKM "25.4745974237"; frac "1.000000"; gene_id "CUFF.2"; transcript_id "ENSBTAT00000015319"; exon_number "1"; FPKM "25.4745974237"; frac "1.000000";

> conf_lo "0.000000"; conf_hi "0.000000"; cov "0.000000"; full_read_support "no"; conf_lo "0.000000"; conf_hi "0.000000"; cov "0.000000"; conf_lo "21.387219"; conf_hi "29.561976"; cov "422.904985"; full_read_support "yes"; conf_lo "21.387219"; conf_hi "29.561976"; cov "422.904985"; conf_lo "21.387219"; conf_hi "29.561976"; cov "422.904985";

Cufflinks GTF description

transcripts.gtf (coordinates and abundances): visualization in IGV

Cufflinks / Cuffcompare

Compare assemblies between conditions:

- compare your assembled transcripts to a reference annotation
- track Cufflinks transcripts across multiple experiments

```
Command:
cuffcompare [-r <reference.gtf>] [-o <outprefix>] <input1.gtf> ...
```

Outputs:

- <outprefix>.stats overall summary statistics
- <outprefix>.combined.gtf "union" of all transfrags
- <cuff_in>.refmap transfrags matching to reference transcript
- <cuff_in>.tmap best reference transcript for each transfrag
- <outprefix>.tracking tracking transfrags across samples

Cuffcompare

Class code de cuffcompare

=	complete match	
С	contained	
j	novel isoform	
е	single exon	
i	within intron	
0	exonic overlap	
р	polymerase run-on	
r	repeat	<pre>> 50% lower case bases</pre>
u	unknown, intergenic	
x	exonic overlap on the opposite strand	
S	intronic overlap on the opposite strand	$\overbrace{}$

http://cole-trapnell-lab.github.io/cufflinks/cuffcompare/index.html#transfrag-class-codes

Cufflinks / Cuffmerge

Merge together several assemblies:

- merge novel isoforms and known isoforms
- filters a number of transfrags that are probably artifacts
- build a new gene model describing all conditions

Command: cuffmerge [options] -o <assembly_GTF_list>

Options:

- -o/--output-dir
- -g/--ref-gtf
- -s/--ref-sequence
- --min-isoform-fraction discard isoforms with abundance below this [0.05]
- -p/--num-threads

Cufflinks / Cuffmerge

merged.gtf (coordinates and legacy):

- contains merged input assemblies
- can be visualized with a genome viewer
- attributes: ids, name, old, nearest_ref, class_code, tss_id, p_id

1	Cufflinks	exon	34627	35558	83 .	+	83.
1	Cufflinks	exon	242394	242646		+	
1	Cufflinks	exon	275623	275681		+	
1	Cufflinks	exon	242402	242646	8.	+	8.
1	Cufflinks	exon	254559	254693		+	
1	Cufflinks	exon	247340	249673	÷.	+	1
1	Cufflinks	exon	351546	351874	53	+	03
1	Cufflinks	exon	355064	355237		+	
1	Cufflinks	exon	357793	357952	1	+	1
1	Cufflinks	exon	361144	362915	53	+	104
					1.00	1.1.1.1	1.00

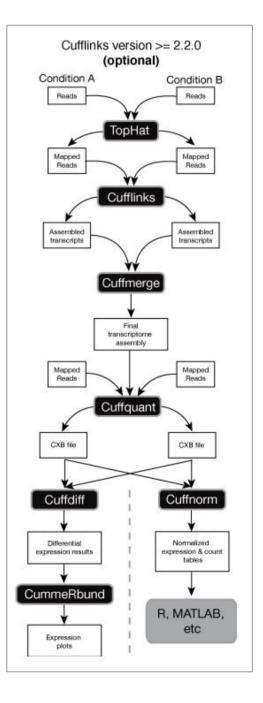
gene id "XLOC 000001";	transcript id	"TCONS 00000001";	exon number	"1";	qene name	"ENSBTAG0000006858";	
gene_id "XLOC_000002";	transcript_id	"TCONS_0000002";	exon_number	"1";	gene_name	"CBX3";	
gene_id "XLOC_000002";	transcript_id	"TCONS_0000002";	exon_number	"2";	gene_name	"CBX3";	
gene_id "XLOC_000002";	transcript_id	"TCONS_0000003";	exon_number	"1";			
gene_id "XLOC_000002";	transcript_id	"TCONS_0000003";	exon_number	"2";			
gene_id "XLOC_000003";							
gene_id "XLOC_000004";							
gene_id "XLOC_000004";							
gene_id "XLOC_000004";							
gene_id "XLOC_000004";	transcript_id	"TCONS_00000005";	exon_number	"4";	gene_name	"RCAN1";	

