
1

RNA-Seq de novo
assembly training

Day 2

2

Session organisation: Day 2

Afternoon:
• de Bruijn graph
⁕ Velvet/Oases

⁕ Trinity

• Pretreatments

Morning:
• Assembly quality assessment
⁕ Assemblathon stats

⁕ Read mapping stats

• Clustering
⁕ CD-HIT

• Greedy assembly
⁕ SSAKE/VCAKE

• Overlap Layout Consensus
⁕ CAP3
⁕ TGICL

3

Objectives for this second day

Answer the following questions:
• Which assembler should I choose to process my data?
• Which procedure should I use for my assembler?
• Which computer do I need to run my assembly?

4

Genome vs transcriptome
assembly

Differ mainly in:
• matrices coverage

⁕generally uniform vs highly variable

• combinations of sequences
⁕repeats and allelic variations vs alternative splicing

Two steps using genome assembler:
• use genome assembler to assemble transcriptome
• develop pipelines to postprocess the output of genome

assemblers

5

Objectives of the assembly

An assembly is a sum-up of the matrices from which the
reads have been produced:

• complete (all represented transcripts)
• compact (one contig for a transcript)
• independent of the expression level
• not affected by the random errors of the sequencing

technology

Two possible level-analysis:
• transcripts
• genes

6

How do you assess the
quality of an

transcriptome
assembly?

7

Assembly quality assessment

3 tracks

Assembly metrics

Shape of contig
length histogram

Reads mapping
back rate

8

Vocabulary

• Contig: a set of overlapping segments that together
represent a consensus sequence

• Scaffold: a series of contigs that are in the right order but
not necessarily connected in one continuous stretch of
sequence

• N50: given a set of contigs of varying lengths, the N50
length is defined as the length N for which 50% of all
bases in the contigs are in contigs of length L < N

contig size list L = (2, 2, 2, 3, 3, 4, 8, 8)

we have 50% of total length (16/32) above 4

N50 is equal to 4+8/2 = 6

• L50: number of contigs that are greater than, or equal to,
the N50 length

9

Contig metrics

The possible metrics derived from genome assembly:
• Idea of global size (# bases)
• Idea of number of elements (# contigs/scaffolds)
• Idea of compactness (N50)

  much more difficult to predict with transcriptome data

10

Assemblathon statistics

Assemblathon 1: a competitive assessment of de novo short read assembly methods.
Earl D & al. Genome Res. 2011 Dec;21(12):2224-41

Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species.
Bradnam KR & al. Gigascience. 2013 Jul 22;2(1):10

Script which calculates many of the basic contig and
scaffold level statistics

• N50
• Longest/shortest contig/scaffold
• Median size of contigs/scaffolds
• Mean size of contigs/scaffolds
• Total size of contigs/scaffolds
• % N, A, T, G, C
• ...

11

Assemblathon: command line

­n distinguish scaffolds and contigs (default 25)

­csv output in csv format

12

Assemblathon statistics

assemblathon_stats.pl contigs.fa

13

Transcript length histogram

Transcript lengths are not randomly distribute

We should get a known distribution shape

“Complete” transcriptomes

14

Transcript length histogram

15

Transcript length histogram

Zebrafish tissue specific assembled transcriptomes

 not so different

16

Length histogram
python /usr/local/bioinfo/Scripts/bin/length_histogram.py ­l ­i transcripts.fa

Hs At Ce Dm Sc

Ovary Brain Heart Liver Testis

Complete transcriptomes

Tissue specific assembled transcriptomes

17

Genome histogram

Comparison with the panda genome assembly (v1, 2009)

81467 scaffolds

Total 2,3 Gb

Longest 6Mb

Shortest 100 b

N50 1,3 Mb

L50 521

18

Zebrafish transcriptome

47880 contigs

Total 93 Mb

Longest 94 kb

Shortest 10 b

N50 2622

L50 10495

81467 scaffolds

Total 2,3 Gb

Longest 6Mb

Shortest 100 b

N50 1,3 Mb

L50 521

81467 scaffolds

Total 2,3 Gb

Longest 6Mb

Shortest 100 b

N50 1,3 Mb

L50 521

19

Realignment metrics

The assembly is a sum-up. The realignment rate gives
how much of the initial information is inside the contigs.

