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RNA-Seq de novo 
assembly training

Day 2
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Session organisation: Day 2

Afternoon:
• de Bruijn graph
⁕ Velvet/Oases

⁕ Trinity

• Pretreatments

Morning:
• Assembly quality assessment
⁕ Assemblathon stats

⁕ Read mapping stats

• Clustering
⁕ CD-HIT

• Greedy assembly
⁕ SSAKE/VCAKE

• Overlap Layout Consensus
⁕ CAP3
⁕ TGICL
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Objectives for this second day

Answer the following questions:
• Which assembler should I choose to process my data?
• Which procedure should I use for my assembler?
• Which computer do I need to run my assembly?
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Genome vs transcriptome
assembly

Differ mainly in:
• matrices coverage

⁕generally uniform vs highly variable

• combinations of sequences
⁕repeats and allelic variations vs alternative splicing

Two steps using genome assembler:
• use genome assembler to assemble transcriptome
• develop pipelines to postprocess the output of genome 

assemblers
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Objectives of the assembly

An assembly is a sum-up of the matrices from which the 
reads have been produced:

• complete (all represented transcripts)
• compact (one contig for a transcript)
• independent of the expression level
• not affected by the random errors of the sequencing 

technology

Two possible level-analysis:
• transcripts
• genes
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How do you assess the 
quality of an 

transcriptome 
assembly?
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Assembly quality assessment

3 tracks

Assembly metrics

Shape of contig 
length histogram

Reads mapping 
back rate
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Vocabulary

• Contig: a set of overlapping segments that together 
represent a consensus sequence

• Scaffold: a series of contigs that are in the right order but 
not necessarily connected in one continuous stretch of 
sequence

• N50: given a set of contigs of varying lengths, the N50 
length is defined as the length N for which 50% of all 
bases in the contigs are in contigs of length L < N

contig size list L = (2, 2, 2, 3, 3, 4, 8, 8)

we have 50% of total length (16/32) above 4

N50 is equal to 4+8/2 = 6

• L50: number of contigs that are greater than, or equal to, 
the N50 length
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Contig metrics

The possible metrics derived from genome assembly:
• Idea of global size (# bases)
• Idea of number of elements (# contigs/scaffolds)
• Idea of compactness (N50)

      much more difficult to predict with transcriptome data
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Assemblathon statistics

Assemblathon 1: a competitive assessment of de novo short read assembly methods.
Earl D & al. Genome Res. 2011 Dec;21(12):2224-41

Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species.
Bradnam KR & al. Gigascience. 2013 Jul 22;2(1):10 

Script which calculates many of the basic contig and 
scaffold level statistics

• N50
• Longest/shortest contig/scaffold
• Median size of contigs/scaffolds
• Mean size of contigs/scaffolds
• Total size of contigs/scaffolds
• % N, A, T, G, C
• ...
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Assemblathon: command line

­n distinguish scaffolds and contigs (default 25)

­csv output in csv format
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Assemblathon statistics

assemblathon_stats.pl contigs.fa
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Transcript length histogram

Transcript lengths are not randomly distribute

We should get a known distribution shape

“Complete” transcriptomes
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Transcript length histogram
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Transcript length histogram

Zebrafish tissue specific assembled transcriptomes

 not so different
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Length histogram
python /usr/local/bioinfo/Scripts/bin/length_histogram.py ­l ­i transcripts.fa

Hs At Ce Dm Sc

Ovary Brain Heart Liver Testis

Complete transcriptomes

Tissue specific assembled transcriptomes
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Genome histogram

Comparison with the panda genome assembly (v1, 2009)

81467 scaffolds

Total 2,3 Gb

Longest 6Mb

Shortest 100 b

N50 1,3 Mb

L50 521
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Zebrafish transcriptome

47880 contigs

Total 93 Mb

Longest 94 kb

Shortest 10 b

N50 2622

L50 10495

81467 scaffolds

Total 2,3 Gb

Longest 6Mb

Shortest 100 b

N50 1,3 Mb

L50 521

81467 scaffolds

Total 2,3 Gb

Longest 6Mb

Shortest 100 b

N50 1,3 Mb

L50 521
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Realignment metrics

The assembly is a sum-up. The realignment rate gives 
how much of the initial information is inside the contigs.

