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Outline 

l  IntroducDon	and	basic	concepts	in	phylogeny	
-  Trees	
-  Alignements	
-  GeneDc	distances	and	nucleoDde	subsDtuDon	models	

l  PhylogeneDc	inference	methods		
-  Distance	methods	

-  Parcimony	methods	

-  Maximum	likehood	methods	

-  Bayesian	methods	
l  Phylogeny	in	pracDce	

-  TesDng	tree	topologies	(bootstrap)	

-  How	to	choose	a	method	?	
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Introduction  

l  Phylogenetics is the study of evolutionary relationships 
among groups of organisms (e.g. species, populations) 

l  Underlying asumption : taxa joined together in the tree are 
implied to have descended from a common ancestor 
through different speciation events 

l  Phylogenetic methods aims at representing similarities 
and differences between taxa using a phylogenetic tree 

l  The result of phylogenetic studies is a hypothesis about 
the evolutionary history of taxonomic groups: their 
phylogeny 
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What is a phylogenetic tree ? 
l  In	biology,	a	phylogeneDc	tree	is	a	branching	diagram	for	represenDng	

the	inferred	evoluDonary	relaDonships	among	various	biological	enDDes		
l  In	mathema1cs,	a	tree	is	an	undirected	graph	in	which	any	two	verDces	

are	connected	by	exactly	one	simple	path.	In	other	words,	any	connected	
graph	without	simple	cycles	is	a	tree.		



20/10/17	 5	

Molecular phylogenetics 

Trees	are	infered	from	heritable	characters	like:	

§  Binary	paYerns	:	presence/absence,	0/1		
§  MicrosaYelites	data,	SNPs,	InserDons,	DeleDons		

§  Aligned	gene1c	sequences	(ADN,	ARN,	proteins)	in	most	
cases	

In	molecular	phylogeneDcs,	we	infered	the	evoluDonary	
history	of	sequences:	it	is	not	always	the	same	of	the	one	of	
the	corresponding	species	!!!	

Here	:	we	focus	on	molecular	phylogene1cs,	based	on	
different	kind	of	molecular	sequence	data	
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Usual workflow in phylogenetic analysis 

Dataset	

construcDon		

	

MuDple	

alignment	

	

Build	a	

phylogeneDc		

tree	

	

Interpret	and	

evaluate	the		

tree	

	

check/filter	the	
alignement	

	



20/10/17	 7	

Dataset construction 

• 	Protein	coding	genes:	nucleic	alignments	(if	closed	
sequences)	or	proteic	alignements	(if	distant	sequences)	of	
homolog	sequences	

•  Some	popular	genes	used	in	molecular	phylogeneDcs		

-	Procaryotes:	ribosomal	RNA	(rRNA)	16S,	betaglucosidase,…	

-	Eukaryotes:	rRNA	18S,	acDn,	EF1,	RPB1,	mitochondrial	genes,…	

•  Criteria	to	choose	good	sequences	dataset:	universality,	
conserved	structure,	no	horizontal	transfer,	apropriate	
evoluDonary	rate.	
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Mutiple alignment as dataset 

	In	phylogeny	we	will	focus	on	sites	of	the	alignment,	either	directly	or	
indirectly	via	computaDon	of	a	distance.	

Hypothese:	aligned	sequences	are	homologous,	i.e.	ver1cally	derived	
from	an	ancestral	sequence	of	common	ancestor	

	 Ancestral	sequence	
AACCTGTGCA

ATCCTGGGTT
 *    * **

AATCTGTGTA
  *     *  

Seq1 AATCTGTGTA
Seq2 ATCCTGGGTT
      **   *  * 1	site	=	1	posiDon	in	the	

alignment	
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Homology vs Homoplasy 
-	Homology	 is	any	similarity	between	shared	characters	that	 is	
due	to	their	shared	ancestry	

PhylogeneDc	inference	should	disDnguish	homoplasies	from	real	
phylogeneDc	signal		
Quality	of	the	geneDc	dataset	is	essenDal	!	

A	 A	

C	 T	

A	 T	

T	 T	

A	 A	

T	 T	

-	 Homoplasy	 occurs	when	 characters	 are	 similars,	 but	 are	 not	
derived	from	a	common	ancestor	

Homoplasies	ohen	result	from	parallel	or	convergent	evoluDon	
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Alignment filtering 

•  Filtering—removing	 unreliable	 columns	 before	 tree	
reconstruc1on	 :	a	way	to	 increase	the	signal	 to	noise	ra1o	of	
MulDple	Sequence	Alignments	(MSAs)	

•  Numerous	filtering	methods	published:	Gblocks	(Talavera	and	
Castresana	2007)	,	TrimAl	(Capella-GuDérrez	et	al.	2009)	,	Noisy	
(Dress	et	al.	2008),	BMGE	(Criscuolo	and	Gribaldo	2010),…	

•  In	the	context	of	single-gene	phylogeny	a	recent	study*	shows	
that	the	trees	obtained	from	filtered	MSAs	are	on	average	worse	
than	those	obtained	from	unfiltered	MSA	

•  In	a	phylogenomic	context	it	is	highly	recommanded	to	filter	
alignments	!	