Reads mapped back to transcripts (RMBT)
• align reads against assembly generated transcripts
• compute percentage of reads mapped

20

Realignment metrics

Factors affecting realignment rate:
• Presence of highly expressed genes
• Contamination by building blocks (adaptors)
• Reads quality

Should be higher or
around 80% of mapped

reads

21

RMBT with BWA

The realignment steps are:
• indexing the reference (bwa)
• aligning the reads, producing a sam file (bwa)
• compressing, sorting and indexing the sam file in a bam

file (samtools)
• counting the aligned reads (samtools):

⁕global alignement rate
⁕num reads / contig

22

RMBT: command lines

Index the reference

bwa index ­a [is|bwtsw] reference.fa

Align the reads

bwa aln ­f R1.sai reference.fa R1.fastq.gz

bwa aln ­f R2.sai reference.fa R2.fastq.gz

bwa sampe ­f output.sam reference.fa R1.sai R2.sai R1.fastq.gz R2.fastq.gz

Compress, sort and index

samtools view ­bS output.sam | samtools sort ­ output.sorted

samtools index output.sorted.bam

Count reads

samtools flagstat output.sorted.bam

samtools idxstats output.sorted.bam

Or use /home/sigenae/bin/runSampe ☺

23

Exercise n°1

24

Lets assemble!

25

Assembly: vocabulary

• Graph: a data structure which consists of a finite set of
ordered pairs, called edges or arcs, of certain entities
called nodes or vertices

• a simple grap example:
⁕6 nodes
⁕7 edges

• Path: in a graph, a path is a sequence of edges which
connect a sequence of vertices

26

Assembly: vocabulary

• K-mer: a k-mer is a sub-string of length k
• A string of length L has (L-k+1) k-mers
• Example: a read with L = 8 has 5 k-mers when k = 4

– A G A T C C G T
– A G A T
– G A T C
– A T C C
– T C C G
– C C G T

27

Sequence clustering

Inclusion reduces the overall size of the dataset
without removing any sequence information by only
removing “redundant” (or highly similar) sequences.

Tools:
• CD-HIT
• BLASTClust
• UCLUST
• UICluster

28

 CD-HIT

CD-HIT is a widely used program for clustering and
comparing protein or nucleotide sequences.

Overview:

CD-HIT clusters included sequences.

29

CD-HIT

CD-HIT uses greedy incremental clustering algorithm
method:
• sequences are first sorted in order of decreasing length
• the longest one becomes the representative of the first

cluster
• each remaining sequence is compared to the

representatives of existing clusters
• if the similarity with any representative is above a given

threshold → grouped into that cluster
• if not, a new cluster is defined

30

Cd-hit: command line

cd­hit­est ­i input.fa ­o output.fa ­M 0 ­d 0 ­c 0.98 ­T 8 > output.log

31

Cd-hit: output

cd­hit­est ­i transcripts.fa ­o all_seq.fa ­M 0 ­d 0 ­c 0.98 ­T 8 > transcripts.fa.cd­hit.log

32

Assembly introduction

Three classes of methods:
• Greedy method
• Overlap Layout Consensus (OLC) method
• de Bruijn graph (DBG) method

33

Greedy method

Greedy method joins a read with another read that has
the best overlap score until no more reads can be
joined.
Overview:
• calculate pairwise alignments of all reads
• score and sort alignments (length/matching)
• merge the two reads with the highest scoring overlap and add

the resulting “contig” to the pool of sequences
• continue to extend a contig until no more quality overlaps exist

Greedy:

• optimize a local objective function (quality of the overlap)
• approach that may not lead to a globally optimal solution

Pop M. Genome assembly reborn: recent computational challenges. Briefings in Bioinformatics. 2009

34

SSAKE / VCAKE

VCAKE is a modification of simple k-mer extension
(SSAKE) that overcomes error by using high depth
coverage

Each possible 3′ most k-mer from seed reads are used
to browse a prefix tree organizing reads by their first
eleven 5′ end bases.