Reads mapped back to transcripts (RMBT)
• align reads against assembly generated transcripts
• compute percentage of reads mapped
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Realignment metrics

Factors affecting realignment rate:
• Presence of highly expressed genes
• Contamination by building blocks (adaptors)
• Reads quality

 

Should be higher or 
around 80% of mapped 

reads
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RMBT with BWA

The realignment steps are:
• indexing the reference (bwa)
• aligning the reads, producing a sam file (bwa)
• compressing, sorting and indexing the sam file in a bam 

file (samtools)
• counting the aligned reads (samtools):

⁕global alignement rate
⁕num reads / contig
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RMBT: command lines

Index the reference

bwa index ­a [is|bwtsw] reference.fa

Align the reads

bwa aln ­f R1.sai reference.fa R1.fastq.gz

bwa aln ­f R2.sai reference.fa R2.fastq.gz

bwa sampe ­f output.sam reference.fa R1.sai R2.sai R1.fastq.gz R2.fastq.gz

Compress, sort and index

samtools view ­bS output.sam | samtools sort ­ output.sorted

samtools index output.sorted.bam

Count reads

samtools flagstat output.sorted.bam

samtools idxstats output.sorted.bam

Or use /home/sigenae/bin/runSampe ☺
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Exercise n°1
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Lets assemble!
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Assembly: vocabulary

• Graph: a data structure which consists of a finite set of 
ordered pairs, called edges or arcs, of certain entities 
called nodes or vertices

• a simple grap example:
⁕6 nodes
⁕7 edges

• Path: in a graph, a path is a sequence of edges which 
connect a sequence of vertices
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Assembly: vocabulary

• K-mer: a k-mer is a sub-string of length k
• A string of length L has (L-k+1) k-mers
• Example: a read with L = 8 has 5 k-mers when k = 4

– A G A T C C G T
– A G A T
–   G A T C
–     A T C C
–       T C C G
–         C C G T
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Sequence clustering

Inclusion reduces the overall size of the dataset 
without removing any sequence information by only 
removing “redundant” (or highly similar) sequences.

Tools:
• CD-HIT
• BLASTClust
• UCLUST
• UICluster
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 CD-HIT

CD-HIT is a widely used program for clustering and 
comparing protein or nucleotide sequences.

Overview:

CD-HIT clusters included sequences.
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CD-HIT

CD-HIT uses greedy incremental clustering algorithm 
method: 
• sequences are first sorted in order of decreasing length
• the longest one becomes the representative of the first 

cluster
• each remaining sequence is compared to the 

representatives of existing clusters
• if the similarity with any representative is above a given 

threshold → grouped into that cluster
• if not, a new cluster is defined
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Cd-hit: command line

cd­hit­est ­i input.fa ­o output.fa ­M 0 ­d 0 ­c 0.98 ­T 8 > output.log
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Cd-hit: output

cd­hit­est ­i transcripts.fa ­o all_seq.fa ­M 0 ­d 0 ­c 0.98 ­T 8 > transcripts.fa.cd­hit.log



32

Assembly introduction 

Three classes of methods:
• Greedy method
• Overlap Layout Consensus (OLC) method
• de Bruijn graph (DBG) method
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Greedy method

Greedy method joins a read with another read that has 
the best overlap score until no more reads can be 
joined.
Overview: 
• calculate pairwise alignments of all reads
• score and sort alignments (length/matching)
• merge the two reads with the highest scoring overlap and add 

the resulting “contig” to the pool of sequences
• continue to extend a contig until no more quality overlaps exist

Greedy:

• optimize a local objective function (quality of the overlap)
• approach that may not lead to a globally optimal solution

Pop M. Genome assembly reborn: recent computational challenges. Briefings in Bioinformatics. 2009
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SSAKE / VCAKE

VCAKE is a modification of simple k-mer extension 
(SSAKE) that overcomes error by using high depth 
coverage

Each possible 3′ most k-mer from seed reads are used 
to browse a prefix tree organizing reads by their first 
eleven 5′ end bases. 
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96  ATGTCTTCCTATCGTGTA

89  TGTAGCGCTATCGTCAAG

67  GTCATGTCGTATTTTGTA

42  CGATCGATGCTAGTATAT

SSAKE / VCAKE
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Prefix tree
- first 11 bases
- remaining sequence