*Tan	et	al.	SystemaDc	Biology	2015	



	

• 	Principle:	selecDon	of	blocks	of	posiDons	that	fulfill	a	simple	set	of	requirements	with	
respect	to	the	number	of	con1guous	conserved	posi1ons,	lack	of	gaps,	and	high	
conserva1on	of	flanking	posi1ons	

Example	of	Gblocks	filtering:	

	Alignment	of	ND3	sequences	from	
several	eukaryotes	and	a	bacterial	
outgroup	with	the	blocks	selected	
Gblocks	(default	parameters)	
underlined.	
Posi1ons	at	which	more	than	50%	of	
the	residues	are	iden1cal	and	have	no	
gaps	are	shaded.	

Castresana J Mol Biol Evol 2000;17:540-552 

11	H.	Chiapello	

Filtering	alignments: example 



	

• 	Data	:	5	mitochondial	
proteins	aligned	with	clustalw	

• 	Maximum	Likehood	Trees	
(mtRev	models)			
-	A	:	original	alignment	
-	B	:	gaps	filtering	
-	C	:	Gblocks	filtering	

Castresana J Mol Biol Evol 2000;17:540-552 

12	H.	Chiapello	

Influence of filtering 
on results 

Filtering	can	change	both	
branch	lengths	and	tree	
topology	!	



20/10/17	 13	

Phylogenetic tree: terminology 

• Structure	of	an	unrooted	(a)	and	a	rooted	phylogene1c	tree	(b)	

(a)	
(b)	

A tree is defined by its 
topology and its branch 
lengths. Taxa are often named 

l  OTU: Operational Taxonomic Units 
l  HTU: Hypothetical Taxonomic Units 
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Phylogenetic tree: terminology 
• Structure	of	an	unrooted	(a)	and	a	rooted	phylogene1c	tree	(b)	

(a)	
(b)	

•  Phylogeny	focus	on	bifurca1ng	trees	:	each	internal	node	is	of	
degree	3		

•  Most	phylogeneDcal	methods	produce	unrooted	trees	
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Introduction: how rooting a tree ? 

• Three	methods	exist:	

A. Outgroup rooting 
 
 
 
B. Midpoint rooting 
 
 
 
 
 
 
C. Usage of external 
knowledge (ex. ancestral  
gene duplication) 
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Is evolution always tree like ? 
• 			Some	processes	lead	to	non-bifurca1ng	trees	:	

l  Multifurcations on phylogenetic trees are konwn as 
polytomies an include trees with internal polytonies (partially 
unresolved tree) and star-like trees   

l  Networks are a way of 
representing two conflicting 
tree topologies  
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Number of tree topologies 
l  Number	of	possible	unrooted	(NU)	and	rooted	(NT)	trees	for	n=1	to	10	

OTUs	

 

l  Conclusion: an exhaustive search of all possible trees is 
usually impossible => heuristic strategies 



20/10/17	 18	

Terminology 

• Monophyle1c	:	a	group	of	
taxa	 is	 monophyleDc	 if	 it	
includes	 all	 descendants	
from	 its	 inferred	 common	
ancestor	

Paraphyle1c	 :	 a	 group	 of	
taxa	is	paraphyleDc	if	it	does	
not	 include	 all	 descendants	
from	 its	 inferred	 common	
ancestor		

		

Polyphyle1c	:	a	group	of	taxa	
is	 poliphyleDc	 if	 it	 includes	
some	 descendants	 but	 not	
t h e	 i n f e r r e d	 c ommon	
ancestor		
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Formats for phylogenetic trees 
l  Two	main	formats:	NEWICK	and	NEXUS	
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Usual workflow in phylogenetic analysis 

Dataset	

construcDon		

	

MuDple	

alignment	

	

Build	a	

phylogeneDc		

tree	

	

Interpret	and	

evaluate	the		

tree	

	
Evolu;onary		

distance	choice	

	

Method	

	choice	
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Genetic (evolutionary) distances 

• CalculaDon	of	distance	between	two	sequences	is	
a	central	point	on	phylogeneDc	analysis	

l  Pairwise	distance	calculaDon	is	the	first	step	of	
distance	matrix	methods	in	phylogeny	(UPGMA,	NJ)	

l  Models	of	nucleo1de/amino-acid	sus1tu1ons	used	
in	distance-calculaDon	form	the	basis	of	likehood	
and	Bayesian	analysis	methods	

A	gene1c	(evolu1onary)	distance	is	a	measure	of	the	
divergence	between	two	geneDc	sequences	
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Distances and trees 

l  For	sequences	related	by	an	evoluDonary	tree,	the	branch	
lengths	represent	the	distance	between	the	nodes	
(sequences)	in	the	tree			

l  If	a	molecular	clock	hypothesis	is	assumed	then	the	
geneDc	distance	is	linearly	proporDonal	to	the	Dme	
elapsed	
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Observed and genetic distances 