old "ENSETAT0000000004"; nearest_ref "ENSETAT00000000004"; class_code "="; tss_id "TSS1"; old "CUFF.1.1"; nearest_ref "ENSETAT00000007283"; class_code "x"; tss_id "TSS2"; old "CUFF.1.1"; nearest_ref "ENSETAT00000007283"; class_code "x"; tss_id "TSS2"; old "CUFF.1.2"; class_code "u"; tss_id "TSS2"; old "CUFF.1.2"; class_code "u"; tss_id "TSS2"; old "CUFF.2.1"; class_code "u"; tss_id "TSS3"; old "CUFF.3.1"; nearest_ref "ENSETAT00000037243"; class_code "j"; tss_id "TSS4"; old "CUFF.3.1"; nearest_ref "ENSETAT00000037243"; class_code "j"; tss_id "TSS4";

Tuxedo protocol

NATURE PROTOCOLS | PROTOCOL

< 🖶


Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks

Cole Trapnell, Adam Roberts, Loyal Goff, Geo Pertea, Daehwan Kim, David R Kelley, Harold Pimentel, Steven L Salzberg, John L Rinn & Lior Pachter

Affiliations | Contributions | Corresponding author

Nature Protocols 7, 562–578 (2012) | doi:10.1038/nprot.2012.016 Published online 01 March 2012 | Corrected online 07 August 2014 Corrigendum (October, 2014)

NATURE BIOTECHNOLOGY | RESEARCH | LETTER

< 🔒

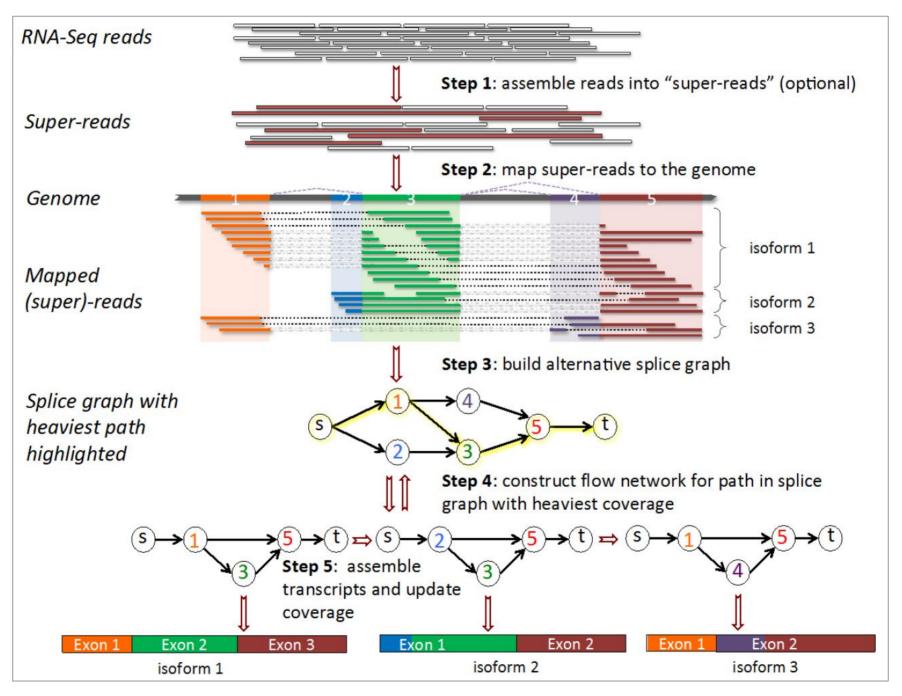
StringTie

日本語要約

StringTie enables improved reconstruction of a transcriptome from RNA-seq reads

Mihaela Pertea, Geo M Pertea, Corina M Antonescu, Tsung-Cheng Chang, Joshua T Mendell & Steven L Salzberg