35

96 ATGTCTTCCTATCGTGTA

89 TGTAGCGCTATCGTCAAG

67 GTCATGTCGTATTTTGTA

42 CGATCGATGCTAGTATAT

SSAKE / VCAKE

A
T
G
C
T
G
T
C
G
A
T

A

C
G

TA
C

T

G

A

G C T

A

C

C
G

T A

A

C

C T

G

C
T

G

C
T
G
C
A
T
T
C
G
C
T

A
T
T
C
T
G
T
C
G
T
C
G

G
A
G
C
G
G
T
C
G
G
T

T
T
C
C
T
A
T
C
G
T
A

Prefix tree
- first 11 bases
- remaining sequence

ATGTCTTCCTATCGTGTA
 TGTCTTCCTATCGTGTA
 GTCTTCCTATCGTGTA
 TCTTCCTATCGTGTA
 CTTCCTATCGTGTA
 TTCCTATCGTGTA
 TCCTATCGTGTA
 CCTATCGTGTA
 CTATCGTGTA
 TATCGTGTA
 ATCGTGTA
 Min length = 8

Each 3′ most k-mer

C

C

T
A
T
C
G
T
G
T
A
T
T

Hash table keyed by num
occurrences

36

SSAKE / VCAKE

A
T
G
C
T
G
T
C
G
A
T

A

C
G

TA
C

T

G

A

G C T

A

C

C
G

T A

A

C

C T

G

C
T

G

C
T
G
C
A
T
T
C
G
C
T

A
T
T
C
T
G
T
C
G
T
C
G

G
A
G
C
G
G
T
C
G
G
T

T
T
C
C
T
A
T
C
G
T
A

ATGTCTTCCTATCGTGTA
 TGTCTTCCTATCGTGTA
 GTCTTCCTATCGTGTA
 TCTTCCTATCGTGTA
 CTTCCTATCGTGTA
 TTCCTATCGTGTA
 TCCTATCGTGTA
 CCTATCGTGTA
 CTATCGTGTA
 TATCGTGTA
 ATCGTGTA
 Min length = 8

Each 3′ most k-mer

C

C

T
A
T
C
G
T
G
T
A
T
T

ATGTCTTCCTATCGTGTATT

3'5'

37

SSAKE / VCAKE

A
T
G
C
T
G
T
C
G
A
T

A

C
G

TA
C

T

G

A

G C T

A

C

C
G

T A

A

C

C T

G

C
T

G

C
T
G
C
A
T
T
C
G
C
T

A
T
T
C
T
G
T
C
G
T
C
G

G
A
G
C
G
G
T
C
G
G
T

T
T
C
C
T
A
T
C
G
T
A

TGTAGCGCTATCGTCAAG
 GTAGCGCTATCGTCAAG
 TAGCGCTATCGTCAAG
 AGCGCTATCGTCAAG
 GCGCTATCGTCAAG
 CGCTATCGTCAAG
 GCTATCGTCAAG
 CTATCGTCAAG
 TATCGTCAAG
 ATCGTCAAG
 TCGTCAAG
 CGTCAAG
 Min length = 8

Each 3′ most k-mer

C

C

T
A
T
C
G
T
G
T
A
T
T

96 ATGTCTTCCTATCGTGTA

89 TGTAGCGCTATCGTCAAG

67 GTCATGTCGTATTTTGTA

42 CGATCGATGCTAGTATAT

41

OLC method

OLC method generates a graph using reads and
overlaps. The assembly process becomes synonymous
with finding a pathway through the graph that visits
every node at exactly once.

