Impact d'une structure de dépendance résiduelle non-Gaussienne dans l'estimation REML du modèle génétique animal bivarié

Tom Rohmer, Anne Ricard & Ingrid David

Genotoul biostat-bioinfo day 2021 12 october 2021

1 Introduction

- Genetic context
- Copulas

2 Population sampling

1 Introduction

- Genetic context
- Copulas
- 2 Population sampling

Mixed model

In a genetic animal context, multivariate mixed animal models are widely used, to deal with genetic and environmental effect.

That is for the bivariate case, for $y_j = (y_{1j}, \ldots, y_{nj})$ vector of phenotypes,

$$\begin{cases} y_1 = X_1\beta_1 + Z_1a_1 + \varepsilon_1 \\ y_2 = X_2\beta_2 + Z_2a_2 + \varepsilon_2 \end{cases}$$

where the genetic effects (BV)

$$\begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \end{pmatrix} \sim \mathcal{N}\left(\mathbf{0}, G \otimes A\right) \quad \text{with } G = \begin{pmatrix} \sigma_{\mathbf{a}_1}^2 & \sigma_{\mathbf{a}_12} \\ \sigma_{\mathbf{a}_12} & \sigma_{\mathbf{a}_2}^2 \end{pmatrix}$$

and A the $n \times n$ additive genetic relationship matrix associated to the pedigree. Finally the residuals (environment effect)

$$\begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \end{pmatrix} \sim \mathcal{N}\left(0, E \otimes I_n\right) \quad \text{with } E = \begin{pmatrix} \sigma_{e_1}^2 & \sigma_{e_12} \\ \sigma_{e_12} & \sigma_{e_2}^2 \end{pmatrix}.$$

and $eta_1,\,eta_2$ parameters for fixed effect (for example pen/batch or other.)

Introduction Genetic context

Estimation in the mixed model

Genetic coefficients to be estimate

Heritabilities for the two traits that are

$$h_j^2 = rac{\sigma_{a_j}^2}{\sigma_{a_j}^2 + \sigma_{e_j}^2}$$
 $j = 1, 2;$

Genetic and residual correlations

$$\rho_{a} = \frac{\sigma_{a_{12}}}{(\sigma_{a_{1}}\sigma_{a_{2}})^{1/2}}, \quad \rho_{e} = \frac{\sigma_{e_{12}}}{(\sigma_{e_{1}}\sigma_{e_{2}})^{1/2}}.$$

Estimation in the mixed model

Genetic coefficients to be estimate

Heritabilities for the two traits that are

$$h_j^2 = rac{\sigma_{a_j}^2}{\sigma_{a_j}^2 + \sigma_{e_j}^2}$$
 $j = 1, 2;$

Genetic and residual correlations

$$\rho_{a} = \frac{\sigma_{a_{12}}}{(\sigma_{a_{1}}\sigma_{a_{2}})^{1/2}}, \quad \rho_{e} = \frac{\sigma_{e_{12}}}{(\sigma_{e_{1}}\sigma_{e_{2}})^{1/2}}.$$

REML for estimate these coeeficients consists to maximized the restricted log-likelihood

$$\lambda_R(\sigma_{a_1}^2, \sigma_{a_2}^2, \sigma_{a_{12}}, \sigma_{e_1}^2, \sigma_{e_2}^2, \sigma_{e_{12}}) = -\frac{1}{2}\log[|V|] - \frac{1}{2}\log\left[\left|X^T V^{-1} X\right|\right] - \frac{1}{2}y^T P y$$

where V covariance matrix of $\mathbf{y} = (\mathbf{y}_1, \mathbf{y}_2)$ and

$$P = V^{-1} - V^{-1}X \left(X^{\mathsf{T}}V^{-1}X\right)^{-1}X^{\mathsf{T}}V^{-1} \text{ with } X = \begin{pmatrix} X_1 & 0\\ 0 & X_2 \end{pmatrix}$$

The Sklar's theorem

Theorem of [Sklar(1959)]

Let $X = (X_1, \ldots, X_d)$ be a *d*-dimensional random vector with c.d.f. F and let F_1, \ldots, F_d be the marginal c.d.f. of X assuming <u>continuous</u>. Then it exists a <u>unique</u> function $C : [0, 1]^d \rightarrow [0, 1]$ such that :

$$\boldsymbol{F}(\boldsymbol{x}) = C\{F_1(x_1), \ldots, F_d(x_d)\}, \qquad \boldsymbol{x} = (x_1, \ldots, x_d) \in \mathbb{R}^d.$$

• The copula C characterizes the dependence structure of vector X.

■ The copula C can be expressed as follows :

$$C(u) = F\{F_1^{-1}(u_1), \ldots, F_d^{-1}(u_d)\}, \qquad u = (u_1, \ldots, u_d) \in [0, 1]^d.$$

A. Sklar.

Fonctions de répartition à *n* dimensions et leurs marges. *Publications de l'Institut de Statistique de l'Université de Paris*, 8 : 229–231, 1959.

```
Introduction
— Copulas
```

Contour plots

Figure – Contour plot of bivariate distributions with Gaussian margins and Gaussian copula (N), Frank copula (F), Clayton copula (C), Gumbel-Hougaard copula (GH), Joe-Frank copula ($\lambda = 6$) copula (BB8) and Joe copula (J) with Kendall's tau $\tau = 0.7$

Int ro d	uction	
Cop	ulas	

differences with bivariate Gaussian ditribution

au= 0.4	Skewness	kurtosis	lower tail	upper tail
Ν	0.02	7.98	-	-
F	0.03	8.66	-	-
С	0.69	8.61	0.59	-
GH	0.23	8.51	-	0.48
BB8	0.07	8.69	-	-
J	0.78	8.73	-	0.63

au= 0.7	Skewness	kurtosis	lower tail	upper tail
N	0.02	7.99	-	-
F	0.07	11.01	-	-
С	2.31	11.58	0.86	-
GH	0.56	9.43	-	0.77
BB8	1.83	11.59	-	-
J	2.35	11.67	-	0.86

Table – Estimated Mardia skewness and Kurtosis based on 1000 Monte Carlo simulations

Introduction — Copulas

What about non gaussian model?