Observed	nucleoDde	differences	are	not	very	informaDve	!	
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Observed and genetic distances 
l  The	observed	distance	can	be	computed	by	counDng	the	
number	of	sites	where	two	sequences	differ	:	it	is	
expressed	as	the	number	of	nucleo1de	differences	per	
site	(p-distance)	;	

l  The	observed	distance	is	an	under-esDmaDon	of	the	
geneDc	distance	due	to	mulDple	subsDtuDons	per	site	and	
saturaDon	:	subs1tu1on	models	are	used.	
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Nucleotide substitution models 
l  NucleoDde	subsDtuDon	rate	can	be	modeled	as	a	stochasDc	

process	using	1me	con1nuous	sta1onary	Markov	models	;	
l  Underlying	asumpDons	:	

-  At	any	given	site,	the	rate	of	change	from	base	i	to	j	is	independant	
from	the	base	that	occupied	that	site	prior	i	(Markov	property)	;	

-  SubsDtuDon	rates	do	not	change	over	Dme	(homogenity)	;	
-  The	relaDve	frequencies	of	A,	C,	G,	and	T	are	at	equilibrium	

(sta1onarity)	

Instantaneous rate matrix Q : Probability of  from base i to base j : 
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The Jukes & Cantor model (JC, 1969) 

l  The	simplest	possible	nucleoDde	subsDtuDon	model	:	
-  All	base	frequencies	are	equal	(0.25)	
-  Only	one	parameter	=	the	susb1tu1on	rate	µ		

l  Given	the	propor1on	p	of	sites	that	differ	between	the	two	
sequences	the	Jukes-Cantor	esDmate	of	the	evolu1onary	
distance	d	is	given	by	:	

where p is the proportion of sites that show 
differences.  
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The JC model - exercise 

•  Seq1 TCAAGTCAGGTTCGA
•  Seq2 TCCAGTTAGACTCGA
•  Seq3 TTCAATCAGGCCCGA

 
 

Seq1	Seq2	Seq3	

Seq2	
		

Seq3		

Observed	distances	

Seq1	Seq2	Seq3	

Seq2	
		

Seq3		

Evolu1onary	distances	

dobs(seq1− seq2) = ?
Observed	distance	

dJC(seq1− seq2) = ?

J&C	distance	
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The JC model - solution 

•  Seq1 TCAAGTCAGGTTCGA
•  Seq2 TCCAGTTAGACTCGA
•  Seq3 TTCAATCAGGCCCGA

 
 

Seq1	 	Seq2	 	Seq3	

Seq2	
		

Seq3		

0.266	

0.333	 0.333	

Observed	distances	

Seq1	 	Seq2	 	Seq3	

Seq2	
		

Seq3		

0.328	

0.441	 0.441	

Evolu1onary	distances	

dobs(seq1− seq2) = 4
15

= 0.266
Observed	distance	

dJC(seq1− seq2) = − 3
4
(1− 4

3
0.266) = 0.328

J&C	distance	
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The Kimura model (1980) 

l  The	model	is	defined	by	2	parameters		
-  all	base	frequencies	are	equal	(0.25)	
-  It	disDnguishes	the	rate	of	transi1on									

subsDtuDons	α	and	the	rate	of															transversion	
subsDtuDons	β	

l  	The	Kimura	two-parameter	distance	d	is	given	by:	

where p is the proportion of sites that show 
transitional differences and q is the proportion of 
sites that show transversional differences. 
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Other models 
l  The	Felsenstein's	1981	model	is	an	extension	of	the	JC69	
model	in	which	base	frequencies	are	allowed	to	vary	from	
0.25	

l  The	HKY85	model	can	be	thought	of	as	combining	the	
extensions	made	in	the	Kimura80	and	Felsenstein81	models:	
it	disDnguishes	between	the	rate	of	transiDons	and	
transversions	and	it	allows	unequal	base	frequencies.		

l  The	GTR	(Generalised	1me-reversible,	Tavaré	1986)	model	is	
the	most	general	neutral,	independent,	finite-sites,	Dme-
reversible	model	possible	:	

-  All	bases	can	have	unequal	frequencies	
-  All	type	of	mutaDons	are	disDnghuished	
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Rate heterogeneity among sites 
l  The	rate	of	subs1tu1on	can	vary	substan1ally	for	different	
posiDon	of	an	an	alignment	

l  To	account	for	the	site-dependent	rate	variaDon,	the	
common	approach	is	to	use	a	Gamma	distribu1on	which	
model	distribu1on	rates	between	sites	

	
Usually, rather than using the 
continuous Gamma distribution, 
discrete categories of equally 
probable substitution rates 
are used to obtained an 
approximation of the function (4 
to 8 site categories) 
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Nucleotide models : summary 
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Choosing among models 
l  It	is	crucial	step	
l  Different	evoluDonary	models	can	lead	to	different	results	:	
inaccurate	branch	lengths,	even	someDmes	wrong	tree	
topology	

l  The	most	complex	model	with	the	largest	number	of	
parameters	is	not	necessarly	the	most	appropriate,	it	
depends	of	the	ques1on	and	the	data	

l  The	best-fit	model	of	evoluDon	for	a	parDcular	dataset	can	be	
selected	using	sound	sta1s1cal	techniques,	for	example	:	