Tree steps:
• Overlap
• Layout
• Consensus

42

Overlap

• Each read is compared to every other reads in both the
forward and reverse complement orientations

• Different OLC algorithms have different criteria for OLC-
quality overlaps

• In the assembly graph, the nodes represent actual reads,
the edges represent overlaps between these reads

http://gcat.davidson.edu/phast/olc.html

43

Layout: simplify graph

• In order to decrease the size of the graph, the OLC
assembly graph is simplified in the layout stage

• There is one path that visits every read, highlighted in red
• Nodes are compressed into

contigs until a fork is reached

http://gcat.davidson.edu/phast/olc.html

44

Layout: resolve repeats

Forks typically signify the boundary between repeats
and unrepeated segments
• a fork is formed because the reads that link the R1+R2

contig to Y and Z do not overlap on the suffix end
• both repeat sections R1 and R2 are compressed into a

repeat contig. X, Y and Z are compressed into unique
contigs

http://gcat.davidson.edu/phast/olc.html

45

Consensus

• After contig generation, consensus sequences are
derived

• Starting from the left most read of each contig, the OLC
algorithm computes the consensus of all of the reads
composing each contig

46

Greedy vs OLC

• Both begin with overlap generation
• Steps of OLC enable a global analysis of the assembly

problem
• Local analysis of greedy algorithms is a limit
• For this repeat example:

⁕ the proper reconstruction X-R1+R2-Y-R1+R2-Z is easily
inferred using the OLC method

⁕a greedy extension would produce
– fragmented assembly (X-R1+R2 ; Y ; Z)
– misassembly (X-R1+R2-Z ; Y)

47

CAP3

CAP3 (CONTIG ASSEMBLY PROGRAM Version 3) is a
sequence assembly program for small-scale assembly
with or without quality

48

TGICL

TGICL is a pipeline for analysis of large Expressed
Sequence Tags (EST) and mRNA databases

• MegaBLAST

• Clustering

• Large clusters
splitting

• CAP3

49

TGICL

TGICL benefit:
• mgblast (MegaBLAST with new filtering options)

→compressed sorted file of decreasing pairwise
alignment score

• clustering (tclust, sclust, nrcl)→ generally a very large
connected component

• splitting → partitioning attempt based on full-length
transcripts

50

TGICL: command line

tgicl ­F input.fa ­c 2 ­l 60 ­p 96

51

TGICL: output
tgicl ­F all_seq.fa ­c 2 ­l 60 ­p 96

52

TGICL: ACE format

http://bozeman.mbt.washington.edu/consed/distributions/README.14.0.txt

53

TGICL: Align format

54

Other OLC assemblers

CABOG
Celera Assembler with

the Best Overlap Graph

Newbler

MIRA

56

But we have billions of
reads!

57

De Bruijn graph

The de Bruijn graph (k-mer graph) approach is more
appropriate for the large volumes of reads associated
with short-read sequencing:
• avoids the computationally expensive all-against-all pair-

wise read comparisons
• avoids loading all the replicate sequences associated

with high-coverage sequencing

Miller JR, Koren S, Sutton G. Assembly algorithms for next-generation sequencing data. Genomics. 2010

58

De Bruijn graph

The DBG:
• directed graph

• edges are unique k-mers

• nodes are overlaps of
length k-1

• an edge connects two nodes
if the suffix of the source node
shares an exact match of length
k-2 with the prefix of the destination node

• the assembly algorithm becomes finding a path in the graph
that visits every edge at least once

http://gcat.davidson.edu/phast/#methods

59

De Bruijn graph

Overview of the assembly strategy

Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet. 2011
http://gcat.davidson.edu/phast/#methods

