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Outline

« Introduction and basic concepts in phylogeny

— Trees
- Alignements
- Genetic distances and nucleotide substitution models

« Phylogenetic inference methods

- Distance methods
- Parcimony methods
- Maximum likehood methods
Bayesian methods
. Phylogeny in practice
- Testing tree topologies (bootstrap)

- How to choose a method ?



Introduction

« Phylogenetics is the study of evolutionary relationships
among groups of organisms (e.g. species, populations)

« The result of phylogenetic studies is a hypothesis about
the evolutionary history of taxonomic groups: their

phylogeny
. Phylogenetic methods aims at representing similarities
and differences between taxa using a phylogenetic tree

« Underlying asumption : taxa joined together in the tree are
implied to have descended from a common ancestor
through different speciation events



What is a phylogenetic tree ?

« In biology, a phylogenetic tree is a branching diagram for representing
the inferred evolutionary relationships among various biological entities

« In mathematics, a tree is an undirected graph in which any two vertices
are connected by exactly one simple path. In other words, any connected
graph without simple cycles is a tree.
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Molecular phylogenetics

Here : we focus on molecular phylogenetics, based on
different kind of molecular sequence data

Trees are infered from heritable characters like:

= Binary patterns : presence/absence, 0/1

= Microsattelites data, SNPs, Insertions, Deletions

= Aligned genetic sequences (ADN, ARN, proteins) in most
cases

In molecular phylogenetics, we infered the evolutionary
history of sequences: it is not always the same of the one of

the corresponding species !!!
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Usual workflow in phylogenetic analysis

Dataset rl: Mutiple :: Build a :: Interpret and
construction alignment phylogenetic evaluate the

tree tree

check/filter the
alignement
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Dataset construction

e Criteria to choose good sequences dataset: universality,
conserved structure, no horizontal transfer, apropriate
evolutionary rate.

 Some popular genes used in molecular phylogenetics

- Procaryotes: ribosomal RNA (rRNA) 16S, betaglucosidase,...
- Eukaryotes: rRNA 18S, actin, EF1, RPB1, mitochondrial genes,...

* Protein coding genes: nucleic alignments (if closed
sequences) or proteic alignements (if distant sequences) of
homolog sequences



Mutiple alignment as dataset

Hypothese: alighed sequences are homologous, i.e. vertically derived
from an ancestral sequence of common ancestor

Ancestral sequence

/ AACCTGTGCA \

AATCTGTGTA ATCCTGGGTT
* * * * K%

Seqgl AATCTGTGTA
Seq2 ATCCTGGGTT

% x  *{7] site = 1 position in the
alignment

In phylogeny we will focus on sites of the alignment, either directly or
indirectly via computation of a distance.

20/10/17 8



Homology vs Homoplasy

- Homology is any similarity between shared characters that is
due to their shared ancestry

- Homoplasy occurs when characters are similars, but are not
derived from a common ancestor

Homoplasies often result from parallel or convergent evolution

/ \ H \ /

Phylogenetic inference should distinguish homoplasies from real
phylogenetic signal
Quality of the genetic dataset is essential |
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Alignment filtering

 Filtering—removing unreliable columns before tree
reconstruction : a way to increase the signal to noise ratio of
Multiple Sequence Alignments (MSAs)

* Numerous filtering methods published: Gblocks (Talavera and
Castresana 2007), TrimAl (Capella-Gutiérrez et al. 2009) , Noisy
(Dress et al. 2008), BMGE (Criscuolo and Gribaldo 2010),...

* In the context of single-gene phylogeny a recent study™ shows
that the trees obtained from filtered MSAs are on average worse
than those obtained from unfiltered MSA

* In a phylogenomic context it is highly recommanded to filter
alignments !

*Tan et al. Systematic Biology 2015



Filtering alighments: example

* Principle: selection of blocks of positions that fulfill a simple set of requirements with
respect to the number of contiguous conserved positions, 4Iack of gaps, and high

conservation of flanking positions

Example of Gblocks filtering:

SARTEREENY RS TR
- " | IS

Alignment of ND3 sequences from
several eukaryotes and a bacterial
outgroup with the blocks selected
Gblocks (default parameters)
underlined.

Positions at which more than 50% of
the residues are identical and have no
gaps are shaded.

Castresana J Mol Biol Evol 2000;17:540-552
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Influence of filtering - i ]
on results e
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Phylogenetic tree: terminology

*Structure of an unrooted (a) and a rooted phylogenetic tree (b)

(a)

drosophila human

mouse
fugu

A tree is defined by its
topology and its branch
lengths.

