séminaire de de statistiques, Institut de Mathémathiques de Marseille

Tom Rohmer (Inrae)

12 mai 2025

Short introduction to copulas

Non parametric estimation

Parametric estimation

Copulas in quantitative genetics

Short introduction to copulas

Non parametric estimation

Parametric estimation

Copulas in quantitative genetics

Figure: Simulation of n = 5000 bivariate observations whose the univariate distributions are Gaussian and with Spearman's correlation $\rho = 0.7$. (Left) Multivariate Gaussian distribution. (Right) Clayton-type distribution

INRAØ

> Tail dependence measure

Lower tail dependence:

$$\lambda_{\ell} = \lim_{u \to 0} \lambda_{\ell}(u), \quad \lambda_{\ell}(u) = \mathbb{P}\left(Y_2 \le F_2^{-1}(u) \mid Y_1 \le F_1^{-1}(u)\right)$$

Upper tail dependence:

$$\lambda_u = \lim_{u \to 1} \lambda_u(u), \quad \lambda_u(u) = \mathbb{P}\left(Y_2 > F_2^{-1}(u) \mid Y_1 > F_1^{-1}(u)\right)$$

Gaussian case: $\lambda_{\ell} = \lambda_u = 0$ regardless of ρ Clayton case: $\lambda_{\ell} = 0.61$, $\lambda_u = 0$ for $\rho = 0.7$

In the previous example, these 'empirical coefficients' are Gaussian case: $\hat{\lambda}_{\ell}(0.01) = 0.28$, $\hat{\lambda}_{u}(0.99) = 0.24$ Clayton case: $\hat{\lambda}_{\ell}(0.01) = 0.70$, $\hat{\lambda}_{u}(0.99) = 0.04$

Definition: A copula $C : [0,1]^d \rightarrow [0,1]$ is the multivariate cumulative distribution function (c.d.f.) of a random vector whose marginal distributions are uniforms on [0,1].

Definition: A copula $C : [0, 1]^d \rightarrow [0, 1]$ is the multivariate cumulative distribution function (c.d.f.) of a random vector whose marginal distributions are uniforms on [0, 1]. Theorem of [Sklar(1959)]

Let $\mathbf{X} = (X_1, \dots, X_d)$ be a *d*-dimensional random vector with c.d.f. \mathbf{F} and let F_1, \dots, F_d be the marginal c.d.f. of \mathbf{X} . Then it exists a copula such that:

$$F(\mathbf{x}) = C\{F_1(x_1), \ldots, F_d(x_d)\}, \qquad \mathbf{x} = (x_1, \ldots, x_d) \in \mathbb{R}^d.$$

Definition: A copula $C : [0, 1]^d \rightarrow [0, 1]$ is the multivariate cumulative distribution function (c.d.f.) of a random vector whose marginal distributions are uniforms on [0, 1]. Theorem of [Sklar(1959)]

Let $\mathbf{X} = (X_1, \dots, X_d)$ be a *d*-dimensional random vector with c.d.f. \mathbf{F} and let F_1, \dots, F_d be the marginal c.d.f. of \mathbf{X} . Then it exists a copula such that:

$$F(\mathbf{x}) = C\{F_1(x_1), \ldots, F_d(x_d)\}, \qquad \mathbf{x} = (x_1, \ldots, x_d) \in \mathbb{R}^d.$$

The copula *C* characterizes the dependence structure of vector *X*.
The copula *C* can be expressed as follows:

$$C(\boldsymbol{u}) = \boldsymbol{F}\{F_1^{-1}(u_1), \ldots, F_d^{-1}(u_d)\}, \qquad \boldsymbol{u} = (u_1, \ldots, u_d) \in [0, 1]^d.$$

Definition: A copula $C : [0, 1]^d \rightarrow [0, 1]$ is the multivariate cumulative distribution function (c.d.f.) of a random vector whose marginal distributions are uniforms on [0, 1]. Theorem of [Sklar(1959)]