 60

● Overview of the assembly strategy

Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet. 2011

61

De Bruijn graph

Overview of the assembly strategy

Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet. 2011

62

De Bruijn graph

Overview of the assembly strategy

Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet. 2011

63

De Bruijn graph

Overview of the assembly strategy

Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet. 2011

64

DBG vs OLC

DBG OLC

 Overlap computation is a very time and
computationally intensive step















More efficient ways to find Eulerian paths than
Hamiltonian paths

Overlaps can vary in length

Very sensitive to repeats

Very sensitive to sequencing errors

65

Velvet / Oases

Velvet: sequence assembler for very short reads (2008)

Oases: de novo transcriptome assembler (2012)

66

Velvet - Graph structure

Graph structure:

• each node represents a series of
overlapping k-mers

• sequence of the final nucleotides is
called the sequence of the node

• each node is attached to a twin node
(rev. comp k-mers → k must be odd)

• nodes are connected by a directed arc.
The last k-mer of an arc's source node
shares an overlap of length k-1 with the
first of the destination node

• reads are mapped as “paths” traversing the graph

Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008

67

Velvet - Graph construction

Graph construction:
• reads are first hashed according to predefined k-mer

length
• build an hash table storing for each k-mer, the ID of the

first read encountered containing this k-mer and the
position

• build another table storing for each read which of its
original k-mers are overlapped by subsequent reads

• ordered set of original k-mers of a read is cut each time
an overlap with another read begins or ends

• for each uninterrupted sequence of original k-mers, a
node is created

Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008

68

Velvet – Correcting graph

Next steps
• graph simplification → chains of blocks or linear

connected subgraph are merged (no loss of information)
• error removal → three major problems:

⁕“false positive graphs” due to errors in reads
⁕“gap problems” due to non-uniform or low coverage

→short “dead-end” paths (← larger k)
⁕“branching problems”: k-mers connected to multiple k-

mers due to repeat regions or erroneous reads introduce
branches in the graph (← smaller k)

Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008

69

Velvet - Removing errors

Removing tips
Tip is a chain of nodes that is disconnected on one end. Tips
to remove are recognized on the base of two criteria: length
and minority count.

http://hpc.isti.cnr.it/~rossano/ReadingDaySlides/SemCap.pdf

70

* according to the notion of distance, that considers the path-length and the related multiplicity
→ gives priotity to higher coverage paths

Velvet - Removing errors

Removing bubbles (Tour Bus algorithm)
Two paths that start and end at the same nodes and contain
similar sequences defined a “bubble”. If judged “similar”
enough, the paths are merged. The path that reaches the end
node first* is used as the consensus path.

http://hpc.isti.cnr.it/~rossano/ReadingDaySlides/SemCap.pdf

71

Velvet - Removing errors

Removing erroneous connections
These unwanted connections do not create any recognizable
loop or structure. Remove them with a basic coverage cutoff.

Genome assembly process in Velvet is stopped here→fork
due to transcriptome assembly singularities

Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008

72

Oases

Overview
• individual reads are sequenced from

an RNA sample

• contigs are built from those reads,
some of them are labeled as long (clear),
others short (dark)

• long contigs, connected by single reads
or read-pairs are grouped into connected
components called loci

• short contigs are attached to the loci

• the loci are transitively reduced.
Transfrags are then extracted from the loci

Schulz MH & al. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012

73

Oases - Contig construction

Contig construction (Velvet preprocess)
• the Oases pipeline receives as input a preliminary

assembly produced by Velvet
• initial stages (hashing and graph construction) can be

used indifferently on transcriptomic data
• contig correction performed with a modified version of

the Tour Bus algorithm (fitted for coverage disparity and
complexity of graphs)

Schulz MH & al. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012

74

Oases - Contig correction

Contig correction
• local edge removal → for each node, an outgoing edge is

removed if its coverage represents less than 10% of the
sum of coverages of all outgoing edges)

• static coverage cutoff → contigs with less than the cutoff
are removed from the assembly (3x by default)

• contigs longer than a given threshold (by default > 50+k-
1) are labeled as long contig and treated as if unique