20/10/17

(b)

time

+«——— oot

«—— branch

+«———— nternal node (HTU)

leaf (OTU)

Taxa are often named
« OTU: Operational Taxonomic Units
« HTU: Hypothetical Taxonomic Units

13



Phylogenetic tree: terminology

*Structure of an unrooted (a) and a rooted phylogenetic tree (b)

(b)

(a) +«—— oot

: human
drosophila time

«—— branch

+«———— nternal node (HTU)

% 2
fugu o, %, o,

* Phylogeny focus on bifurcating trees : each internal node is of
degree 3

* Most phylogenetical methods produce unrooted trees
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Introduction: how rooting a tree ?

*Three methods exist:

A. Outgroup rooting

B. Midpoint rooting

C. Usage of external
knowledge (ex. ancestral
gene duplication)

20/10/17

gene duplication
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Is evolution always tree like ?

* Some processes lead to non-bifurcating trees :

~plytom =

artially
resdved

fully
resdlved

« Multifurcations on phylogenetic trees are konwn as
polytomies an include trees with internal polytonies (partially
unresolved tree) and star-like A 5

« Networks are a way of 0 o c 0
representing two conflicting /ﬁc )

tree topologies >_<

20/10/17 16



Number of tree topologies

« Number of possible unrooted (N, ) and rooted (N,) trees for n=1 to 10

OTUs

1

3

3

4 3 15 (211 - 5)!

. e 105 N,= 3x5x7x...(2n-5) = = (n ~ 3)'
6 105 945 .
7 945 10,395 | (2” _ 3)1

8 10,395 135,135 Nr= 2”_2 (n ~ 2)'

9 135,135 2,027,025

10 2,027,025 34,459,425

« Conclusion: an exhaustive search of all possible trees is
usually impossible => heuristic strategies

20/10/17
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Terminology

.Monophyletic : a group of
taxa is monophyletic if it

Paraphyletic : a group of
taxa is paraphyletic if it does
not include all descendants

Polyphyletic : a group of taxa
is poliphyletic if it includes
some descendants but not

Archosauria
Diapsida
7 Reptilia
,.,,//‘;rnniofo
/ /T‘/e'rro poda

%
/" Vertebrata

Archosauria

Diapsida

Amniota

Tetrapoda

Vertebrata

includes all descendants
from its inferred common from its inferred common the inferred common
ancestor ancestor ancestor
. © 2 @ & > 4
O & & oy 30 . N 2 N % N » & R k.
.50@6 @é\\o & € d’@b(\ &£ 4 o oob & Q\"& V(QQ‘\ ﬁ\,b&@ /\0‘} & 4 ¢ VAQ/% & «5(:\6\’ & > o\bo -\5‘;” <& o
(5§ S & X X & o <& & ® v

Archosauria
Diapsida

Reptilia

Amniota

Tetrapoda

Vertebrata

20/10/17
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Formats for phylogenetic trees

o« Two main formats: NEWICK and NEXUS

B D
B 0.4
D

NEWICK: ((A,B), (C,D)) NEWICK: ((A:0.1,B:0.2):0.2, (C:0.3,D:0.4))
#NEXUS H#NEXUS:
BEGIN TAXA; Begin trees;
TAXLABELS A B C D; Translate
END; 1A
BEGIN TREES; 2B,
TREE treel = ((A,B),(C,D)); 3C,
END; 4D,

Tree tree2=[&U] ((1:0.1,2:0.2):0.2, (3:0.3,3:0.4));

End;

20/10/17



Usual workflow in phylogenetic analysis

Dataset

construction

20/10/17

B

Mutiple :: Build a :: Interpret and
alignment phylogenetic evaluate the

tree

/

Evolutionary

distance choice

\

tree

Method

choice
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Genetic (evolutionary) distances

A genetic (evolutionary) distance is a measure of the
divergence between two genetic sequences

.Calculation of distance between two sequences is
a central point on phylogenetic analysis

o Pairwise distance calculation is the first step of
distance matrix methods in phylogeny (UPGMA, NJ)

« Models of nucleotide/amino-acid sustitutions used
in distance-calculation form the basis of likehood
and Bayesian analysis methods



Distances and trees

o For sequences related by an evolutionary tree, the branch
lengths represent the distance between the nodes
(sequences) in the tree

« If a molecular clock hypothesis is assumed then the
genetic distance is linearly proportional to the time
elapsed

human X 5
human
mouse 6 X 1
fugu /7 3 X 2 — mouse
drosophila 14 10 9 x 1 1
P
% %, 4

—  fugu

6

drosophila

20/10/17 22



Observed and genetic distances

Observed nucleotide differences are not very informative !