Affiliations | Contributions | Corresponding author


Nature Biotechnology 33, 290–295 (2015) | doi:10.1038/nbt.3122 Received 15 April 2014 | Accepted 09 December 2014 | Published online 18 February 2015

https://ccb.jhu.edu/software/stringtie/

- assembles transcripts

- StringTie identified 36-60% more transcripts than the next best assembler (Cufflinks)
- last version: stringtie 1.3.3, released Feb 15, 2017

StringTie transcript assembly

Pertea et al. Nature Biotechnology 2015

StringTie

Command:
stringtie <aligned_reads.bam> [options]

Some options:

- -o [<path/>]<out.gtf>
- -G <ref_ann.gff>
- --rf | --fr stranded library fr-firststrand | fr-secondstrand
- -p <int>
- --merge transcript merge mode

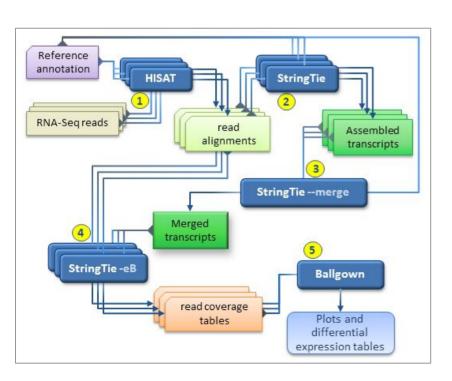
Main output:

- GTF file containing the assembled transcripts
- Gene abundances in tab-delimited format
- Fully covered transcripts matching the reference annotation
- Files required as input to Ballgown
- In merge mode, a merged GTF file from a set of GTF files

StringTie protocol

NATURE PROTOCOLS | PROTOCOL

<


Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown

Mihaela Pertea, Daehwan Kim, Geo M Pertea, Jeffrey T Leek & Steven L Salzberg

Affiliations | Contributions | Corresponding author

Nature Protocols 11, 1650-1667 (2016) | doi:10.1038/nprot.2016.095

Published online 11 August 2016

StringTie / gffcompare

Command:

gffcompare [-r <reference.gtf>] [-o <outprefix>] <input1.gtf> ...

Some options:

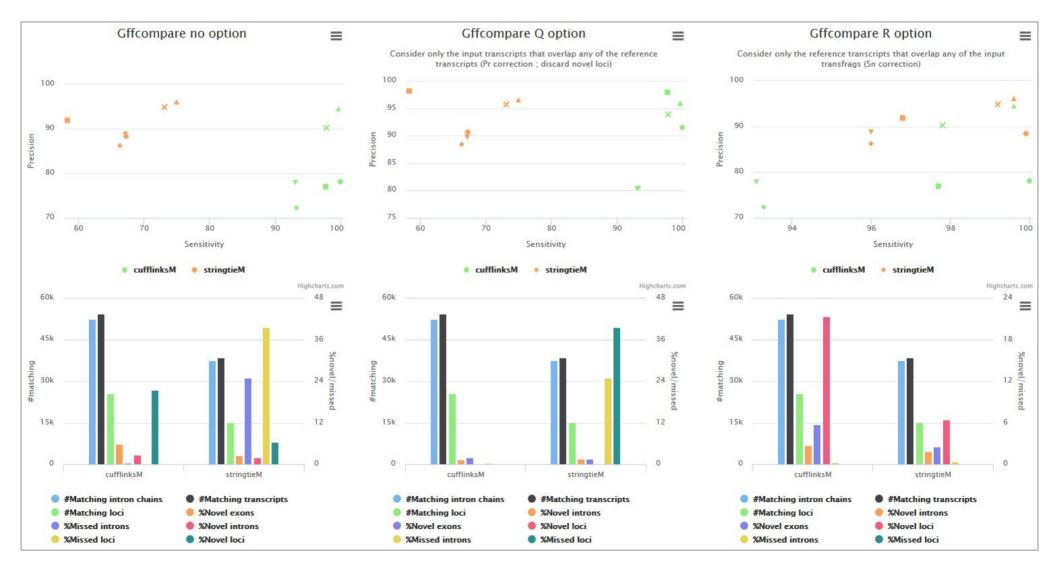
• -R for -r option

consider only the reference transcripts that overlap any of the input transfrags (Sn correction)