Let $\mathbf{X} = (X_1, \dots, X_d)$ be a *d*-dimensional random vector with c.d.f. \mathbf{F} and let F_1, \dots, F_d be the marginal c.d.f. of \mathbf{X} . Then it exists a copula such that:

$$oldsymbol{F}(oldsymbol{x}) = C\{F_1(x_1), \ldots, F_d(x_d)\}, \qquad oldsymbol{x} = (x_1, \ldots, x_d) \in \mathbb{R}^d.$$

The copula C characterizes the dependence structure of vector X.
 The copula C can be expressed as follows:

$$C(\boldsymbol{u}) = \boldsymbol{F}\{F_1^{-1}(u_1), \ldots, F_d^{-1}(u_d)\}, \qquad \boldsymbol{u} = (u_1, \ldots, u_d) \in [0, 1]^d.$$

A. Sklar.

Fonctions de répartition à *n* dimensions et leurs marges. Publications de l'Institut de Statistique de l'Université de Paris, 8:229–231, 1959.

V

INRA@

Some classical (bivariate) copulas

Normal copula:

$$C^N_
ho(u,v)=\Phi_
ho(\Phi^{-1}(u),\Phi^{-1}(v)), \quad (u,v)\in [0,1]^2,$$

where Φ and Φ_{ρ} stand for the c.d.f. of the standard univariate Gaussian distribution and the bivariate Gaussian distribution with correlation ρ .

Frank, Clayton, Joe copulas:

$$\begin{split} C^F_{\theta}(u,v) &= \frac{1}{\theta} \log \left(1 + \frac{(\exp(-u\theta) - 1)(\exp(-v\theta) - 1)}{\exp(-\theta - 1)} \right), \quad \theta \in \mathbb{R}^{\star}, \\ C^{CI}_{\theta}(u,v) &= \max \left(\left(u^{-\theta} + v^{-\theta} - 1 \right)^{-1/\theta}, 0 \right), \quad \theta \in [-1,0) \cup (0,+\infty) \\ C^J_{\theta}(u,v) &= 1 - \left[(1-u)^{\theta} + (1-v)^{\theta} - (1-u)^{\theta} (1-v)^{\theta} \right]^{1/\theta} \quad \theta \ge 1. \end{split}$$

https://testmyshinyapply.shinyapps.io/Shiny_copula

> dependence's measure and copula

Kendall's τ (measure of concordance) and Spearman's ρ_S (rank based correlation measure) are often employed to measure a non-linear relation between to variables The Kendall's (but also Spearman's) correlation is related with copula by

$$au=4\int_{[0,1]^2} \mathit{C}_{ heta}(u,v) \mathit{d} \mathit{C}_{ heta}(u,v) -1,$$

$$\rho_{\mathcal{S}} = 12 \int_{[0,1]^2} C_{\theta}(u,v) du dv - 3,$$

Concerning the tail dependence indexes:

$$\lambda_\ell = \lim_{u \to 0^+} \frac{C(u, u)}{u}, \quad \lambda_u = \lim_{u \to 1^-} \frac{1 - 2u + C(u, u)}{1 - u}$$

Contour plots of bivariate distributions with Gaussian margins and several copula

> To summarize

- 1. Copula links marginale distributions to the joint distribution
- 2. it captures and characterizes dependence structure between variables
- 3. it makes possible to modelize jointly multiple dependent phenomena, (contiunous data, discretes data or combinaison)
- 4. it is not restricted to the bivariate case and are especially useful in the case of tail dependence.

M. Hofert, I. Kojadinovic, M. Maechler and J. Yan copula: Multivariate Dependence with Copulas R package version 1.1-4, 2024

Nagler T., Schepsmeier U., Stoeber J. VineCopula: Inference of Vine Copulas R package version 2.5.1, 2024

Rohmer, T. npcopTest: Non Parametric Test for Detecting Changes in the Copula R package version: 1.03, 2018 Analyse de la dépendance avec R, une brève introduction aux copules

Short introduction to copulas

Non parametric estimation

Parametric estimation

Copulas in quantitative genetics

Copulas and test for break detections

In many contexts, we want to test

 \mathcal{H}_0 :

 $\exists F$ such that X_1, \ldots, X_n have c.d.f. F.