Single substitution Coincidental substitution Parallel substitution
1 change, 1 difference 2 changes, 1 difference 2 changes, 0 difference
A A A
Multiple substitution Back substitution
2 changes, 1 difference 2 changes, 0 difference

V/aV/4

20/10/17



Observed and genetic distances

o The observed distance can be computed by counting the
number of sites where two sequences differ : it is
expressed as the number of nucleotide differences per
site (p-distance) ;

o« The observed distance is an under-estimation of the
genetic distance due to multiple substitutions per site and
saturation : substitution models are used.

o -

oA *
o”“

percent difersnce

genotic dstance

20/10/17 24



Nucleotide substitution models

o Nucleotide substitution rate can be modeled as a stochastic
process using time continuous stationary Markov models ;

o Underlying asumptions :

- At any given site, the rate of change from base i to j is independant
from the base that occupied that site prior i (Markov property) ;

- Substitution rates do not change over time (homogenity) ;
- The relative frequencies of A, C, G, and T are at equilibrium

(stationarity)
Instantaneous rate matrix Q : Probability of from base i to base j :
A T C G
, -, M. M M,
/‘ A AT AL AG
t
0= T My My Mo Hgg PIJ (t) — eQ( )
C Hca Her ~He Heg |
G Hea Ry Hge —Hg

20/10/17 25



The Jukes & Cantor model (JC, 1969)

o The simplest possible nucleotide substitution model :

- All base frequencies are equal (0.25)

- Only one parameter = the susbtitution rate u

« Given the proportion p of sites that differ between the two
sequences the Jukes-Cantor estimate of the evolutionary
distance d is given by :

P Bouop
4 4 4
[ 3 4
(A A ) 4 3
4 4 4
nopop,
| 4 4 4 where p is the proportion of sites that show

differences.

20/10/17 26



The JC model - exercise

* Seqgl TCAAGTCAGGTTCGA Seq1Seq2Seq3

| | ||
* Seqg2 T(|3CA(|3T'I|‘AGP?C'I|[‘CGA Seq2
* Seq3 TTCAATCAGGCCCGA Seq3

Observed distances

Observed distance @
do(seql —seq2) ="
SeqlSeq2Seq3
J&C distance Seq2
dic(seql —seq2) =" Seq3

Evolutionary distances

20/10/17 27



The JC model - solution

* Seql TC‘|AAGT|CAGC|-}'|I'TCGA Seql  Seq2  Seg3
* Seq2 T(|3CA(|3T'|I‘AGAC'I|‘CGA Seq2 | 0.266

|
* Seq3 TTCAATCAGGCCCGA Seq3 | 0-333  0.333

Observed distances

Observed distance @
d.(seql — seq?) = % =0.266

Seql Seq2 Seq3

J&C distance Seqg2 | 0.328

dic(seql —seqg2) = —%(1 — %O.266) =0.328  geq3 | 0441 0.441

Evolutionary distances



The Kimura model (1980)

o« The model is defined by 2 parameters ¢t
- all base frequencies are equal (0.25) T:\\ ///T:

- It distinguishes the rate of transition r /ﬂ/”\\ﬂa\\\ [
substitutions a and the rate of } QRUTR  AT

substitutions 8
o The Kimura two-parameter distance d is given by:

A T C G
[ . ' 1 1
Al M B B« d=—-——In(1-2p—¢q)——In(1-2q)
T pf -u, «a p 2 4
():
C p a -u. p
G|l a B B -n where p is the proportion of sites that show

transitional differences and q is the proportion of
sites that show transversional differences.

20/10/17 29



Other models

o The Felsenstein's 1981 model is an extension of the JC69

model in which base frequencies are allowed to vary from
0.25

o The HKY85 model can be thought of as combining the
extensions made in the Kimura80 and Felsenstein81 models:
it distinguishes between the rate of transitions and
transversions and it allows unequal base frequencies.

o The GTR (Generalised time-reversible, Tavaré 1986) model is
the most general neutral, independent, finite-sites, time-
reversible model possible :

- All bases can have unequal frequencies
- All type of mutations are distinghuished



Rate heterogeneity among sites

o The rate of substitution can vary substantially for different

position of an an alignment

o To account for the site-dependent rate variation, the
common approach is to use a Gamma distribution which
model distribution rates between sites