• -Q for -r option

consider only the input transcripts that overlap any of the reference transcripts (Precision correction); discard all "novel" loci

Output: cuffcompare like output files

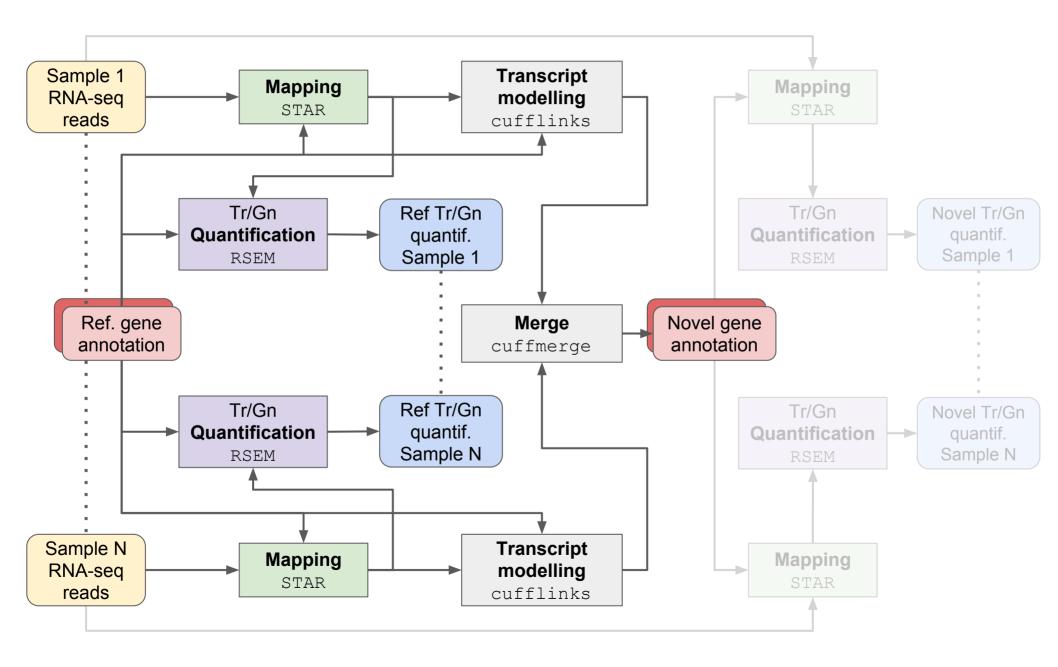

StringTie / gffcompare

strtcmp.stats (transcript assembly accuracy comparison)