Sklar's theorem allows to rewrite \mathcal{H}_0 as $\mathcal{H}_{0,m}\cap\mathcal{H}_{0,c}$ where

 $\mathcal{H}_{0,m} \cap \mathcal{H}_{0,c}$:

 $\begin{array}{ll} \mathcal{H}_{0,c}: & \exists C, \text{ such that } \boldsymbol{X}_1, \ldots, \boldsymbol{X}_n \text{ have copula } C \\ \mathcal{H}_{0,m}: & \exists F_1, \ldots, F_d \text{ such that } \boldsymbol{X}_1, \ldots, \boldsymbol{X}_n \text{ have m.c.d.f. } F_1, \ldots, F_d . \end{array}$

Hence \mathcal{H}_0 can be rejetted because $\neg \mathcal{H}_{0,c}$ and/or $\neg \mathcal{H}_{0,m}$

Example 1: Nasdaq, Dow Jones and the "black Monday" (1987-10-19), 📿 library QRM

Example 2: Identificantion of changes in drinking behaviour and/or physical activity of pig farming that could indicate a technical or health-related event

Hamelin, G., Rohmer, T., Gaillard, C.

Amélioration d'un outil de détection d'évènements techniques ou sanitaires à l'échelle de plusieurs bandes de truies Poster Journées de la recherche Porcine, 2023 (JRP23)

Ø

INRA@

Non-parametric estimation of the copula

In the bivariate case, for an i.i.d. sample, the identification of the copula of $(X_{i,1}, X_{i,2})$ can be done using graphical plot of the pseudo-observations $(\hat{U}_{i,1}, \hat{U}_{i,2})$ where

 $\widehat{U}_{i,j} = F_{n,j}(X_{i,j})$

and $F_{n,j}$ is the empirical cumulative distribution of $X_{1,j}, \ldots, X_{n,j}$.

Non-parametric estimation of the copula

In the bivariate case, for an i.i.d. sample, the identification of the copula of $(X_{i,1}, X_{i,2})$ can be done using graphical plot of the pseudo-observations $(\hat{U}_{i,1}, \hat{U}_{i,2})$ where

 $\widehat{U}_{i,j} = F_{n,j}(X_{i,j})$

and $F_{n,j}$ is the empirical cumulative distribution of $X_{1,j}, \ldots, X_{n,j}$. Note that:

- 1. copulas are invariant under increasing transformations of the margins!
- 2. A consistent non-parametric estimation of the copula is given by

$$C_n(u_1,\ldots,u_d) = \frac{1}{n} \sum_{i=1}^n \prod_{j=1}^d \mathbb{1}(\widehat{U}_{i,j} \le u_j) \quad (u_1,\ldots,u_d) \in [0,1]^d$$

The selection can also be done using AIC criterion, see for example the R function BiCopCompare of the package VineCopula

> Example on pig data

Figure: Contours plot of the fitted copula from pseudo-observations for CFI10 and BW100 (rotated 90 degrees Clayton copula): (left) uniform scale, (middle) gaussian scale, (right) Large-white pigs!