ATGTCTTCCTATCGTGTA
 TGTCTTCCTATCGTGTA
  GTCTTCCTATCGTGTA
   TCTTCCTATCGTGTA
    CTTCCTATCGTGTA
     TTCCTATCGTGTA
      TCCTATCGTGTA
       CCTATCGTGTA
        CTATCGTGTA
         TATCGTGTA
          ATCGTGTA  
 Min length = 8 

Each 3′ most k-mer 

C

C

T
A
T
C
G
T
G
T
A
T
T

Hash table keyed by num
occurrences
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SSAKE / VCAKE
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ATGTCTTCCTATCGTGTA
 TGTCTTCCTATCGTGTA
  GTCTTCCTATCGTGTA
   TCTTCCTATCGTGTA
    CTTCCTATCGTGTA
     TTCCTATCGTGTA
      TCCTATCGTGTA
       CCTATCGTGTA
        CTATCGTGTA
         TATCGTGTA
          ATCGTGTA  
 Min length = 8 
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ATGTCTTCCTATCGTGTATT

3'5'
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SSAKE / VCAKE
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TGTAGCGCTATCGTCAAG
 GTAGCGCTATCGTCAAG
  TAGCGCTATCGTCAAG
   AGCGCTATCGTCAAG
    GCGCTATCGTCAAG
     CGCTATCGTCAAG
      GCTATCGTCAAG
       CTATCGTCAAG
        TATCGTCAAG
         ATCGTCAAG
          TCGTCAAG
           CGTCAAG  
 Min length = 8 

Each 3′ most k-mer 

C
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T
A
T
C
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G
T
A
T
T

96  ATGTCTTCCTATCGTGTA

89  TGTAGCGCTATCGTCAAG

67  GTCATGTCGTATTTTGTA

42  CGATCGATGCTAGTATAT
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OLC method

OLC method generates a graph using reads and 
overlaps. The assembly process becomes synonymous 
with finding a pathway through the graph that visits 
every node at exactly once.

Tree steps:
• Overlap
• Layout
• Consensus
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Overlap

• Each read is compared to every other reads in both the 
forward and reverse complement orientations

• Different OLC algorithms have different criteria for OLC-
quality overlaps

• In the assembly graph, the nodes represent actual reads, 
the edges represent overlaps between these reads

http://gcat.davidson.edu/phast/olc.html
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Layout: simplify graph

• In order to decrease the size of the graph, the OLC 
assembly graph is simplified in the layout stage

• There is one path that visits every read, highlighted in red
• Nodes are compressed into 

contigs until a fork is reached

http://gcat.davidson.edu/phast/olc.html



44

Layout: resolve repeats

Forks typically signify the boundary between repeats 
and unrepeated segments
• a fork is formed because the reads that link the R1+R2 

contig to Y and Z do not overlap on the suffix end
• both repeat sections R1 and R2 are compressed into a 

repeat contig. X, Y and Z are compressed into unique 
contigs

http://gcat.davidson.edu/phast/olc.html
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Consensus

• After contig generation, consensus sequences are 
derived

• Starting from the left most read of each contig, the OLC 
algorithm computes the consensus of all of the reads 
composing each contig
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Greedy vs OLC

• Both begin with overlap generation
• Steps of OLC enable a global analysis of the assembly 

problem
• Local analysis of greedy algorithms is a limit
• For this repeat example:

⁕ the proper reconstruction X-R1+R2-Y-R1+R2-Z is easily 
inferred using the OLC method

⁕a greedy extension would produce
– fragmented assembly (X-R1+R2 ; Y ; Z)
– misassembly (X-R1+R2-Z ; Y)
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CAP3

CAP3 (CONTIG ASSEMBLY PROGRAM Version 3) is a 
sequence assembly program for small-scale assembly 
with or without quality
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TGICL

TGICL is a pipeline for analysis of large Expressed 
Sequence Tags (EST) and mRNA databases

• MegaBLAST

• Clustering

• Large clusters
splitting

• CAP3
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TGICL

TGICL benefit:
• mgblast (MegaBLAST with new filtering options) 