• other contigs are labeled as short

Schulz MH & al. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012

75

Oases - contigs to scaffolds

Scaffold construction
• connexion between contigs can be supported by both

spanning single reads (direct) or paired-end reads
(indirect)

• the total number of spanning reads and pair-reads
confirming a connection between 2 contigs is called its
support

Scaffold filtering
• based on static (very low) and dynamic (vs local)

coverage thresholds
• connections with low support are removed
• short contigs can only be joined by direct connections

Schulz MH & al. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012

76

Oases - Locus resolution

Locus construction
• contigs are organized into clusters called loci
• two steps:

⁕long contigs are first clustered into connected components
⁕to each locus are added short nodes connected to one of

the long nodes in the cluster

Transitive reduction of the loci
• remove redundant long distance connexions
• example: two contigs which are not consecutive in a

locus are frequently connected by a paired-end read

Schulz MH & al. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012

77

Oases - Transcripts extraction

Extracting transcript assemblies
Loci are divided into four categories

• chains
• bubbles
• forks
• complex

Schulz MH & al. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012

78

Oases - Transcripts extraction

Extracting transcript assemblies
• trivial locus topologies (chains, forks and bubbles) are

straightforward to resolve (if isolated from any other
branching point)

• complex loci are processed using an additional heuristic
method* which produces a parsimonious set of putative
highly expressed transcripts

Schulz MH & al. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012

* Lee C. Generating consensus sequences from partial order multiple sequence alignment graphs.
Bioinformatics. 2003

79

Which k-mer size to choose?

K-mer size is the parameter the most influent upon assembly
results.

It’s a trade-off between specificity and sensitivity.

Longer k-mers bring you more specificity:
• inherently rarer
• give graphs with lower coverage over all
• the longer the k-mer the more likely it is that it includes

an error

  larger k values bias your results towards more abundant
isoforms

80

Which k-mer size to choose?

Shorter k-mers bring you more sensitivity:
• high coverage graph
• at the cost of a more complex graph
• due to more spurious overlaps

  smaller k values are susceptible to assembled low-
abundance isoforms

http://ivory.idyll.org/blog/the-k-parameter.html

Schulz MH & al. Oases: robust de novo RNA-
seq assembly across the dynamic range of
expression levels. Bioinformatics. 2012

81

The multiple k-mer strategy

Overview
• independent assemblies which vary by k-mer length
• assemblies are then merged into a final assembly

82

Velvet / Oases: command line

83

Velvet / Oases: command line

84

Velvet / Oases: command line

mkdir oasesOutDir

velveth_70_LONG oasesOutDir 27 ­shortPaired ­fastq.gz \
­separate R1.fastq.gz R2.fastq.gz ­noHash

­­­

mkdir oasesOutDir/k61

ln ­s ../Sequences oasesOutDir/k61/Sequences

velveth_70_LONG oasesOutDir/k61 61 ­reuse_Sequences

velvetg_70_LONG oasesOutDir/k61 ­read_trkg yes \
­min_contig_lgth 200

oases_70_LONG oasesOutDir/k61

­­­

Redo for all chosen k­mers

85

Velvet / Oases: command line

mkdir oasesOutDir/merge

velveth_70_LONG oasesOutDir/merge 27 ­long \
oasesOutDir/k*/transcripts.fa

velvetg_70_LONG oasesOutDir/merge ­read_trkg yes \
­conserveLong yes

oases_70_LONG oasesOutDir/merge ­merge yes

86

Velvet / Oases: output

87

Exercise n°2

88

Trinity

Trinity: a novel method for the efficient and robust de
novo reconstruction of transcriptomes from RNA-seq
data

http://www.broadinstitute.org/videos?criteria=RNA-Seq
http://www.broadinstitute.org/videos?criteria=Trinity

89

Pipeline:
• Inchworm
• Chrysalis
• Butterfly

Trinity

90

Trinity - Inchworm

Inchworm
1.build a k-mer dictionary from reads set (count

occurrences)