Short introduction to copulas

Non parametric estimation

Parametric estimation

Copulas in quantitative genetics

Log-likelihood

let consider for i = 1, ..., n, $\underline{y}_i = (y_{i,1}, ..., y_{i,s})$ be independent random vectors with copula C_{θ} and marginal distributions $F_{i,j}$ assumed continuous, which depend on parameters β_j . The density of \underline{y}_i is

$$f_i(\underline{\mathbf{y}}_i|\boldsymbol{\beta}, \theta) = c_{\theta}(F_{i,1}(y_{i,1}|\boldsymbol{\beta}_1), \dots, F_{i,s}(y_{i,s}|\boldsymbol{\beta}_s)) \prod_{j=1}^s f_{i,j}(y_{i,j}|\boldsymbol{\beta}_j),$$

where c_{θ} is the density of the copula given by:

$$c_{\theta}(u_1,\ldots,u_s) = \frac{\partial^s C_{\theta}(u_1,\ldots,u_s)}{\partial u_1\ldots\partial u_s}$$

The marginal parameters β_1, \ldots, β_s and the copula parameter θ are unknown and are to be estimate.

Log-likelihood

The log-density can be written as

$$\log f_i(\underline{\mathbf{y}}_i|\boldsymbol{\beta},\theta) = \log c_{\theta}(F_{i,1}(y_{i,1}|\boldsymbol{\beta}_1),\ldots,F_{i,s}(y_{i,s}|\boldsymbol{\beta}_s)) + \sum_{j=1}^s \log f_{i,j}(y_{i,j}|\boldsymbol{\beta}_j).$$

Let $\log \mathcal{L}_j$ be the *j*-marginal contributions over *i*, i.e.,

$$\log \mathcal{L}_j(\boldsymbol{\beta}_j | \boldsymbol{y}) = \sum_{i=1}^n \log f_{i,j}(\boldsymbol{\beta}_j | y_{i,j}). \tag{1}$$

Hence the full log-likelihood log \mathcal{L} of $\mathbf{y} = (\underline{\mathbf{y}}_1, \dots, \underline{\mathbf{y}}_n)^T$ can be expressed as

$$\log \mathcal{L}(\boldsymbol{\beta}, \boldsymbol{\theta} | \boldsymbol{y}) = \underbrace{\sum_{i=1}^{n} \log c_{\boldsymbol{\theta}}(F_{i,1}(y_{i,1} | \boldsymbol{\beta}_{1}), \dots, F_{i,s}(y_{i,s} | \boldsymbol{\beta}_{s}))}_{(a)} + \underbrace{\sum_{j=1}^{s} \log \mathcal{L}_{j}(\boldsymbol{\beta}_{j} | \boldsymbol{y})}_{(b)}.$$
 (2)

1. MLE consists in finding the solution of

$$(\frac{\partial \log \mathcal{L}}{\partial \beta_1}, \dots, \frac{\partial \log \mathcal{L}}{\partial \beta_s}, \frac{\partial \log \mathcal{L}}{\partial \theta})(\boldsymbol{\beta}, \theta | \boldsymbol{y}) = 0.$$

Found the MLE using gradient descent can be time consuming for a high number of variables or very huge n.

Estimation

1. MLE consists in finding the solution of

$$(\frac{\partial \log \mathcal{L}}{\partial \beta_1}, \dots, \frac{\partial \log \mathcal{L}}{\partial \beta_s}, \frac{\partial \log \mathcal{L}}{\partial \theta})(\beta, \theta | \mathbf{y}) = 0.$$

Found the MLE using gradient descent can be time consuming for a high number of variables or very huge n.

2. Inference for margins estimators (IFM) [Xu96] consists in finding the solution of

$$(\frac{\partial \log \mathcal{L}_1}{\partial \beta_1}, \dots, \frac{\partial \log \mathcal{L}_s}{\partial \beta_s}, \frac{\partial \log \mathcal{L}}{\partial \theta})(\beta, \theta | \mathbf{y}) = 0.$$

That is to say, optimize (b) then (a).

Estimation

 $1. \ \mbox{MLE}$ consists in finding the solution of

$$(rac{\partial \log \mathcal{L}}{\partial eta_1}, \dots, rac{\partial \log \mathcal{L}}{\partial eta_s}, rac{\partial \log \mathcal{L}}{\partial heta})(oldsymbol{eta}, heta|oldsymbol{y}) = 0.$$

Found the MLE using gradient descent can be time consuming for a high number of variables or very huge n.

