Impact of a non-Gaussian dependence structure on REML estimation of the bivariate genetic animal model WCGALP: Free Communication

> joint work with Tom Rohmer, Anne Ricard & Ingrid David

> > 3-8 july 2022

[Introduction](#page-2-0)

[Simulation](#page-10-0)

[Results](#page-16-0)

[Introduction](#page-2-0)

Figure: Plot of gaussian quantiles of the ranks for 2 phenotypes and contour plot of a bivariate Gaussian distribution

I the hypothesis of bivariate normality for the bivariates phenotypes seems to be unrealistic.

an asymmetric bivariate distribution for the phenotypes. **INRAQ**

 \triangleright Mardia's normality test based on the asymmetry (skewness) of the distribution: p-value was 10⁻⁶ leading to a rejection because of the asymmetry of the distribution

- \blacktriangleright The bivariate normality is questionable
- \triangleright What about the REML estimations of the bivariate animal model, which assume the bivariate normality?

- Even if the marginals are Gaussian, the bivariate distribution may be non-Gaussian.
- In fact, the copula of the random vectors is not the Gaussian Copula

Figure: (right) contour plot of a Joe-Frank copula

Some mathematics, copulas

Theorem of [\[Sklar\(1959\)\]](#page-7-0)

Let $X = (X_1, X_2)$ be a 2-dimensional random vector with c.d.f. **F** and let F_1 , F_2 be the marginal c.d.f. of X assuming continuous. Then it exists a unique function $C : [0, 1]^2 \rightarrow [0, 1]$ such that:

$$
\boldsymbol{F}(\boldsymbol{x}) = C\{F_1(x_1), F_2(x_2)\}, \qquad \boldsymbol{x} = (x_1, x_2) \in \mathbb{R}^2.
$$

 \blacktriangleright The copula C characterizes the dependence structure of vector χ .

A. Sklar. E.

Fonctions de répartition à n dimensions et leurs marges.

Publications de l'Institut de Statistique de l'Université de Paris, 8:229–231, 1959.

Some mathematics, copulas

Normal copula:

$$
C_{\rho}^{N}(u,v) = \Phi_{\rho}(\Phi^{-1}(u), \Phi^{-1}(v)), \quad (u,v) \in [0,1]^2,
$$

where Φ and Φ _o stand for the c.d.f. of the standard univariate Gaussian distribution and the bivariate Gaussian distribution with correlation ρ .

Other copulas have more complex structure;

$$
\begin{aligned} C^F_\theta(u,v) &= \frac{1}{\theta} \log \left(1 + \frac{\left(\exp(-u\theta) - 1 \right) \left(\exp(-v\theta) - 1 \right)}{\exp(-\theta - 1)} \right), \quad \theta \in \mathbb{R}^\star, \\ C^{Cl}_\theta(u,v) &= \max \left(\left(u^{-\theta} + v^{-\theta} - 1 \right)^{-1/\theta}, 0 \right), \quad \theta \in [-1,0) \cup (0,+\infty), \\ C^J_\theta(u,v) &= 1 - \left[\left(1 - u \right)^\theta + \left(1 - v \right)^\theta - \left(1 - u \right)^\theta \left(1 - v \right)^\theta \right]^{1/\theta} \quad \theta \ge 1. \end{aligned}
$$

Contour plots of bivariate distributions with Gaussian margins N and several copula

[Simulation](#page-10-0)

Simulation of populations undergoing selection

unrelated animals in G_0

 \triangleright each female produced 12 offspring: 2 males and 10 females

Population

Selection:

- \triangleright $G_1 G_3$ the reproducers were chosen at random
- $G_4 G_8$ selection from a combination of their EBV
- \blacktriangleright Full/half siblings were not mated
- selection rate: 2.9% for the males and 10% for the females

INRAQ

Phenotypes simulation

Simulated distribution:

- \blacktriangleright (a₁, a₂) ∼ N(0, G ⊗ A).
	- \blacktriangleright G genetic covariance matrix
	- \triangleright A additive genetic relationship matrix associated to the pedigree;

 \rightarrow a $_{i,j}=$ 0.5 $(a_{i_{S},j}+a_{i_{D},j})+M_{i,j}$ $\quad j=1,2,\text{ with }$ $(M_{i,1},M_{i,2})\sim\mathcal{N}(0,G/2)$

Phenotypes simulation

Simulated distribution:

- \blacktriangleright (a₁, a₂) ∼ N(0, G ⊗ A).
	- \blacktriangleright G genetic covariance matrix
	- \triangleright A additive genetic relationship matrix associated to the pedigree;

 \rightarrow a $_{i,j}=$ 0.5 $(a_{i_{S},j}+a_{i_{D},j})+M_{i,j}$ $\quad j=1,2,\text{ with }$ $(M_{i,1},M_{i,2})\sim\mathcal{N}(0,G/2)$

 \blacktriangleright $(\varepsilon_{i,1}, \varepsilon_{i,2}), i = 1, \ldots, n$, have standard Gaussian margins and copula C.

Copula C were Gaussian, Frank, Clayton and Joe with Kendall's correlation to 0.7 (Pearson's correlation between 0.85 and 0.89).

Phenotypes simulation

Simulated distribution:

- \blacktriangleright (a₁, a₂) ∼ N(0, G ⊗ A).
	- \blacktriangleright G genetic covariance matrix
	- \triangleright A additive genetic relationship matrix associated to the pedigree;

 \rightarrow a $_{i,j}=$ 0.5 $(a_{i_{S},j}+a_{i_{D},j})+M_{i,j}$ $\quad j=1,2,\text{ with }$ $(M_{i,1},M_{i,2})\sim\mathcal{N}(0,G/2)$

 \blacktriangleright $(\varepsilon_{i,1}, \varepsilon_{i,2}), i = 1, \ldots, n$, have standard Gaussian margins and copula C.

Copula C were Gaussian, Frank, Clayton and Joe with Kendall's correlation to 0.7 (Pearson's correlation between 0.85 and 0.89). The phenotypes vector $\textbf{\emph{y}}_j=(y_{1,j},\ldots,y_{n,j}),\,j=1,2$ were obtained following the bivariate animal model:

$$
\begin{cases}\n\mathbf{y}_1 = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{a}_1 + \boldsymbol{\varepsilon}_1 \\
\mathbf{y}_2 = \mathbf{X}_2 \boldsymbol{\beta}_2 + \mathbf{a}_2 + \boldsymbol{\varepsilon}_2.\n\end{cases}
$$

 X_i the design matrices for the fixed effects and β_i associated parameter.

[Results](#page-16-0)

1000 runs, Estim. correlations, $h_1^2 = h_2^2 = 0.40, \rho_a = 0.31$

INRAQ

[Copula miss-specification on REML estimation](#page-0-0)

3-8 july 2022 / Tom Rohmer, Anne Ricard & Ingrid David, Inrae Toulouse, France

1000 runs, Estim. heritability $h_1^2 = 0.15, h_2^2 = 0.40$

- 1. With Random selection: no impact of the copula
- 2. With truncation selection;
	- \blacktriangleright For balanced heritabilities:
		- \blacktriangleright Significant impact on correlations;
		- \triangleright very low biases for heritability
	- \blacktriangleright For unbalanced heritabilities:
		- \triangleright Significant impact on the estim. heritabilities for the trait with moderate heritability
		- \triangleright Significant impact on residual correlations;
		- \triangleright moderate biases (but non-significant) on genetic correlations;
		- \triangleright no impact on the estim. heritabilities for the trait with low heritability