→compressed sorted file of decreasing pairwise 
alignment score

• clustering (tclust, sclust, nrcl)→ generally a very large 
connected component

• splitting → partitioning attempt based on full-length 
transcripts 
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TGICL: command line

tgicl ­F input.fa ­c 2 ­l 60 ­p 96
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TGICL: output
tgicl ­F all_seq.fa ­c 2 ­l 60 ­p 96
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TGICL: ACE format

http://bozeman.mbt.washington.edu/consed/distributions/README.14.0.txt
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TGICL: Align format



54

Other OLC assemblers 

CABOG
Celera Assembler with

the Best Overlap Graph

Newbler

MIRA



56

But we have billions of 
reads!
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De Bruijn graph

The de Bruijn graph (k-mer graph) approach is more 
appropriate for the large volumes of reads associated 
with short-read sequencing:
• avoids the computationally expensive all-against-all pair-

wise read comparisons
• avoids loading all the replicate sequences associated 

with high-coverage sequencing

Miller JR, Koren S, Sutton G. Assembly algorithms for next-generation sequencing data. Genomics. 2010
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De Bruijn graph

The DBG:
• directed graph

• edges are unique k-mers

• nodes are overlaps of
length k-1

• an edge connects two nodes
if the suffix of the source node 
shares an exact match of length
k-2 with the prefix of the destination node

• the assembly algorithm becomes finding a path in the graph 
that visits every edge at least once

http://gcat.davidson.edu/phast/#methods
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De Bruijn graph

Overview of the assembly strategy

Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet. 2011
http://gcat.davidson.edu/phast/#methods
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● Overview of the assembly strategy

Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet. 2011
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De Bruijn graph

Overview of the assembly strategy

Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet. 2011
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De Bruijn graph

Overview of the assembly strategy

Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet. 2011
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De Bruijn graph

Overview of the assembly strategy

Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet. 2011
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DBG vs OLC

DBG OLC

 Overlap computation is a very time and
computationally intensive step















More efficient ways to find Eulerian paths than
Hamiltonian paths

Overlaps can vary in length

Very sensitive to repeats

Very sensitive to sequencing errors
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Velvet / Oases

Velvet: sequence assembler for very short reads (2008)

Oases: de novo transcriptome assembler (2012)
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Velvet - Graph structure

Graph structure:

• each node represents a series of
overlapping k-mers

• sequence of the final nucleotides is
called the sequence of the node

• each node is attached to a twin node
(rev. comp k-mers → k must be odd)

• nodes are connected by a directed arc.
The last k-mer of an arc's source node
shares an overlap of length k-1 with the
first of the destination node

• reads are mapped as “paths” traversing the graph 

Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008
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Velvet - Graph construction

Graph construction:
• reads are first hashed according to predefined k-mer 

length
• build an hash table storing for each k-mer, the ID of the 

first read encountered containing this k-mer and the 
position

• build another table storing for each read which of its 
original k-mers are overlapped by subsequent reads

• ordered set of original k-mers of a read is cut each time 
an overlap with another read begins or ends

• for each uninterrupted sequence of original k-mers, a 
node is created

Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008
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Velvet – Correcting graph

Next steps
• graph simplification → chains of blocks or linear

connected subgraph are merged (no loss of information)
• error removal → three major problems:

⁕“false positive graphs” due to errors in reads
⁕“gap problems” due to non-uniform or low coverage 

→short “dead-end” paths (← larger k)
⁕“branching problems”: k-mers connected to multiple k-

mers due to repeat regions or erroneous reads introduce 
branches in the graph (← smaller k)

Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008
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Velvet - Removing errors

Removing tips
Tip is a chain of nodes that is disconnected on one end. Tips 
to remove are recognized on the base of two criteria: length 
and minority count.

http://hpc.isti.cnr.it/~rossano/ReadingDaySlides/SemCap.pdf
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* according to the notion of distance, that considers the path-length and the related multiplicity 
→ gives priotity to higher coverage paths

Velvet - Removing errors

Removing bubbles (Tour Bus algorithm)
Two paths that start and end at the same nodes and contain 
similar sequences defined a “bubble”. If judged “similar” 
enough, the paths are merged. The path that reaches the end 
node first* is used as the consensus path.

http://hpc.isti.cnr.it/~rossano/ReadingDaySlides/SemCap.pdf
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Velvet - Removing errors

Removing erroneous connections
These unwanted connections do not create any recognizable 
loop or structure. Remove them with a basic coverage cutoff.