A gamma distribution can be used to
model site rate heterogeneity

Usually, rather than using the
continuous Gamma distribution,
discrete categories of equally
probable substitution rates
are used to obtained an
approximation of the function (4
to 8 site categories)



Nucleotide models : summary

20/10/17
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Choosing among models

o ltis crucial step

« Different evolutionary models can lead to different results :
inaccurate branch lengths, even sometimes wrong tree
topology

o The most complex model with the largest number of
parameters is not necessarly the most appropriate, it
depends of the question and the data

o The best-fit model of evolution for a particular dataset can be
selected using sound statistical techniques, for example :

- Hierarchical Likehood Ratio Tests (hLTRSs)
- Information criteria (ex : Akaike Information criterion=AIC)



Choosing among models

« In practice : adjust the model to the analyzed dataset
o Use statistical methods to select the best fitted model* :

LRT Likelihood Ratio Test
2+[InL(F)-In L (6,)] ~ %3,

AIC

Akaike Information Criterion
AIC, = -2«In L, + 2p,

BIC

Bayesian Information Criterion
BIC, = -2+In L, + p~In(n)

*Keane & al., BMC Evolutionary Biology 2006

20/10/17

LRT criterion can be
used to compare
models which are
subsets of each other

AIC and BIC criteria
compare all of the
models simultaneously
according to some
measure of fithess
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Selection of the best fitted model

.Example: Hierarchical LRT of models of molecular evolution

Ho Models compared

Equal base frequencies Ho: JC69 1 parameter
H1 : F81 2 parameters

Equal ti/tv rates Ho : F81 2 parameters

H1 : HKY 5 parameters
Equal ti and equal tv Ho : HKY 5 parameters
rates H1 : GTR 9 parameters

Equal rates among sites Ho : GTR 9 parameters
H1:GTR+ T 9 parameters +n

Proportion of invariable | Ho : GTR+ T 9 parameters +n
sites H1:GTR+ T +19 parameters +n +1

where | means there is a significant proportion of invariable sites,
and T means a gamma distribution is being used to account for rate
variation among sites



Protein models

« Similar concept: multiple substitutions of amino acids lead
to underestimation of evolutionary distances between two
homologous proteins.

o Substitution frequency of amino acids depends of the AA : it
is higher between closed amino-acids in term of physical
properties (polarity, hydrophibicity,...)

o Too much (190) parameters to estimate parameters of
probabilistic model => empirical models are used

o Transition rate between amino acids are estimated once from
big reference alignments obtained by concatenation of
several homologs proteins



Main protein evolutionary models

Model Dataset Ref
Poisson Poisson process Zuckerkandl, 1965
PAM 1300 protein Dayhoff 1978

sequences from 71
homolog families

Blosum Extension of PAM Henikoff 1992
dataset

JTT 16 300 sequences Jones 1992

mtREV Mitochondrial DNA Adachi 1996

WAG & LG Likehood methods Whelan 2001

Model choice is based on the same tests as
for nucleotide evolutionary models (LRT,

AIC, BIC)



Main protein evolutionary models

Model Dataset Ref
Poisson Poisson process Zuckerkandl, 1965
PAM 1300 protein Dayhoff 1978
sequences from 71
homolog families
Blosum Extension of PAM Henikoff 1992
dataset
JTT 16 300 sequences Jones 1992
mtREV Mitochondrial DNA Adachi 1996
WAG & LG Likehood methods Whelan 2001

WAG and LG models are the more used

models




Protein models

eExample: JTT (1992, 16 300 sequences) vs mtREV (for
mitochondrial proteins)

(a) (b)

n [T TTA o

R : : R :

: ITT g

D +~4D

c c

Q Q

i i

G G

b H

ll_ 4 ll_ b

K : K

M - M -

= : F =

Pl ) P ~

s 2Q s

T - T

w w

Y Y

v , v » i

ARNDCQEGHILKMFPSTWYV ARNDCQEGHILKMFPSTWYV

TRENDS in Genetics

20/10/17



Usual workflow in phylogenetic analysis

Dataset rl: Mutiple :: Build a :: Interpret and
construction alignment phylogenetic evaluate the
tree tree

/ \

Evolutionary —_ Method

distance choice choice

20/10/17 40



Method choice

« Main methods for inferring phylogenetic trees:

Input data

Method

Principle of the algorithms

Distance matrix

Unweighted Pair Group Method
(UPGMA)

clustering

Neighbor-Joining (NJ)

clustering

Character state

Maximum Parsimony (MP)

Search for the tree(s) of minimum
character changes

Maximum Likehood (ML)