2. Inference for margins estimators (IFM) [Xu96] consists in finding the solution of

$$(\frac{\partial \log \mathcal{L}_1}{\partial \beta_1}, \dots, \frac{\partial \log \mathcal{L}_s}{\partial \beta_s}, \frac{\partial \log \mathcal{L}}{\partial \theta})(\boldsymbol{\beta}, \theta | \boldsymbol{y}) = 0.$$

That is to say, optimize (b) then (a).

Xu, J. J.

Statistical modelling and inference for multivariate and longitudinal discrete response data. *PhD thesis, University of British Columbia*, 1996.

INRAØ

When the marginal distributions depends on categorical explanatory variable with a high number of modalities, IFM can be again very time consuming due to the optimization problem (b).

When the marginal distributions depends on categorical explanatory variable with a high number of modalities, IFM can be again very time consuming due to the optimization problem (b).

For marginal distributions inside the exponential family, we proposed in [Brouste et al. 2023, Brouste et al. 2025] an alternative IFM procedure that works with

1. a consistent (and explicit) guess estimator for the marginal parameters [Brouste et al. 2022]

When the marginal distributions depends on categorical explanatory variable with a high number of modalities, IFM can be again very time consuming due to the optimization problem (b).

For marginal distributions inside the exponential family, we proposed in [Brouste et al. 2023, Brouste et al. 2025] an alternative IFM procedure that works with

- 1. a consistent (and explicit) guess estimator for the marginal parameters [Brouste et al. 2022]
- 2. a one-step (Fisher's scoring) procedure to obtain an efficient estimation $\hat{\beta}^{OS}$ of β and finally a consistent estimation $\hat{\theta}$ of θ such that

$$rac{\partial \log \mathcal{L}}{\partial heta}(\hat{oldsymbol{eta}}^{OS},\hat{ heta}|oldsymbol{y})=0.$$

Brouste, A., Dutang, C. and Rohmer, T.

One-step closed-form estimator for generalized linear model with categorical explanatory variables Statistics, Simulation and computation, 2022.

Brouste, A., Dutang, C., Hovsepyan, L. and Rohmer, T.

One-step closed-form estimator for generalized linear model with categorical explanatory variables *Statistics and Computing*, 2023.

Brouste, A., Dutang, C., Hovsepyan, L. and Rohmer, T.

Fast inference in copula models with categorical explanatory variables using the one-step procedure submitted, 2025.

Hovsepyan, L.

Fast and efficient estimation methods for generalized linear models with applications in insurance ph.D. thesis 2025

Alexandre Brouste, Christophe Dutang & Tom Rohmer glmtools: Tools to fit generalized linear models with explicit expressions Dépôt logiciel d'invention, 2022, disponible à la demande Next version: multivariate glm using copulas.

> Discrete and mixed case in bivariate model

▷ When all the 2 margins are discrete, the p.m.f. can be rewritten as:

$$\mathbb{P}(X_1 = x_1, X_2 = x_2) = \mathbb{P}(X_1 \le x_1, X_2 \le x_2) - \mathbb{P}(X_1 \le x_1^-, X_2 \le x_2) \ -\mathbb{P}(X_1 \le x_1, X_2 \le x_2^-) + \mathbb{P}(X_1 \le x_1^-, X_2 \le x_2^-)$$

$$= C_{\theta}(F_1(x_1), F_2(x_2)) - C_{\theta}(F_1(x_1^-), F_2(x_2)) \\ - C_{\theta}(F_1(x_1), F_2(x_2^-)) + C_{\theta}(F_1(x_1^-), F_2(x_2^-))$$