-  Hierarchical	Likehood	Ra1o	Tests	(hLTRs)	
-  Informa1on	criteria	(ex	:	Akaike	InformaDon	criterion=AIC)	
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Choosing among models 

l  In	pracDce	:	adjust	the	model	to	the	analyzed	dataset	
l  Use	sta1s1cal	methods	to	select	the	best	fimed	model*	:	
	

LRT criterion can be 
used to compare 
models which are 
subsets of each other 
 
 
AIC and BIC criteria 
compare all of the 
models simultaneously 
according to some 
measure of fitness 
 
 
 

*Keane & al., BMC Evolutionary Biology 2006  
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Selection of the best fitted model 

• Example:	Hierarchical	LRT	of	models	of	molecular	evolu1on		

Ho		 Models	compared	

Equal	base	frequencies	 Ho:	JC69	1	parameter	
H1	:	F81	2	parameters	

Equal	D/tv	rates	 Ho	:	F81	2	parameters	
H1	:	HKY	5	parameters	

Equal	D	and	equal	tv	
rates	

Ho	:	HKY	5	parameters	
H1	:	GTR	9	parameters	

Equal	rates	among	sites	 Ho	:	GTR	9	parameters	
H1	:	GTR+	τ		9	parameters	+n	

ProporDon	of	invariable	
sites	

Ho	:	GTR+	τ	9	parameters	+n	
H1	:	GTR+	τ	+	I	9	parameters	+n	+1	

	where	I	means	there	is	a	significant	proporDon	of	invariable	sites,	
and	τ	means	a	gamma	distribuDon	is	being	used	to	account	for	rate	
variaDon	among	sites	
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Protein models 

l  Similar	concept:	mul1ple	subs1tu1ons	of	amino	acids	lead	
to	underesDmaDon	of	evoluDonary	distances	between	two	
homologous	proteins.	

l  Subs1tu1on	frequency	of	amino	acids	depends	of	the	AA	:	it	
is	higher	between	closed	amino-acids	in	term	of	physical	
properDes	(polarity,	hydrophibicity,...)	

l  Too	much	(190)	parameters	to	es1mate	parameters	of	
probabilis1c	model	=>	empirical	models	are	used	

l  TransiDon	rate	between	amino	acids	are	esDmated	once	from	
big	reference	alignments	obtained	by	concatena1on	of	
several	homologs	proteins	
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Main protein evolutionary models 

	 	 	 	 	Model	choice	is	based	on	the	same	tests	as	
for	 nucleo1de	 evolu1onary	 models	 (LRT,	
AIC,	BIC)	

Model	 Dataset	 Ref	

Poisson	 Poisson	process	 Zuckerkandl,	1965	

PAM	
	

1300	protein	
sequences	from	71	
homolog	families	

Dayhoff	1978	
	

Blosum	 Extension	of	PAM	
dataset	

Henikoff	1992	

JTT	 16	300	sequences	 Jones	1992	

mtREV	 Mitochondrial	DNA	 Adachi	1996	

WAG	&	LG	 Likehood	methods	 Whelan	2001	
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Main protein evolutionary models 

					WAG	and	LG	models	are	the	more	used	
models	

Model	 Dataset	 Ref	

Poisson	 Poisson	process	 Zuckerkandl,	1965	

PAM	
	

1300	protein	
sequences	from	71	
homolog	families	

Dayhoff	1978	
	

Blosum	 Extension	of	PAM	
dataset	

Henikoff	1992	

JTT	 16	300	sequences	 Jones	1992	

mtREV	 Mitochondrial	DNA	 Adachi	1996	

WAG	&	LG	 Likehood	methods	 Whelan	2001	
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Protein models 

• Example:	JTT	(1992,	16	300	sequences)	vs	mtREV	(for	
mitochondrial	proteins)	
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Usual workflow in phylogenetic analysis 

Dataset	

construcDon		

	

MuDple	

alignment	

	

Build	a	

phylogeneDc		

tree	

	

Interpret	and	

evaluate	the		

tree	

	
Evolu;onary		

distance	choice	

	

Method	

choice	
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Method choice 

l  Main	methods	for	inferring	phylogeneDc	trees:	

Input data Method Principle of the algorithms 
Distance matrix Unweighted Pair Group Method 

(UPGMA) 
clustering 

Neighbor-Joining (NJ) clustering 
Character state Maximum Parsimony (MP) Search for the tree(s) of minimum 

character changes  
Maximum Likehood (ML) Search for the tree(s) that 

maximizes  the probability of 
observing the character states 
giving a tree topology and a model 
of evolution 

Bayesian Inference Target a probability distribution of 
trees (set of possible trees for the 
data) 
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Distance methods for inferring a 
phylogenetic tree 

l  Introduced	in	phylogeny	in	1960	
l  Try	to	fit	a	tree	to	a	matrix	of	pairwise	gene1c	distances	
l  Need	to	choose	an	evolu1onary	model	
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Distance methods  
l  Two	main	methods	