Search for the tree(s) that
maximizes the probability of
observing the character states
giving a tree topology and a model
of evolution

Bayesian Inference

Target a probability distribution of
trees (set of possible trees for the

data)

20/10/17
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Distance methods for inferring a
phylogenetic tree

o Introduced in phylogeny in 1960

« Try to fit a tree to a matrix of pairwise genetic distances

o Need to choose an evolutionary model

20/10/17

Multiple alignment

Evolutionary
distance matrix

— Phylogenetic tree
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Distance methods

e TWO main methods

- UPGMA: a clustering method that produced
ultrametric trees

- Neighbor-Joining: use a greedy algorithm to
compute the Minimal Evolution tree i.e. the optimal
topology is the one which minimizes the tree length

Root Root

time

differentiation

20/10/17 43



Neighbor-Joining

o First algorithm proposed by Saitou & Nei (1987)
Very fast : polynomial-time algorithm

o Produces unrooted trees

Produces the wright topology if matrix distances are
patristic

Dist(A,B)+Dist(C,D) <

20/10/17
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Neighbor-Joining (NJ)

« Principle of the algorithm:

» Start with a star tree (A) A . B
« Compute the matrix Qij and find b >
the pair of taxa with lowest value : . .

(here f and Q)

. Join f and g and create a new
internal node, u, as shown in (B)

« Compute the distances from node
u to the nodes a-e

- Repeat the process :

- U and e are joined to the newly
created v, as shown in (C).
-Two more iterations lead first

to (D), and then to (E).



Neighbor-Joining in practice

o NJ: Fast but problems may occur for very divergent sequences
or heterogeneous datasets

o BioNJ* algorithm:

- Avariant of NJ which improves its accuracy by making use
of a simple first-order model of the variances and
covariances of evolutionary distance estimates.

- When the substitution rates are low (maximum pairwise
divergence ~0.1 substitutions per site) or when they are

constant among lineages, BIONJ is only slightly better than
NJ.

- When the substitution rates are higher and vary among
lineages, BIONJ clearly has better topological accuracy*.

*Gascuel Molecular Biology and Evolution 1997



Neighbor-Joining in practice

o Choose an evolutionary model and compute a distance
matrix (see next slide)

« NJ/BioNJ softwares:

Neighbor (PHYLIP, NJ) http://
evolution.genetics.washington.edu/phylip.html

BioNJ http://www.atgc-montpellier.fr/bionj/ or
http://phylogeny.lirmm.fr/phylo_cgi/one_task.cgi?
task type=bionj

QuickTree (NJ) http://www.sanger.ac.uk/resources/
software/quicktree/

Seaview (NJ and BioNJ) http://pbil.univ-lyon1/fr/software/
seaview



Evolutionary models in NJ

NJ softwares do not implement all models !

o At small distances (~¥10% of variable sites) the different evolutionary
models produce very similar distance estimates => no problem

« Atintermediate distances (20 to 30% of variable sites), different
model asumptions become more important => It is recommanded to

use realistic models for distance estimation, especially if the
sequences are longs

* At large distances (40% of variable sites), the different model
produces very different distance estimates. Sometimes the distance
estimates become infinite. => The solution is to use realistic models

for distance estimation AND to add sequences to break down the
long distances

20/10/17 48



Parsimony

o Main concept (adapted from Fitch, 1971):

Seek the tree(s) that minimizes the net amount of

evolutionary change (in term of character change) required
to explain the data

« Very used on morphological data (presence/absence of
characters) but also relevant for biological sequences (a
character = a site with 4 states=A,T,C,G or molecular
polymorphism data like SINE)

o Produces unrooted tress
o Does not require any evolutionary model
o Take into account explicitly ancestral states



Parsimony

The problem of finding the parsimony tree can be
separated into three steps:
- Step 1: Compute the minimal amount of
character change required in a given tree

(compute changes for each character and sum
up all characters)

- Step 2: Search for all possible tree topologies

- Step 3: Choose the tree(s) that minimize this
number of character changes.



Parsimony

Step 1: Compute the minimal amount of character change
required in a given tree (compute changes for each
character and sum up all characters)

« Compute the minimum number of changes for a site in a
tree (for instance with the Fitch algorithm)

(AT} 4
geq;- $ Parsimony score :
eqs. ... ... 1+1+2+3+4 =11
Seq3. ...G...
{A,G,T}, 2
Seq4. ...T...
Seq5. ... A.. {C,T}1
Seq6. ...A...