> Discrete and mixed case in bivariate model

 \triangleright In the mixed case, when X_1 is continuous and X_2 discrete the density is

$$f(x_1, x_2) = f(x_1) \big(c_{\theta, u_1}(F_1(x_1), F_2(x_2)) - c_{\theta, u_1}(F_1(x_1), F_2(x_2^-)) \big)$$

with

$$c_{ heta,u_1}(u_1,u_2)=rac{\partial}{\partial u_1}C_{ heta}(u_1,u_2)$$

> Discrete and mixed case in bivariate model

 \triangleright In the mixed case, when X_1 is continuous and X_2 discrete the density is

$$f(x_1, x_2) = f(x_1) \big(c_{\theta, u_1}(F_1(x_1), F_2(x_2)) - c_{\theta, u_1}(F_1(x_1), F_2(x_2^-)) \big)$$

with

$$c_{ heta,u_1}(u_1,u_2)=rac{\partial}{\partial u_1}C_{ heta}(u_1,u_2)$$

Example:

Tomilina, E. and Mazo, G. and Jaffrézic, F.

A semi-parametric Gaussian copula model for heterogeneous network inference: an application to multi-omics data https://hal.inrae.fr/hal-04847648, 2024.

Short introduction to copulas

Non parametric estimation

Parametric estimation

Copulas in quantitative genetics

▷ Every phenotypic observation on an animal is determined by environmental and genetic factors and may be defined by the following model:

Phenotypic observation

= envir. effects + genetic effects + resid. effects

The inference model is

$$\begin{cases} \mathbf{y}_1 = X_1 \boldsymbol{\beta}_1 + Z \, \mathbf{a}_1 + \boldsymbol{\varepsilon}_1 \\ \mathbf{y}_2 = X_2 \boldsymbol{\beta}_2 + Z \, \mathbf{a}_2 + \boldsymbol{\varepsilon}_2. \end{cases}$$

 y_j the phenotype vectors of size *n* (neither identically distributed nor independent) X_j design matrices related to fixed effects, β_j parameter vectors to estimate

- Z $n \times N$ incidence matrix; a_j unobservable BV vectors of size $N \ge n$.
- ε_j residual vectors with components assumed i.i.d.

The inference model is

$$\begin{cases} \mathbf{y}_1 = X_1 \boldsymbol{\beta}_1 + Z \, \mathbf{a}_1 + \boldsymbol{\varepsilon}_1 \\ \mathbf{y}_2 = X_2 \boldsymbol{\beta}_2 + Z \, \mathbf{a}_2 + \boldsymbol{\varepsilon}_2. \end{cases}$$

 \mathbf{y}_j the phenotype vectors of size n (neither identically distributed nor independent) X_j design matrices related to fixed effects, $\boldsymbol{\beta}_j$ parameter vectors to estimate Z $n \times N$ incidence matrix; \mathbf{a}_j unobservable BV vectors of size $N \ge n$. ε_j residual vectors with components assumed i.i.d.

Particularly, the BVs are

$$a_{i,j} = 0.5(a_{i_S,j} + a_{i_D,j}) + M_{i,j},$$

where $a_{i_S,j}$ and $a_{i_D,j}$ are the BVs of the sire and dam $M_{i,j}$ are the Mendelian sampling terms with distribution

$$(M_{i,1}, M_{i,2}) \sim \mathcal{N}(0, G/2)$$
 if no inbreeding

Because founders are assumed unrelated, the variance of the random terms (latent) is

$$var(a_1, a_2) = G \otimes A = \begin{pmatrix} \sigma_{a_1}^2 A & \sigma_{a_{12}} A \\ \sigma_{a_{12}} A & \sigma_{a_2}^2 A \end{pmatrix}, \quad A \text{ an } N imes N \text{ kinship matrix,}$$