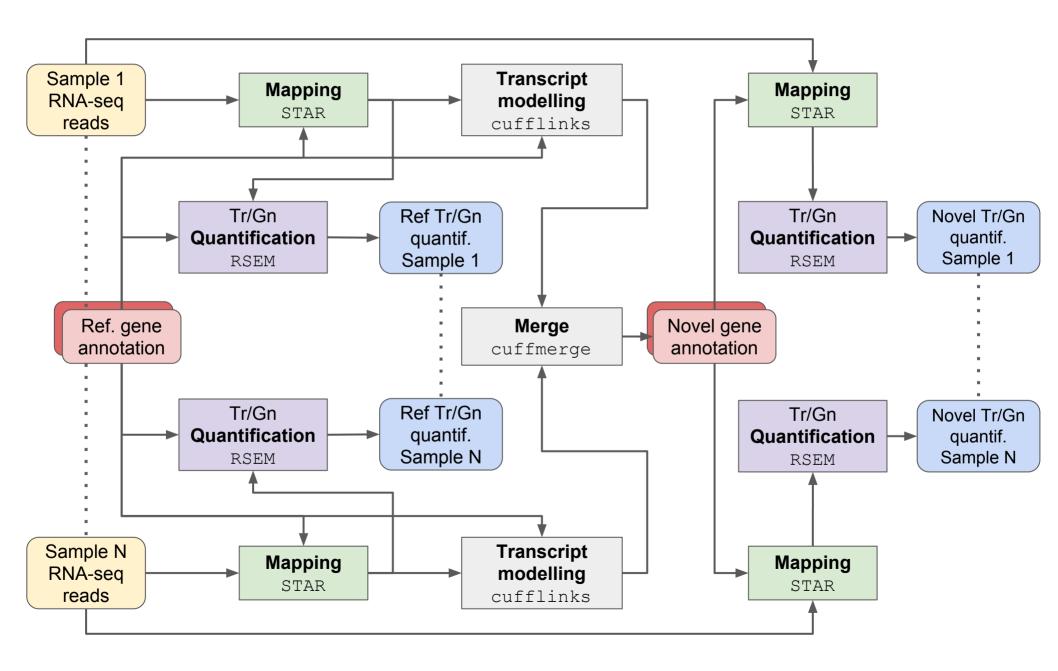
<pre>#= Summary for dataset: stringtie asm.gtf</pre>				
# Query mRNAs: 23555 in 17628 loci (17231 multi-exon transcripts)				
# (3731 multi-transcript loci, ~1.3 transcripts per locus)				
# Reference mRNAs : 16628 in 12062 loci (15850 multi-exon)				
<pre># Super-loci w/ reference transcripts: 11552</pre>				
<pre># Sensitivity</pre>	Precision			
Base level: 82.4	76.5			
Exon level: 81.2	82.9			
Intron level: 86.1	94.8			
Intron chain level: 56.9	52.4			
Transcript level: 55.2	38.9			
Locus level: 70.1	48.0			

gffcompare2highcharts.pl

Command: gffcompare2highcharts.pl --stats STATS_FILE[...,STATS_FILE_n] > output.html



Hands-on: transcripts assembly


Using cufflinks et al:

Exercise 7: reconstruct known and novel transcripts

Analysis workflow

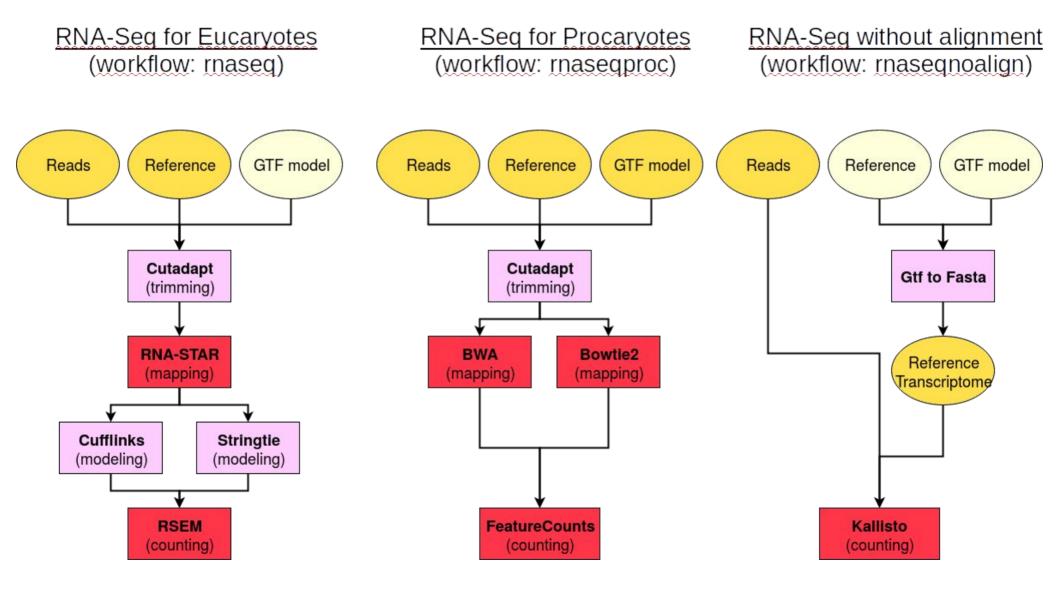
Analysis workflow

Hands-on : star, RSEM with new gtf

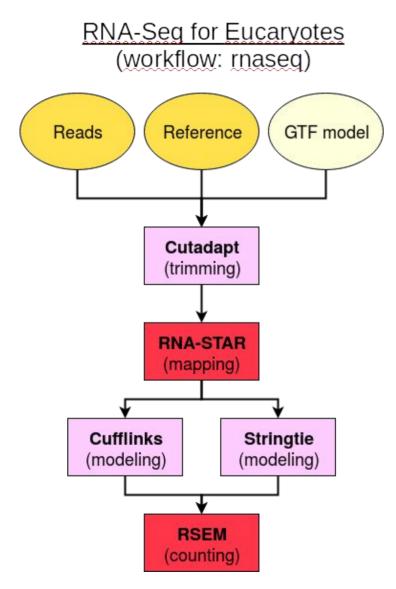
Exercise n°8 (Optional)

Commands :

Star and RSEM: see exercise n°5 and 6


How to choose count matrix ?

- Quality of the annotation :
 - do not forget to check the genes structure with IGV
 - presence of genes of interest
 - too many transcripts
 - quality metrics with gffcompare
- Number of reads mapped
- Number of reads assigned


Jflow

- Workflow management system
- \Rightarrow configuration, parallelization and monitoring
- Launch a workflow with one command line

- Available on the Genotoul platform
 - o /usr/local/bioinfo/src/Jflow/jflow/bin/jflow_cli.py
 <workflow_name> <workflow_parameters...>

Dark <u>colors</u>: required steps / inputs Light <u>colors</u>: optional steps / inputs

Launch workflow:

/usr/local/bioinfo/src/Jflow/jflow/bin/jflow_cli.p y rnaseq

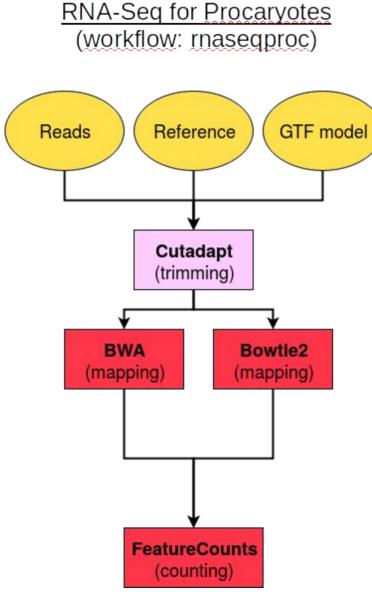
--sample reads-1=myfile_R1.fastq.gz

(reads-2=myfile_R2.fastq.gz)

--reference-genome fasta-file=reference.fasta (index-directory=/path/to/directory)

--gtf-file model.gtf

--protocol (illumina_stranded, other) default : illumina_stranded


Others parameters:

--trim-reads : to trim reads before proceeding default: TruSeq Adapter

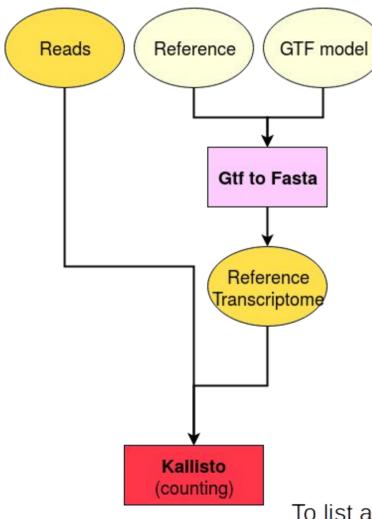
--compute-gtf-model : to compute a new gtf model (gtf-file parameter is optional in this case)