-  UPGMA:	a	clustering	method	that	produced	
ultrametric	trees	

-  Neighbor-Joining:	use	a	greedy	algorithm	to	
compute	the	Minimal	EvoluDon	tree	i.e.	the	opDmal	
topology	is	the	one	which	minimizes	the	tree	length				
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Neighbor-Joining 

l  First	algorithm	proposed	by	Saitou	&	Nei	(1987)	
l  Very	fast	:	polynomial-Dme	algorithm		
l  Produces	unrooted	trees	
l  Produces	the	wright	topology	if	matrix	distances	are	
patris1c	
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Neighbor-Joining (NJ) 

l  Principle	of	the	algorithm:	
	 l  Start with a star tree (A) 

 
l  Compute the matrix Qij and find 
the pair of taxa with lowest value  
(here f and g) 
 
l  Join f and g and create a new 
internal node, u, as shown in (B) 
  
l  Compute the distances from node 
u to the nodes a-e  
 
l  Repeat the process :  
- u and e are joined to the newly 
created v, as shown in (C).  
-Two more iterations lead first         
to (D), and then to (E). 
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Neighbor-Joining in practice 

l  NJ:	Fast	but	problems	may	occur	for	very	divergent	sequences	
or	heterogeneous	datasets	

l  BioNJ*	algorithm:		
-  A	variant	of	NJ	which	improves	its	accuracy	by	making	use		

of	a	simple	first-order	model	of	the	variances	and	
covariances	of	evoluDonary	distance	esDmates.		

-  When	the	subsDtuDon	rates	are	low	(maximum	pairwise	
divergence	~0.1	subsDtuDons	per	site)	or	when	they	are	
constant	among	lineages,	BIONJ	is	only	slightly	beYer	than	
NJ.		

-  When	the	subsDtuDon	rates	are	higher	and	vary	among	
lineages,	BIONJ	clearly	has	beYer	topological	accuracy*.	

	
	

*Gascuel Molecular Biology and Evolution 1997 
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Neighbor-Joining in practice 

l  Choose	an	evolu1onary	model	and	compute	a	distance	
matrix		(see	next	slide)	

l  NJ/BioNJ	sopwares:	
-  Neighbor	(PHYLIP,	NJ)	hYp://

evoluDon.geneDcs.washington.edu/phylip.html	
-  BioNJ	hYp://www.atgc-montpellier.fr/bionj/	or											

hYp://phylogeny.lirmm.fr/phylo_cgi/one_task.cgi?
task_type=bionj			

-  QuickTree	(NJ)	hYp://www.sanger.ac.uk/resources/
sohware/quicktree/	

-  Seaview	(NJ	and	BioNJ)	hYp://pbil.univ-lyon1/fr/sohware/
seaview	
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Evolutionary models in NJ 
NJ	sopwares	do	not	implement	all	models	!	
l  At	small	distances	(~10%	of	variable	sites)	the	different	evoluDonary	

models	produce	very	similar	distance	esDmates	=>	no	problem	
l  At	intermediate	distances	(20	to	30%	of	variable	sites),	different	

model	asumpDons	become	more	important	=>	It	is	recommanded	to	
use	realisDc	models	for	distance	esDmaDon,	especially	if	the	
sequences	are	longs	

•  At	large	distances	(40%	of	variable	sites),	the	different	model	
produces	very	different	distance	esDmates.	SomeDmes	the	distance	
esDmates	become	infinite.	=>	The	soluDon	is	to	use	realisDc	models	
for	distance	esDmaDon	AND	to	add	sequences	to	break	down	the	
long	distances	
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Parsimony  

l  Main	concept	(adapted	from	Fitch,	1971):		
			Seek	the	tree(s)	that	minimizes	the	net	amount	of	
evolu1onary	change	(in	term	of	character	change)	required	
to	explain	the	data	

l  Very	used	on	morphological	data	(presence/absence	of	
characters)	but	also	relevant	for	biological	sequences	(a	
character	=	a	site	with	4	states=A,T,C,G	or	molecular	
polymorphism	data	like	SINE)	

l  Produces	unrooted	tress	
l  Does	not	require	any	evoluDonary	model	
l  Take	into	account	explicitly	ancestral	states	
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Parsimony  

The	problem	of	finding	the	parsimony	tree	can	be	
separated	into	three	steps:	

-  Step	1:	Compute	the	minimal	amount	of	
character	change	required	in	a	given	tree	
(compute	changes	for	each	character	and	sum	
up	all	characters)	

-  Step	2:	Search	for	all	possible	tree	topologies		
-  Step	3:	Choose	the	tree(s)	that	minimize	this	

number	of	character	changes.	
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Parsimony  

Step	1:	Compute	the	minimal	amount	of	character	change	
required	in	a	given	tree	(compute	changes	for	each	
character	and	sum	up	all	characters)	

	
	

l  Compute the minimum number of changes for a site in a 
tree (for instance with the Fitch algorithm)  