Model robust to margins misspecifications. > what about more general bivariate distribution misspecification?

Figure – Plot of Gaussian quantiles of the ranked observations over *n* for the two illustrations. Contour plots of the Gaussian copula with respective Pearson's correlation $\rho = -0.27, 0.57$. Skewness were 0.4, 0.03 and kurtosis were 8.15 and 8.67.

Introduction — Copulas

What about non gaussian model?

Figure – Plot of Gaussian quantiles of the ranked observations over *n* for the two illustrations. (a)Contour plots of the Rotated BB8 270deg copula with parameters $\delta = -1.4$, $\lambda = -1$ (b) contour plots of the BB8 copula with parameter $(\delta, \lambda) = (6, 0.56)$

1 Introduction

- Genetic context
- Copulas

2 Population sampling

Mating schema

Figure - Mating schema for the construction of the data used in the simulations

- 19800 phenotyped animals
- intra-sire selection
- no full-sibs nor half-sibs were matted.

Mandelian sampling

Genetic part :

 G_0 $(a_{i,1}, a_{i,2}) \sim_{i.i.d.} \mathcal{N}_2(0, G)$

$$G_k$$
 for $k = 1, \dots, 8$
 $(a_{i,j})_{j=1,2} = (0.5(a_{S_i,j} + a_{D_i,j}))_{j=1,2} + \mathcal{N}_2(0, G/2) \quad j = 1, 2$

Residual part :

For i = 1, ..., n, $(\varepsilon_{i,1}, \varepsilon_{i,2}) \sim C_{\theta}(\Phi(x), \Phi(y))$, Φ c.d.f. of the standard Gaussian distribution

Phenotype :

$$\begin{cases} \mathbf{y}_1 = \mathbf{X}_1 \boldsymbol{\beta}_1 + \boldsymbol{Z}_1 \mathbf{a}_1 + \boldsymbol{\varepsilon}_1 \\ \mathbf{y}_2 = \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{Z}_2 \mathbf{a}_2 + \boldsymbol{\varepsilon}_2 \end{cases}$$

•

1 Introduction

- Genetic context
- Copulas

2 Population sampling

Impact of misspecification on heritability

Figure – Boxplot of estimated heritabilities from generation G3 to generation G8 for the set corresponding to $\tau_a = 0.4$ and $\tau_e = 0.7$, $h_1^2 = 0.153$ and $h_2^2 = 0.401$. 1,000 simulations were performed.

Impact of misspecification on genetic correlation

Figure – Boxplot of estimated heritabilities from generation G3 to generation G8 for the set corresponding to $\tau_a = 0.2$ and $\tau_e = 0.7$, $h_1^2 = 0.153$ and $h_2^2 = 0.153$. 1,000 simulations were performed.

Impact of misspecification on residual correlation

Figure – Boxplot of estimated heritabilities from generation G3 to generation G8 for the set corresponding to $\tau_a = 0.2$ and $\tau_e = 0.7$, $h_1^2 = 0.401$ and $h_2^2 = 0.401$. 1,000 simulations were performed.

Biases for the case $\tau_{a}=0.2$ and $\tau_{e}=0.7$ based on the whole of the population

(h_1^2/h_2^2)	est	N	F	С	GH	BB8	J
	h_1^2	0.002	-0.001	-0.004	0.009	0.012	0.018
	h_2^2	0.002	0.000	-0.004	0.010	0.013	0.019
(0.15/0.15)	corr _a	-0.005	0.048	0.130*	-0.082	-0.111*	-0.161^{*}
	corr _e	-0.001	-0.006	-0.016*	0.010^{*}	0.015*	0.023*
	h_1^2	0.001	0.005	0.015	-0.008	-0.011	-0.015
	h_2^2	0.004	-0.023	-0.052*	0.030^{*}	0.039*	0.057^{*}
(0.15/0.40)	corr _a	-0.003	0.009	0.059	0.017	0.014	0.031
	corr _e	-0.001	-0.012*	-0.031*	0.004	0.008	0.013^{*}
	h_1^2	0.004	-0.000	-0.004	0.014	0.020	0.027
	h_2^2	0.004	0.000	-0.004	0.014	0.020	0.027
(0.40/0.40)	corr _a	-0.003	0.060*	0.140*	-0.064*	-0.089*	-0.128*
	corr _e	-0.001	-0.025*	-0.056*	0.027*	0.041^{*}	0.060^{*}

Conclusion

- Without selection :
 - \triangleright : low biases on the estimated values.
- With a selection process with low residual correlation
 : low biases on the estimated heritabilities but some significant differences for genetic and residual correlations (C, GH, J copulas).
- **B** With a selection process, and for high residual correlation :
 - ▷ significant biases on the estimated heritabilities; absolute relative differences with the theoretical values up to 15% (J copula) and 13% (C copula)
 - ▷ significant biases on the estimated genetic correlations; absolute relative differences with the theoretical values up to 27% (J copula) and 24% (C copula)
 - ▷ significant biases on the estimated residual correlations; absolute relative differences with the theoretical values up to 7% (J copula) and 6% (C copula)