--modeling-software [cufflinks|stringtie] (default: cufflinks)

<u>To list all parameters available for this workflow:</u> /usr/local/bioinfo/src/Jflow/jflow/bin/jflow_cli.py maseq --help

Launch workflow:

/usr/local/bioinfo/src/Jflow/jflow/bin/jflow_cli.py rnaseqproc


- --sample reads-1=myfile_R1.fastq.gz (reads-2=myfile_R2.fastq.gz)
- --reference-genome reference.fasta
- (--indexed-genome)
- --gtf-file model.gtf
- --protocol (illumina_stranded, other) default: illumina_stranded

Other parameters:

- --trim-reads: to trim reads default: TruSeq Adapter
- --use-bowtie2: use bowtie2 instead of default bwa
- --multi-map: If specified, multi-mapping reads/fragments will be counted --multi-assign: If specified, reads will be allowed to be assigned to multiple meta-feature

<u>To list all parameters available for this workflow:</u> /usr/local/bioinfo/src/Jflow/jflow/bin/jflow_cli.py maseqproc --help

RNA-Seg without alignment (workflow: rnaseqnoalign)

Launch workflow:

/usr/local/bioinfo/src/Jflow/jflow/bin/jflow_cli.p y rnaseqnoalign --sample reads-1=myfile_R1.fastq.gz (reads-2=myfile_R2.fastq.gz)

<u>Case 1: you have the transcriptome:</u> --transcriptome : transcriptome fasta file

<u>Case 2: you don't have the transcriptome:</u> --reference-genome reference.fasta --gtf-file model.gtf

To list all parameters available for this workflow: /usr/local/bioinfo/src/Jflow/jflow/bin/jflow_cli.py rnaseqnoalign --help

- The documentation is here: /usr/local/bioinfo/src/Jflow/jflow/workflows/rnaseq/doc and give the hidden parameters.
- The results are in:

/work/login/jflow_results/workflowName/wf*/*. They are specified in the stdout when the pipeline ended.

- In development:
 - A log file containing: the list of commands launched (to have the parameters) and versions of software.

Useful references

• Experimental design:

Liu et al., RNA-seq differential expression studies: more sequence or more replication?, 2014, Bioinformatics, Vol. 30 no. 3 2014, pages 301–304. Schurch et al., How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use?, 2016, *RNA* 22:839–851.

• Pipeline STAR / cufflinks / RSEM:

Djebali et al., Bioinformatics pipeline for transcriptome sequencing analysis, *Methods in Molecular Biology*, 2017, vol. 1468.

• Tools / pipelines benchmarks for differentially expressed genes identification:

Williams et al., Empirical assessment of analysis workflows for differential expression analysis of human samples using RNA-Seq, *BMC bioinformatics*, 2017, 18:38.

Baruzzo et al., Simulation-based comprehensive benchmarking of RNA-seq aligners, 2017, *Nature methods*, vol. 14 n°2.

Useful references

• Best practices from experimental design to differential expression analysis:

Conesa et al., A survey of best practices for RNA-seq data analysis, 2016, *Genome Biology* 17:13.

• Pipeline HISAT, Stringtie, Gffcompare, Ballgown:

Pertea et al., Transcript-level expression analysis of RNA-seq experiments with HISAT, Stringtie and Ballgown, 2016, *Nature Protocols*, vol.11 n°9

• Alignment-independent quantification:

https://cgatoxford.wordpress.com/2016/08/17/why-you-should-stop-using-feature counts-htseq-or-cufflinks2-and-start-using-kallisto-salmon-or-sailfish/

• Transcript-level or gene-level ?

http://www.rna-seqblog.com/modern-rna-seq-differential-expression-analyses-tra nscript-level-or-gene-level-2/

Quality for Bioinfo Platform!

Satisfaction form : https://enquetes.inra.fr/index.php/84236?lang=fr

Useful links

Seqanswer: <u>http://seqanswers.com/</u> Biostars: <u>http://www.biostars.org/</u> RNAseq blog: <u>http://rna-seqblog.com/</u> Illumina: <u>http://www.illumina.com/</u>