Because founders are assumed unrelated, the variance of the random terms (latent) is

$$var(\boldsymbol{a}_1, \boldsymbol{a}_2) = \boldsymbol{G} \otimes \boldsymbol{A} = \begin{pmatrix} \sigma_{\boldsymbol{a}_1}^2 \boldsymbol{A} & \sigma_{\boldsymbol{a}_{12}} \boldsymbol{A} \\ \sigma_{\boldsymbol{a}_{12}} \boldsymbol{A} & \sigma_{\boldsymbol{a}_{2}}^2 \boldsymbol{A} \end{pmatrix}, \quad \boldsymbol{A} \text{ an } \boldsymbol{N} \times \boldsymbol{N} \text{ kinship matrix,}$$

and for $i = 1, \ldots, n$

$$arepsilon_{i,j} \sim \mathcal{N}(0, \sigma_j^2), \quad (arepsilon_{i,1}, arepsilon_{i,2}) ext{ has copula } C_{ heta}.$$

The lack of consideration for an adequate dependence structure (e.g., assuming a Gaussian structure) may lead to poor estimation of variance parameters:

Rohmer, T., Ricard, A., David, I. Copula miss-specification in REML multivariate genetic animal model estimation, *Genetics Selection Evolution*. May 2022

> Reformulation

$$\begin{array}{ll} (a_{1,1},\ldots,a_{N,1},a_{1,2},\ldots,a_{N,2}) & \sim \mathcal{N}_{2n}\left(\mathbf{0},G\otimes A\right); \\ Y_{ij}|Z_i \mathbf{a}_j & \sim \mathcal{N}(Z_i \mathbf{a}_j + \mathbf{x}_{ij}\boldsymbol{\beta}_j,\sigma_j^2) \\ (Y_{i,1},Y_{i,2})|(Z_i \mathbf{a}_1,Z_i \mathbf{a}_2) & \text{has copula } C_{\theta}; \end{array}$$

Because the BVs a_j are unobservable, the log-density is

$$\log f(\mathbf{y}) = \log \int_{2N} f(\mathbf{y}|\mathbf{a}) f(\mathbf{a}) d\mathbf{a}.$$

The MLE is solution with respect to $\xi = (\beta_1, \beta_2, \sigma_1^2, \sigma_2^2, \theta, \sigma_{a_1}^2, \sigma_{a_2}^2, \sigma_{a_{12}})$ of the system equations

$$rac{\partial}{\partial \xi} \log f(\mathbf{y}; \xi) = 0.$$

Stochastic gradient descent algorithm

Remember we have to solve

$$rac{\partial}{\partial \xi} \log f(oldsymbol{y};\xi) = 0.$$

First note that he Fisher's identity states

$$\frac{\partial}{\partial \xi} \log f(\boldsymbol{y}; \xi) = \mathbb{E}_{\boldsymbol{a}|\boldsymbol{y}} \left(\frac{\partial}{\partial \xi} \log f(\boldsymbol{y}, \boldsymbol{a}; \xi) \right).$$

Stochastic gradient descent algorithm

Remember we have to solve

$$rac{\partial}{\partial \xi} \log f(oldsymbol{y};\xi) = 0.$$

First note that he Fisher's identity states

$$\frac{\partial}{\partial \xi} \log f(\boldsymbol{y}; \xi) = \mathbb{E}_{\boldsymbol{a}|\boldsymbol{y}} \left(\frac{\partial}{\partial \xi} \log f(\boldsymbol{y}, \boldsymbol{a}; \xi) \right).$$

An SGD algorithm is

for $m \in 1, \ldots, M$ do:

Simulate $a^{(m)}$ from the conditional distribution of a|y

Update the parameter:

$$\boldsymbol{\xi}^{(m)} = \boldsymbol{\xi}^{(m-1)} + \gamma_m \frac{\partial}{\partial \xi} \log f(\boldsymbol{y}, \boldsymbol{a}^{(m)}; \boldsymbol{\xi}^{(m-1)})$$

for a well-chosen learning rate γ_m .