Parsimony score : 
1+1+2+3+4 =11 

l   Sum over the number of sites to obtain the parsimony 
score of a tree 
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Parsimony  

l  Step	2	:	generate	all	possible	tree	topologies		
-  Exact	methods	(max.	20	taxa)	:	example=Branch	and	Bound	

algorithm	
-  Heuris1c	methods	:	choose	an	in11al	tree	topology	(star	

decomposiDon,	stepwise	addiDon,	random	choice)	and	perform	
tree-rearrangement	perturba1ons	like	Nearest	Neighbor	
Interchange	(NNI)	or	Subtree	Pruning	and	RegraHing	(SPR)	
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Tree rearrangments  
l  ExploraDon	of	tree	topologies	using	different	kind	of	local	
rearrangments:		

Small changes => local space exploration Medium changes => best space exploration 

l  Iterate and keep always the best (more parsimonious) tree  

l  Stop after n iterations if the swapping process do not produce a 
better tree     
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Parsimony in practice  

l  +	:	can	be	applied	to	any	kind	of	characters,	good	
performances	if	subsDtuDon	events	are	rare	

l  -	:	no	staDsDcal	jusDficaDon	and	some	sites	are	excluded	i.e.	
non	informa1ve	sites	=	invariant	sites	(AAAA)	and	two-states	
sites	with	one	character	in	one	occurrence	(AAAT)	(all	the	
tree	are	equal	for	theses	sites)	

l  Sotwares	for	parsimony:	

-  PHYLIP	(dnapars,	protpars)	
-  Seaview	
-  MacClade	hYp://macclade.org/macclade.html	
-  (PAUP)	
	

	
	



20/10/17	 55	

Maximum Likehood methods  

l  The	most	frequently	used	methods	
l  Sound	mathema1cal	and	sta1s1cal	founda1ons	
l  The	evolu1on	model	is	central,	the	method	is	only	possible	
for	aligned	sequences	

l  In	staDsDcs,	maximum-likelihood	es1ma1on	(MLE)	is	a	
general	method	of	esDmaDng	the	parameters	of	a	staDsDcal	
model.	When	applied	to	a	data	set	and	given	a	staDsDcal	
model,	maximum-likelihood	esDmaDon	provides	esDmates	
for	the	model's	parameters.	
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Maximum Likehood methods  

• Adressed	quesDon:	what	is	the	probabilty	to	observe	the	data	
by	considering	an	evoluDonary	model	with	its	parameters	and	a	
tree	topology	?	

l  Input:	A	set	of	observed	sequences	and	an	underlying	
evoluDonary	model.	

l  Desired	Output:	The	weighted	tree	that	maximizes	the	
likelihood	of	the	data	

Pr(D /T )
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Maximum Likehood methods  
• Parameters	of	the	probabilis1c	model:	
l  A	phylogeneDc	tree	T,	with	an	arbitrary	root	and	valuated	branch	lengths	
l  A	normalized	Q-matrix,	common	to	all	tree	branches	
l  An	α	parameter	which	determines	the	variaDon	of	the	evoluDonary	rates	between	

sites	using	the	Gamma	distribuDon	

l li are branch lengths (#subst/site) 
l A, B, C, D, E are the unknown ancestral 
states 

l  Likehood computation of observed data : 
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Maximum likehood: Example 

All possible 
evolutionary 
paths of a site 
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Likehood of a site  

Likehood of 
a path 

Sum over 
all paths 
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Felsenstein algorithm 

l  5 internal nodes => 54 = 1024 possible combinations 
 
l  Pruning Felsenstein algorithm : 

progressive computation of the likehood of a site 
to have nucleotide i (with tree T and model M 
fixed) from leaves to root by using a recursive 
strategy 
 

•  Calculate tree Likelihood by multiplying the 
likehood for each position 
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Maximum Likehood features 

l  Branch length l are estimated using the Q matrix (of 
an evolutionary model).        

   l=expected number of subtitutions per site = µt (mutation 
rate x time) 

 

l  Reversibility of the process (symetry of Q matrix) : it is 
possible to show that if the base substitution model is 
reversible 

l  Root position : Likelihood remains the same regardless 
of where the root is. So search for the best tree only 
needs to be carried out on unrooted trees 

l  Can take into account variation of the evolutionary 
rates between sites using K possible categories of sites  
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Maximum likehood algorithm in practice 

 
l  Pick an evolutionary model (result of 

modelgenrator can help) 

l  For each site, generate all possible tree structures 
(same methods as in MP)  

l  Based on the evolutionary model, calculate 
likelihood of these trees. 

l  Choose the tree with the Maximum Likelihood 
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Maximum likehood in practice 

l  +: Works well for distantly related sequences and under 
different molecular clock theory ; Can incorporate any 
desirable evolutionary model ; Sound mathematical 
foundations 
 
l  -:  Bad Approx. under Bad Evolutionary Models ; 
Computationally Intensive (=>slow) 
 
l  Sotwares for Maximum likehood 
- PHYLIP (dnaml, protml) 
- PhyML  http://atgc.lirmm.fr/phyml/ 
- RaXML http://sco.h-its.org/exelixis/web/software/raxml/index.html 
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Bayesian phylogenetic inference  

l  The	most	recent	method,	now	becomes	very	used	
l  Use	probabilis1c	evolu1onary	models	(the	same	as	in	
maximum	likehood	methods)	

l  The	central	concept	of	the	method	is	posterior	probability;	a	
Bayesian	analysis	produces	a	posterior	probability	
distribuDon	of	trees		

l  If	the	data	are	informaDve,	most	of	the	posterior	probabiliDes	
will	focus	on	one	tree	or	a	small	subset	of	trees	
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Bayesian phylogenetic inference  