Genome assembly process in Velvet is stopped here→fork 
due to transcriptome assembly singularities

Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008
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Oases

Overview
• individual reads are sequenced from 

an RNA sample

• contigs are built from those reads, 
some of them are labeled as long (clear),
others short (dark)

• long contigs, connected by single reads
or read-pairs are grouped into connected
components called loci

• short contigs are attached to the loci

• the loci are transitively reduced. 
Transfrags are then extracted from the loci

Schulz MH & al. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012
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Oases - Contig construction

Contig construction (Velvet preprocess)
• the Oases pipeline receives as input a preliminary 

assembly produced by Velvet
• initial stages (hashing and graph construction) can be 

used indifferently on transcriptomic data
• contig correction performed with a modified version of 

the Tour Bus algorithm (fitted for coverage disparity and 
complexity of graphs)

Schulz MH & al. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012
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Oases - Contig correction

Contig correction
• local edge removal → for each node, an outgoing edge is 

removed if its coverage represents less than 10% of the 
sum of coverages of all outgoing edges)

• static coverage cutoff → contigs with less than the cutoff 
are removed from the assembly (3x by default)

• contigs longer than a given threshold (by default > 50+k-
1) are labeled as long contig and treated as if unique

• other contigs are labeled as short

Schulz MH & al. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012
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Oases - contigs to scaffolds

Scaffold construction
• connexion between contigs can be supported by both 

spanning single reads (direct) or paired-end reads 
(indirect)

• the total number of spanning reads and pair-reads 
confirming a connection between 2 contigs is called its 
support

Scaffold filtering
• based on static (very low) and dynamic (vs local) 

coverage thresholds
• connections with low support are removed
• short contigs can only be joined by direct connections

Schulz MH & al. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012
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Oases - Locus resolution

Locus construction
• contigs are organized into clusters called loci
• two steps:

⁕long contigs are first clustered into connected components
⁕to each locus are added short nodes connected to one of 

the long nodes in the cluster

Transitive reduction of the loci
• remove redundant long distance connexions
• example: two contigs which are not consecutive in a 

locus are frequently connected by a paired-end read

Schulz MH & al. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012
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Oases - Transcripts extraction

Extracting transcript assemblies
Loci are divided into four categories

• chains
• bubbles
• forks
• complex

Schulz MH & al. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012
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Oases - Transcripts extraction

Extracting transcript assemblies
• trivial locus topologies (chains, forks and bubbles) are 

straightforward to resolve (if isolated from any other 
branching point)

• complex loci are processed using an additional heuristic 
method* which produces a parsimonious set of putative 
highly expressed transcripts

Schulz MH & al. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012

* Lee C. Generating consensus sequences from partial order multiple sequence alignment graphs. 
Bioinformatics. 2003
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Which k-mer size to choose?

K-mer size is the parameter the most influent upon assembly 
results.

It’s a trade-off between specificity and sensitivity. 

Longer k-mers bring you more specificity: 
• inherently rarer
• give graphs with lower coverage over all
• the longer the k-mer the more likely it is that it includes 

an error

  larger k values bias your results towards more abundant 
isoforms
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Which k-mer size to choose?

Shorter k-mers bring you more sensitivity: 
• high coverage graph
• at the cost of a more complex graph
• due to more spurious overlaps

  smaller k values are susceptible to assembled low-
abundance isoforms 

http://ivory.idyll.org/blog/the-k-parameter.html

Schulz MH & al. Oases: robust de novo RNA-
seq assembly across the dynamic range of 
expression levels. Bioinformatics. 2012



81

The multiple k-mer strategy

Overview
• independent assemblies which vary by k-mer length
• assemblies are then merged into a final assembly
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Velvet / Oases: command line
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Velvet / Oases: command line
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Velvet / Oases: command line

mkdir oasesOutDir

velveth_70_LONG oasesOutDir 27 ­shortPaired ­fastq.gz \ 
­separate R1.fastq.gz R2.fastq.gz ­noHash