C TG T A A

« Sum over the number of sites to obtain the parsimony
score of a tree



Parsimony

o Step 2 : generate all possible tree topologies

- Exact methods (max. 20 taxa) : example=Branch and Bound
algorithm

- Heuristic methods : choose an intitial tree topology (star
decomposition, stepwise addition, random choice) and perform
tree-rearrangement perturbations like Nearest Neighbor
Interchange (NNI) or Subtree Pruning and Regrafting (SPR)

Star decomposition Stepwise addition

e N

N HHH

* e
s TG

20/10/17 52
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Tree rearrangments

« Exploration of tree topologies using different kind of local

rearra ngments:
Nearest Neighbor Interchange Subtree Pruning Regrafting
(NNI) (SPR)

A E
>—< A E
C F

s V|
B C D D
A J
A E E B C d E
C >

D F F A -\ ¥

Small changes => local space exploration Medium changes => best space exploratic

. lterate and keep always the best (more parsimonious) tree

. Stop after n iterations if the swapping process do not produce a
2onobetter tree 53



Parsimony in practice

o +:can be applied to any kind of characters, good
performances if substitution events are rare

e -:no statistical justification and some sites are excluded i.e.
non informative sites = invariant sites (AAAA) and two-states
sites with one character in one occurrence (AAAT) (all the
tree are equal for theses sites)

o Sotwares for parsimony:
- PHYLIP (dnapars, protpars)
- Seaview
- MacClade http://macclade.org/macclade.html
- (PAUP)



Maximum Likehood methods

o The most frequently used methods
« Sound mathematical and statistical foundations

o The evolution model is central, the method is only possible
for aligned sequences

o In statistics, maximume-likelihood estimation (MLE) is a
general method of estimating the parameters of a statistical
model. When applied to a data set and given a statistical
model, maximum-likelihood estimation provides estimates
for the model's parameters.



Maximum Likehood methods

Adressed question: what is the probabilty to observe the data
by considering an evolutionary model with its parameters and a
tree topology ?

Pr(D/T)

o Input: A set of observed sequences and an underlying
evolutionary model.

o Desired Output: The weighted tree that maximizes the
likelihood of the data



Maximum Likehood methods

*Parameters of the probabilistic model:
o A phylogenetic tree T, with an arbitrary root and valuated branch lengths
o A normalized Q-matrix, common to all tree branches

« An a parameter which determines the variation of the evolutionary rates between
sites using the Gamma distribution

—

S2

.| are branch lengths (#subst/site)
A, B, C, D, E are the unknown ancestral
states

« Likehood computation of observed data :

Log(L)= 2 log(L(site)

sites

L(site)= Y ¥ ¥ ¥ ¥ Prob(S1,52,53,54,55,56,A,B,C.D,E|T)
A B C D E
20/10/17 57



Maximum likehood: Example

Sequence W: A C G C GTTGGG
Sequence X: A C G C GTTGGG
Sequence Y: A C G C A AT G A A
Sequence Z: A C A C A GGGAA
A
All possible T\'/I' A\/G'
evolutlonary Am AT
paths of a site Gvc
AT

20/10/17 58



Likehood of a site

Likehood of

a path

Sum over
all paths

20/10/17

TTAG
N\
T G

NS

G

L(path) = L(root) x Il L(branches)

=P(G>T)P(G>G) P(G>A)P(G>G) P(T>T)P(T=>T)

W AS

A

M

C%C
G
s

L(Column Cluster 1) = X L(all possible Evolutionary Paths)
= L(path1) + L(path2) + L(path3) + ... + L(path64)
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Felsenstein algorithm

« 5 internal nodes => 5% = 1024 possible combinations

« Pruning Felsenstein algorithm :
progressive computation of the likehood of a site
to have nucleotide i (with tree T and model M
fixed) from leaves to root by using a recursive
strategy

« Calculate tree Likelihood by multiplying the
likehood for each position



Maximum Likehood features

Branch length | are estimated using the Q matrix (of
an evolutionary model).

I=expected number of subtitutions per site = ut (mutation

rate x time) P/) LY/
(

. Reversibility of the process (symetry of Q matrix) : it is
possible to show that if the base substitution model is
reversible

« Root position : Likelihood remains the same regardless
of where the root is. So search for the best tree only
needs to be carried out on unrooted trees

. Can take into account variation of the evolutionary
rates between sites using K possible categories of sites



Maximum likehood algorithm in practice

« Pick an evolutionary model (result of
modelgenrator can help)

« For each site, generate all possible tree structures
(same methods as in MP)

. Based on the evolutionary model, calculate
likelihood of these trees.