Central	quesDon:	what	is	the	probability	of	the	model/tree		taking	
into	account	the	data	D	?	
l  Start	with	a	prior	belief	about	trees	(prior	distribuDon	of	
possible	trees)	

l  Collect	data	and	use	an	evolu1onary	model	and	Bayes	theorem	
to	obtain	a	posterior	probability	distribu1on	of	trees	

	

Pr(T /D) = Pr(T )Pr(D /T )
Pr(D)

prior	 likehood	

data	probability	
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Bayesian phylogenetic inference  
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Bayesian phylogenetic inference  
l  Is	is	not	possible	to	derive	the	posterior	probability	
analyDcally	

l  The	posterior	probabilty	is	derived	by	using	a	Markov	Chain	
Monte-Carlo	sampling	(MCMC)	strategy:		

						1-	start	from	an	arbitrary	point		
							2-	make	small	random	changes	to	the	current	values	of	the	model	
parameters	

	3-	accept	or	reject	these	changes	according	to	its	posterior	
probability	

•  This	process	is	repeated	during	n	genera1ons	unDl	
convergence.	
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Bayesian phylogenetic inference  

l  Input:	
-	A	set	of	aligned	sequences		
-	A	prior	distribuDon	about	trees		
-	An	underlying	evoluDonary	model.	

l  Desired	Output:		
-	One	(or	a	few)	valuated	tree(s)	with	maximal	
posterior	probabiliDes	
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Bayesian phylogenetic inference  

l  Powerful	but	complex	method	
l  Can	produce	either	one	either	several	tree	topologies	with	high	
posterior	probabiliDes	

l  Use	an	a	priori	distribu1on	for	parameters	
l  Use	heuris1c	to	explore	tree	spaces	
l  Convergence	problems:	for	some	phylogeneDc	problems,	
difficult	or	impossible	to	achieve	convergence	within	a	
reasonable	number	of	generaDons	

Sotware	for	Bayesian	inference	
l  MrBayes	:	hYp://mrbayes.sourceforge.net		
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Mr Bayes parameters 
l  Set	the	evolu1onary	model,	eventually	with	a	discrete	
gamma-distributed	rate	variaDon	across	sites	(N=4)	and	a	
proporDon	of	invariable	sites	(I)	(or	let	MrBayes	choose)	

l  Set	the	MCMC	parameters:		
l  Number	of	chains	Nc:	by	default	Nc=2	and	MrBayes	will	run	two	

simultaneous,	completely	independent	analyses	starDng	from	
different	random	tree	

l  Number	of	genera1ons	Ngen	:	typically	Ngen≥10000	
l  Criterion	for	convergence	diagnos1c,	typically	by	comparing	the	

variance	among	and	within	tree	samples	MrBayes	will	run	
diagnosDc	every	runfreq	generaDons	and	report	clades	ot	at	least	
minfrequency.		
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Usual workflow in phylogenetic analysis 

Dataset	

construcDon		

	

MuDple	

alignment	

	

Build	a	

phylogeneDc		

tree	

	

Interpret	and	

evaluate	the		

tree	

	
Evolu;onary		

distance	choice	

	

Method	

choice	
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Testing tree topologies 
• Confidence	issue	
l  How	confident	are	we	on	the	inferred	tree	?	
l  Which	parts	of	the	tree	are	reliable/not	reliable	?	
l  How	can	we	validate	the	tree	?	
Problem:	the	true	tree	is	unknown	!	
Solu1on	:		
l  use	bootstrap	(or	jacknife)	to	evaluate	the	reliability	of	the	
inferred	tree	and	specific	clades		

l  combine	subsampling	and	consensus	trees	to	get	support	
values	on	branches		
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Testing tree topologies 
l  Bootstrap:	resample	“nucleoDdes”	from	the	alignment;	
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Bootstrap process and consensus tree 

• Bootstrap	process	
l  Infer	several	trees	using	resampling	techniques;	
l  IdenDfy	and	conserve	only	the	core	informa1on	contained	and	
repeated	in	many	trees	;	

l  Combine	the	several	trees	to	produce	a	consensus	tree	which	is	
compaDble	with	all	(or	most)	of	the	trees.		

l  In	general,	the	consensus	tree	has	no	branch	lengths	and	a	
lower	resolu1on	than	the	original	tree.	

l  Superimpose	boostrap	values	on	the	original	tree	
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Consensus tree 

• .Consensus	rules:	
l  Strict	Consensus:	clades	presents	in	all	trees;	
l  Majority	Rule:	clades	presents	in	at	least	half	of	the	trees;	
l  Extended	Majority	Rule:	clades	presents	in	at	least	half	of	the	
trees	and	some	more	unDl	the	tree	is	resolved.	
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Consensus tree 