2.removes likely error-containing k-mer based on
occurrence

3.selects the most frequent k-mer to seed contig
assembly

4.extends the seed in each direction by finding
highest occurring k-mer with a k-1 overlap

5.extends until it cannot be extended and report
contig ; removes assembled k-mers

6.repeats steps 3-5, starting with the most
abundant k-mer until the entire dictionary
has been depleted

91

Trinity - Inchworm

92

Trinity - Chrysalis

Chrysalis
• recursively groups inchworm contigs into

connected components
⁕perfect overlaps of k-1 bases
⁕minimal number of reads span the junction

across both contigs
• builds a de Bruijn graph per component

⁕nodes are word size of k-1
⁕edges are word size of k
⁕weights each edge with the number of

(k-1)-mers in the original reads that support it
• assigns each read to the component with

which it shares the largest number of k-mers

http://www.broadinstitute.org/videos?criteria=RNA-Seq
http://www.broadinstitute.org/videos?criteria=Trinity

93

Trinity
Chrysalis

94

Trinity - Butterfly

Butterfly reconstructs distinct transcripts for splice
isoforms and paralogous genes

• Graph simplification
⁕merge consecutive nodes in linear paths
⁕prune edges that represent minor deviations

(supported by comparatively few reads)
• Plausible path scoring

⁕identifies those paths that are supported by
actual reads and read pairs

⁕a dynamic programming procedure resolves
ambiguities and reduce the combinatorial
number of paths

⁕enumerate linear sequences

95

Trinity - Butterfly

96

Trinity: command line

Trinity.pl ­­output trinityOutDir ­­seqType fq ­­JM 64G ­­left R1.fastq.gz ­­right R2.fastq.gz ­­CPU 4

Mem usage 1G RAM per 1M ~76 base Illumina paired reads

97

Trinity: output

98

Exercise n°3

101

What to do before assembling?

The aim is to simplify graphs:
• Cleaning
• Sampling
• Unicity
• Normalization

102

Sampling

A comparison across non-model animals suggests an optimal
sequencing depth for de novo transcriptome assembly

 20 (tissue) to 30 (whole-animal) millions reads

Francis et al. BMC Genomics 2013, 14:167

● contigs with reliable hit against KOGs □ contigs which the translated protein was within
the expected size range of the conserved gene

103

Misassembly examples

Short gapsChimera Majority trend

Francis et al. BMC Genomics 2013, 14:167

Sampling

104

Normalization

TRINITY_RNASEQ_ROOT/util/insilico_read_normalization.pl

• Build a catalog of k-mers and compute abundance
• Compute the k-mer abundance profile for each read

⁕median k-mer abundance (C)
⁕standard deviation for the k-mer coverage

• Retain reads with probability min(1, T/C) [Perl: rand(1) <= T/C]

⁕captures all reads falling below the targeted cov. level (T)
⁕down-samples reads occurring at higher coverage than T

• Discard reads with aberrant k-mer abundance profile
(std-dev k-mer cov > median k-mer abundance)

105

Normalization

Normalization effects (our experience):
• drastically decrease #reads or #pairs (-50 to -90%) 
• significantly decrease #contigs (-10 to 15%) 
• slightly decrease #rebuilt proteins (-3%) 
• null or positive effect on remapping rate (0 to 10%) 

106

See you tomorrow!

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78
	Diapo 79
	Diapo 80
	Diapo 81
	Diapo 82
	Diapo 83
	Diapo 84
	Diapo 85
	Diapo 86
	Diapo 87
	Diapo 88
	Diapo 89
	Diapo 90
	Diapo 91
	Diapo 92
	Diapo 93
	Diapo 94
	Diapo 95
	Diapo 96
	Diapo 97
	Diapo 98
	Diapo 101
	Diapo 102
	Diapo 103
	Diapo 104
	Diapo 105
	Diapo 106