« Choose the tree with the Maximum Likelihood



Maximum likehood in practice

« +: Works well for distantly related sequences and under
different molecular clock theory ; Can incorporate any
desirable evolutionary model ; Sound mathematical
foundations

. - Bad Approx. under Bad Evolutionary Models ;
Computationally Intensive (=>slow)

. Sotwares for Maximum likehood

- PHYLIP (dnaml, protml)

- PhyML  http://atgc.lirmm.fr/phyml/

- RaXML http://sco.h-its.org/exelixis/web/software/raxml/index.html



Bayesian phylogenetic inference

o The most recent method, now becomes very used

« Use probabilistic evolutionary models (the same as in
maximum likehood methods)

o The central concept of the method is posterior probability; a

Bayesian analysis produces a posterior probability
distribution of trees

o If the data are informative, most of the posterior probabilities
will focus on one tree or a small subset of trees



Bayesian phylogenetic inference

Central question: what is the probability of the model/tree taking
into account the data D ?

o Start with a prior belief about trees (prior distribution of
possible trees)

o Collect data and use an evolutionary model and Bayes theorem
to obtain a posterior probability distribution of trees

prior likehood

N /
Pr(T / D) = Pr(TI))ilg)) /1)
l\

data probability




Bayesian phylogenetic inference

Prior distribution

e
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Probability
(=
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l Data (observations) l

Posterior distribution
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1

Probability
o
w

O
o
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Bayesian phylogenetic inference

o Isis not possible to derive the posterior probability
analytically
o The posterior probabilty is derived by using a Markov Chain
Monte-Carlo sampling (MCMC) strategy:
1- start from an arbitrary point
2- make small random changes to the current values of the model

parameters
3- accept or reject these changes according to its posterior

probability
* This process is repeated during n generations until

convergence.



Bayesian phylogenetic inference

o Input:
- A set of aligned sequences
- A prior distribution about trees
- An underlying evolutionary model.

o Desired Output:

- One (or a few) valuated tree(s) with maximal
posterior probabilities



Bayesian phylogenetic inference

« Powerful but complex method

o Can produce either one either several tree topologies with high
posterior probabilities

o Use an a priori distribution for parameters
o Use heuristic to explore tree spaces

o Convergence problems: for some phylogenetic problems,
difficult or impossible to achieve convergence within a
reasonable number of generations

Sotware for Bayesian inference
« MrBayes : http://mrbayes.sourceforge.net



Mr Bayes parameters

o Set the evolutionary model, eventually with a discrete
gamma-distributed rate variation across sites (N=4) and a
proportion of invariable sites (I) (or let MrBayes choose)

o Set the MCMC parameters:

o Number of chains Nc: by default Nc=2 and MrBayes will run two
simultaneous, completely independent analyses starting from

different random tree
« Number of generations Ngen : typically Ngen>10000

o Criterion for convergence diagnostic, typically by comparing the
variance among and within tree samples MrBayes will run
diagnostic every runfreq generations and report clades ot at least
minfrequency.



Usual workflow in phylogenetic analysis

Dataset

construction
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B
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alignment

Evolutionary

Build a :>
phylogenetic

tree

distance choice

\

Interpret and
evaluate the

tree

. Method

choice
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Testing tree topologies

*Confidence issue

« How confident are we on the inferred tree ?

« Which parts of the tree are reliable/not reliable ?
« How can we validate the tree ?

Problem: the true tree is unknown !

Solution :

« use bootstrap (or jacknife) to evaluate the reliability of the
inferred tree and specific clades

o combine subsampling and consensus trees to get support
values on branches



Testing tree topologies

« Bootstrap: resample “nucleotides” from the alignment;

Original Sites
data = ——

| | |

| |
Sequences : . : i
| | | |
| ‘ |

| — 1

1 =

r /\" - — Estimate of the tree
Bootstrap L Sites S~

sample #1 7/~

\n
/ S ———— .
‘ \
V/ } ! ' \
. Sample same number S
Sequences | of sites, with replacement, | —*
. 3 ‘
‘ . | | ‘I
A\ | |/
§\ N ‘e S S S — —— — —— — -— //

Boot tl’lp NS I I Bootstrap estimate of
OOLstre SN, o -

Sltl'\ the tree, #1
sample #2

Sa mplv same number

- » » TN .
¢ quences of sites, with rvpla(vmvm

(and so on) Bootstrap estimate of
the tree, #£2
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Bootstrap process and consensus tree

*Bootstrap process

Infer several trees using resampling techniques;

|dentify and conserve only the core information contained and
repeated in many trees ;

Combine the several trees to produce a consensus tree which is
compatible with all (or most) of the trees.