­­­

mkdir oasesOutDir/k61

ln ­s ../Sequences oasesOutDir/k61/Sequences

velveth_70_LONG oasesOutDir/k61 61 ­reuse_Sequences

velvetg_70_LONG oasesOutDir/k61 ­read_trkg yes \ 
­min_contig_lgth 200

oases_70_LONG oasesOutDir/k61

­­­

Redo for all chosen k­mers 
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Velvet / Oases: command line

mkdir oasesOutDir/merge

velveth_70_LONG oasesOutDir/merge 27 ­long \ 
oasesOutDir/k*/transcripts.fa

velvetg_70_LONG oasesOutDir/merge ­read_trkg yes \ 
­conserveLong yes

oases_70_LONG oasesOutDir/merge ­merge yes



86

Velvet / Oases: output
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Exercise n°2
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Trinity

Trinity: a novel method for the efficient and robust de 
novo reconstruction of transcriptomes from RNA-seq 
data

http://www.broadinstitute.org/videos?criteria=RNA-Seq
http://www.broadinstitute.org/videos?criteria=Trinity
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Pipeline:
• Inchworm
• Chrysalis
• Butterfly

Trinity
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Trinity - Inchworm

Inchworm
1.build a k-mer dictionary from reads set (count 

occurrences)

2.removes likely error-containing k-mer based on 
occurrence

3.selects the most frequent k-mer to seed contig
assembly

4.extends the seed in each direction by finding
highest occurring k-mer with a k-1 overlap

5.extends until it cannot be extended and report
contig ; removes assembled k-mers

6.repeats steps 3-5, starting with the most
abundant k-mer until the entire dictionary
has been depleted
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Trinity - Inchworm
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Trinity - Chrysalis

Chrysalis
• recursively groups inchworm contigs into

connected components
⁕perfect overlaps of k-1 bases
⁕minimal number of reads span the junction

across both contigs
• builds a de Bruijn graph per component

⁕nodes are word size of k-1
⁕edges are word size of k
⁕weights each edge with the number of 

(k-1)-mers in the original reads that support it
• assigns each read to the component with

which it shares the largest number of k-mers

http://www.broadinstitute.org/videos?criteria=RNA-Seq
http://www.broadinstitute.org/videos?criteria=Trinity
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Trinity
Chrysalis
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Trinity - Butterfly

Butterfly reconstructs distinct transcripts for splice
isoforms and paralogous genes

• Graph simplification
⁕merge consecutive nodes in linear paths
⁕prune edges that represent minor deviations 

(supported by comparatively few reads)
• Plausible path scoring

⁕identifies those paths that are supported by
actual reads and read pairs

⁕a dynamic programming procedure resolves 
ambiguities and reduce the combinatorial
number of paths

⁕enumerate linear sequences
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Trinity - Butterfly
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Trinity: command line

Trinity.pl ­­output trinityOutDir ­­seqType fq ­­JM 64G ­­left R1.fastq.gz ­­right R2.fastq.gz ­­CPU 4

Mem usage 1G RAM per 1M ~76 base Illumina paired reads
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Trinity: output



98

Exercise n°3
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What to do before assembling?

The aim is to simplify graphs:
• Cleaning
• Sampling
• Unicity
• Normalization
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Sampling

A comparison across non-model animals suggests an optimal 
sequencing depth for de novo transcriptome assembly

 20 (tissue) to 30 (whole-animal) millions reads

Francis et al. BMC Genomics 2013, 14:167

● contigs with reliable hit against KOGs □ contigs which the translated protein was within 
the expected size range of the conserved gene
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Misassembly examples

Short gapsChimera Majority trend

Francis et al. BMC Genomics 2013, 14:167

Sampling
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Normalization

TRINITY_RNASEQ_ROOT/util/insilico_read_normalization.pl

• Build a catalog of k-mers and compute abundance
• Compute the k-mer abundance profile for each read

⁕median k-mer abundance (C)
⁕standard deviation for the k-mer coverage

• Retain reads with probability min(1, T/C) [Perl: rand(1) <= T/C]

⁕captures all reads falling below the targeted cov. level (T)
⁕down-samples reads occurring at higher coverage than T

• Discard reads with aberrant k-mer abundance profile 
(std-dev k-mer cov > median k-mer abundance)
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Normalization

Normalization effects (our experience):
• drastically decrease #reads or #pairs (-50 to -90%) 
• significantly decrease #contigs (-10 to 15%) 
• slightly decrease #rebuilt proteins (-3%) 
• null or positive effect on remapping rate (0 to 10%) 
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See you tomorrow!
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