• .Consensus	rules:	
l  Strict	Consensus:	clades	presents	in	all	trees;	
l  Majority	Rule:	clades	presents	in	at	least	half	of	the	trees;	
l  Extended	Majority	Rule:	clades	presents	in	at	least	half	of	the	
trees	and	some	more	unDl	the	tree	is	resolved.	
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Boostrap values guidelines 

• Be	cau1ous	with	boostrap	values	interpreta1on:	
l  Bootstrap	values	have	no	clear-cut	staDsDcal	interpretaDon;	
l  A	bootstrap	value	of	95%	doesn’t	mean	that	the	corresponding	
clade	has	95%	chance	of	being	“true”;	

l  Bootstrap	values	are	difficult	to	interpret	quan1tavely.	
However	Bootstrap	values	are	(quite)	easy	to	interpret	
qualita1vely:	
l  The	higher	the	bootstrap	value,	the	more	confident	you	can	be	
in	your	clade;	

l  95%,	90%	and	66%	consitute	tradiDonal	threshold	for	being	
confident	in	a	clade.	
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Conclusion: overall view 

Dataset	

construcDon		

	

MuDple	

alignment	

	

Build	a	

phylogeneDc		

tree	

	

Interpret	and	

evaluate	the		

tree	

	
Evolu3onary		

distance	choice	

	

•  Distance	
•  Parsimony	

•  Maximum	Likehood	

•  Bayesian	

	

Boostrap	
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Conclusion: overall view 

Dataset	

construcDon		

	

MuDple	

alignment	

	

Build	a	

phylogeneDc		

tree	

	

Interpret	and	

evaluate	the		

tree	

	
Evolu3onary		

distance	choice	

	

•  Distance	
•  Parsimony	

•  Maximum	Likehood	

•  Bayesian	

	

refine	the	dataset	

Bootstrap	

	

Test	several	methods	
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Conclusion: overall view 

Dataset	

construcDon		

	

MuDple	

alignment	

	

Build	a	

phylogeneDc		

tree	

	

Interpret	and	

evaluate	the		

tree	

	
Evolu3onary		

distance	choice	

	

•  Distance	
•  Parsimony	

•  Maximum	Likehood	

•  Bayesian	

	

Implemented	in	Seaview	

Use	modelgenerator.jar	

Use	Mr	Bayes		

Boostrap	
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Conclusion: method comparison 

• Neighbor-joining		(fast)		
l  Consistent:	proven	to	construct	the	correct	tree	if	
distances	are	patrisDc.	

l  Problems	with	long	and	divergent	sequences	
Parsimony	(medium)	
l  good	for	closely	related	sequences	
l  can	be	used	with	any	kind	of	data	
l  No	clear	interpretaDon	of	branch	length	
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Conclusion: method comparison 

Likelihood	method	(slow)	
l  Sound	staDsDc	foundaDons	
l  Works	well	for	distantly	related	sequences	
l  Can	incorporate	any	desirable	evoluDonary	model	
Bayesian	method	(very	slow)	
l  Powerful	but	complex	method	
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Frequent problems 
l  Long	Branch	Amrac1on:	Long	branches	tend	to	cluster	together	
in	the	tree:	

					Solu;on:	“break	down”	long	branches	by	adding	some	taxa									
to	the	analysis;	
l  Satura1on:	Characters	have	evolved	for	so	long	that	they	are	
almost	random:	

Solu;ons:	Remove	saturated	sites	and/or	taxa;	When	available,	
use	proteic	sequences	instead	of	nucleic	sequences;	

l  Missing	Data:	Some	characters	are	missing	from	the	alignment:	
Solu;ons:	Use	methods	that	can	handle	missing	values,	such	as	
ML;	Use	as	many	characters	as	possible.	
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Useful web sites 

• •	LIRMM	web	site	:	
• hYp://phylogeny.lirmm.fr	

• •		PHYLIP	(Felsenstein	lab,	Univ.	of	Washington)	web	site	:	
hYp://evoluDon.gs.washington.edu/phylip/sohware.html	
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The End ! 

QuesDons	?	
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The PAM matrix (Dayhoff 1978) 

l  Dataset	=	1300	protein	sequences	from	71	homolog	families	
with	at	least	85%	of	idenDty	(to	minimize	mulDple	
subDtuDons)	

l  EsDmaDon	of	a	transiDon	matrix	between	all	amino	acids	for	
a	branch	length	of	d=0.01	subsituDon	per	site	=	the	PAM1	
matrix	(1	Point	Accepted	MutaDons	per	100	amino	acids	in	
average)		

l  PAM	matrix	are	computed	for	more	divergent	proteins	by	
muDplying	PAM	matrix	k	Dmes	:	PAM250	matrix	correponds	
to	250	Point	Accepted	Muta1ons	per	100	amino	acids	in	
average	

l  The	PAM	value	is	proporDonal	to	the	true	evoluDonary	
distance	between	two	proteins.	
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Frequent problems 
• Incomplete	Lineage	Sor1ng	(ILS):	Species	tree	with	embedded	gene	tree	
showing	incongruence		

Consequence: gene 
tree topology that 
differs from the 
species tree 