In general, the consensus tree has no branch lengths and a
lower resolution than the original tree.

Superimpose boostrap values on the original tree



Consensus tree

*.Consensus rules:
« Strict Consensus: clades presents in all trees;

o Majority Rule: clades presents in at least half of the trees;

o Extended Majority Rule: clades presents in at least half of the
trees and some more until the tree is resolved.



Consensus tree

*.Consensus rules:
« Strict Consensus: clades presents in all trees;

o Majority Rule: clades presents in at least half of the trees;

« Extended Majority Rule: clades presents in at least half of the
trees and some more until the tree is resolved.

Ans  Bens Cens Deus Eus Auys  Beus Ceus

A B

Strict consensus Majonity-1ule consensus
Ans  Bens Ceus Dens Eus Ans  Beus Ceus Dens Eus




Boostrap values guidelines

*Be cautious with boostrap values interpretation:
o Bootstrap values have no clear-cut statistical interpretation;
o A bootstrap value of 95% doesn’t mean that the corresponding
clade has 95% chance of being “true”;
o Bootstrap values are difficult to interpret quantitavely.
However Bootstrap values are (quite) easy to interpret
qualitatively:
o The higher the bootstrap value, the more confident you can be
in your clade;
e 95%, 90% and 66% consitute traditional threshold for being
confident in a clade.



Conclusion: overall view

Dataset

construction
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Mutiple :: Build a :: Interpret and
alignment phylogenetic evaluate the

tree

/

Evolutionary

distance choice

tree
\ Boostrap

Distance
Parsimony
Maximum Likehood

Bayesian
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Conclusion: overall view

refine the dataset \
Test several methods R

Dataset rl: Mutiple :: Build a :: Interpret and
construction alignment phylogenetic evaluate the

tree tree
/ \ Bootstrap
Evolutionary * Distance
distance choice * Parsimony

e Maximum Likehood

* Bayesian
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Conclusion: overall view

Implemented in Seaview

Use modelgenerator.jar

Use Mr Bayes
Dataset l; Mutiple :: Build a :: Interpret and
construction alignment phylogenetic evaluate the
tree tree
/ \ Boostrap
Evolutionary * Distance
distance choice * Parsimony

20/10/17

Maximum Likehood

Bayesian
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Conclusion: method comparison

*Neighbor-joining (fast)

o Consistent: proven to construct the correct tree if
distances are patristic.

o Problems with long and divergent sequences
Parsimony (medium)

o good for closely related sequences

o can be used with any kind of data

o No clear interpretation of branch length



Conclusion: method comparison

Likelihood method (slow)

o Sound statistic foundations

o Works well for distantly related sequences

o Can incorporate any desirable evolutionary model
Bayesian method (very slow)

o Powerful but complex method



Frequent problems

« Long Branch Attraction: Long branches tend to cluster together
in the tree:

Solution: “break down” long branches by adding some taxa
to the analysis;

« Saturation: Characters have evolved for so long that they are
almost random:

Solutions: Remove saturated sites and/or taxa; When available,
use proteic sequences instead of nucleic sequences;

« Missing Data: Some characters are missing from the alignment:

Solutions: Use methods that can handle missing values, such as
ML; Use as many characters as possible.
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Useful web sites

. LIRMM web site :
http://phylogeny.lirmm.fr

. PHYLIP (Felsenstein lab, Univ. of Washington) web site :
http://evolution.gs.washington.edu/phylip/software.html
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The End !

Questions ?
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The PAM matrix (Dayhoff 1978)

o Dataset = 1300 protein sequences from 71 homolog families
with at least 85% of identity (to minimize multiple
subtitutions)

o Estimation of a transition matrix between all amino acids for
a branch length of d=0.01 subsitution per site = the PAM1
matrix (1 Point Accepted Mutations per 100 amino acids in
average)

« PAM matrix are computed for more divergent proteins by
mutiplying PAM matrix k times : PAM250 matrix correponds
to 250 Point Accepted Mutations per 100 amino acids in
average

« The PAM value is proportional to the true evolutionary
distance between two proteins.



Frequent problems

*Incomplete Lineage Sorting (ILS): Species tree with embedded gene tree
showing incongruence

Consequence: gene
tree topology that
differs from the
species tree

Kubatko L S Syst Biol 2009,58:478-488
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