Simplifications

It can be rewritten as can be rewritten as

$$G^{(m)} = G^{(m-1)} + \gamma_{1,m} \frac{\partial}{\partial \xi} \log f(\mathbf{a}^{(m)})$$

A is a very huge matrix, working with A can be numerically complex. But A^{-1} is very sparse! With some simplifications, we can work only with A^{-1} :

$$\begin{split} &\frac{\partial}{\partial \xi} \log f\left(\mathbf{a}^{(m)}\right) \\ &= \frac{1}{2} \left(\operatorname{trace} \left(\left(G^{(m-1)} \otimes A \right) \times \left(\nabla G^{-1(m-1)} \right) \otimes A^{-1} \right) - \left(\mathbf{a}^{(m)}\right)^T \left(\left(\nabla G^{-1(m-1)} \right) \otimes A^{-1} \right) \mathbf{a}^{(m)} \right) \\ &= \frac{1}{2} \left(N \times \operatorname{trace} \left(G^{(m-1)} \times \left(\nabla G^{-1(m-1)} \right) \right) - \left(\mathbf{a}^{(m)}\right)^T \left(\left(\nabla G^{-1(m-1)} \right) \otimes A^{-1} \right) \mathbf{a}^{(m)} \right) \end{split}$$

Simplifications

It can be rewritten as can be rewritten as

$$G^{(m)} = G^{(m-1)} + \gamma_{1,m} \frac{\partial}{\partial \xi} \log f(\mathbf{a}^{(m)})$$

 \hookrightarrow based on trace of sparse matrix

$$(\boldsymbol{\beta}, \sigma_j^2)^{(m)} = (\boldsymbol{\beta}, \sigma_j^2)^{(m-1)} + \gamma_{2,m} \frac{\partial}{\partial \xi} \log f(\boldsymbol{y} | \boldsymbol{z}^T \boldsymbol{a}^{(m)})$$

and

$$\theta^{(m)} = \theta^{(m-1)} + \gamma_{3,m} \frac{\partial}{\partial \xi} \log f(\mathbf{y} | z^{\mathsf{T}} \mathbf{a}^{(m)}).$$

 \hookrightarrow \hookrightarrow more complex analytic formulations (derivatives of copula density) but no real challenge to efficiently compute it.

Simulation of the conditional distribution of BVs given observations

- ▶ for Gaussian copula, a|Y has explicit Gaussian distribution with covariance $((ZG \otimes AZ^T)^{-1} + (R \otimes I_n)^{-1})^{-1}$.
- $\,\hookrightarrow\,$ That can be sampled using a Cholesky decomposition

Simulation of the conditional distribution of BVs given observations

- ▶ for Gaussian copula, a|Y has explicit Gaussian distribution with covariance $((ZG \otimes AZ^T)^{-1} + (R \otimes I_n)^{-1})^{-1}$.
- $\,\hookrightarrow\,$ That can be sampled using a Cholesky decomposition
- ▶ for non-Gaussian copula, a|Y does not have an explicit distribution $(\propto f(Y|a)f(a))$, and there is not easy resampling sheme.
- \hookrightarrow Hybrid MCMC-Metropolips-Gibbs block sampling

Rohmer, T., Bruning, V. and Kuhn, Estelle

 $G{+}\mathsf{E}$ copula model to improve the estimation of the genetic parameters in bivariate mixed model, $\textit{submitted},\ 2025$

> On real data

varcomp	$\sigma_{a_1}^2$	$\sigma_{a_2}^2$	$\sigma_{a_{12}}$	$\sigma_{e_1}^2$	$\sigma_{e_2}^2$	θ	h_{CFI10}^2	h_{BW100}^{2}	$ ho_{e}$	iterations
AI-REML	0.56	0.37	-0.02	0.38	$0.\bar{5}4$	-0.18	0.59	0.41	-0.39	7
rC-SGD	0.52	0.39	-0.01	0.56	0.64	-0.28	0.48	0.38	-0.20	121

Table: Estimation of the variance components using Gaussian inference model with AI-REML procedure and using rotated 90 degree Clayton inference model with SGD procedure, using 3 generations, n = 1749, N = 4653.

Inference in copula models

12 mai 2025 / Tom Rohmer, Inrae Toulouse, France